Searching for Type 2 Diabetes Genes on Chromosome 20
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analyses of Allele-Specific Gene Expression in Highly Divergent
ARTICLES Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance James J Crowley1,10, Vasyl Zhabotynsky1,10, Wei Sun1,2,10, Shunping Huang3, Isa Kemal Pakatci3, Yunjung Kim1, Jeremy R Wang3, Andrew P Morgan1,4,5, John D Calaway1,4,5, David L Aylor1,9, Zaining Yun1, Timothy A Bell1,4,5, Ryan J Buus1,4,5, Mark E Calaway1,4,5, John P Didion1,4,5, Terry J Gooch1,4,5, Stephanie D Hansen1,4,5, Nashiya N Robinson1,4,5, Ginger D Shaw1,4,5, Jason S Spence1, Corey R Quackenbush1, Cordelia J Barrick1, Randal J Nonneman1, Kyungsu Kim2, James Xenakis2, Yuying Xie1, William Valdar1,4, Alan B Lenarcic1, Wei Wang3,9, Catherine E Welsh3, Chen-Ping Fu3, Zhaojun Zhang3, James Holt3, Zhishan Guo3, David W Threadgill6, Lisa M Tarantino7, Darla R Miller1,4,5, Fei Zou2,11, Leonard McMillan3,11, Patrick F Sullivan1,5,7,8,11 & Fernando Pardo-Manuel de Villena1,4,5,11 Complex human traits are influenced by variation in regulatory DNA through mechanisms that are not fully understood. Because regulatory elements are conserved between humans and mice, a thorough annotation of cis regulatory variants in mice could aid in further characterizing these mechanisms. Here we provide a detailed portrait of mouse gene expression across multiple tissues in a three-way diallel. Greater than 80% of mouse genes have cis regulatory variation. Effects from these variants influence complex traits and usually extend to the human ortholog. Further, we estimate that at least one in every thousand SNPs creates a cis regulatory effect. -
Single-Cell RNA-Sequencing-Based Crispri Screening Resolves Molecular Drivers of Early Human Endoderm Development
University of Massachusetts Medical School eScholarship@UMMS Open Access Articles Open Access Publications by UMMS Authors 2019-04-16 Single-Cell RNA-Sequencing-Based CRISPRi Screening Resolves Molecular Drivers of Early Human Endoderm Development Ryan M. Genga University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Amino Acids, Peptides, and Proteins Commons, Cell Biology Commons, Cells Commons, Developmental Biology Commons, Embryonic Structures Commons, Genetic Phenomena Commons, and the Nucleic Acids, Nucleotides, and Nucleosides Commons Repository Citation Genga RM, Kernfeld EM, Parsi KM, Parsons TJ, Ziller MJ, Maehr R. (2019). Single-Cell RNA-Sequencing- Based CRISPRi Screening Resolves Molecular Drivers of Early Human Endoderm Development. Open Access Articles. https://doi.org/10.1016/j.celrep.2019.03.076. Retrieved from https://escholarship.umassmed.edu/oapubs/3818 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Report Single-Cell RNA-Sequencing-Based CRISPRi Screening Resolves Molecular Drivers of Early Human Endoderm Development Graphical Abstract Authors Ryan M.J. Genga, Eric M. Kernfeld, Krishna M. Parsi, Teagan J. Parsons, Michael J. Ziller, Rene´ Maehr Correspondence [email protected] In Brief Genga et al. utilize a single-cell RNA- sequencing-based CRISPR interference approach to screen transcription factors predicted to have a role in human definitive endoderm differentiation. -
The RGG Domain of the Yeast Nucleolin Nsr1 Is Required for The
bioRxiv preprint doi: https://doi.org/10.1101/802876; this version posted October 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The RGG Domain of the Yeast Nucleolin Nsr1 Is Required for the Genome Instability Associated with Co-transcriptionally Formed G4 DNA Shivani Singh1, Alexandra Berroyer1,2, and Nayun Kim1,2,* 1Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA 2MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA *To whom correspondence should be addressed. Tel: 01-713-500-5597; Fax: 01-713-500-5499; Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/802876; this version posted October 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 2 ABSTRACT A significant increase in genome instability is associated with the conformational shift of a guanine-run-containing DNA strand into the four-stranded G4 DNA. Until recently, the mechanism underlying the recombination and genome rearrangements following the formation of G4 DNA in vivo has been difficult to elucidate but has become better clarified by the identification and functional characterization of several key G4 DNA-binding proteins. -
Activated Peripheral-Blood-Derived Mononuclear Cells
Transcription factor expression in lipopolysaccharide- activated peripheral-blood-derived mononuclear cells Jared C. Roach*†, Kelly D. Smith*‡, Katie L. Strobe*, Stephanie M. Nissen*, Christian D. Haudenschild§, Daixing Zhou§, Thomas J. Vasicek¶, G. A. Heldʈ, Gustavo A. Stolovitzkyʈ, Leroy E. Hood*†, and Alan Aderem* *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103; ‡Department of Pathology, University of Washington, Seattle, WA 98195; §Illumina, 25861 Industrial Boulevard, Hayward, CA 94545; ¶Medtronic, 710 Medtronic Parkway, Minneapolis, MN 55432; and ʈIBM Computational Biology Center, P.O. Box 218, Yorktown Heights, NY 10598 Contributed by Leroy E. Hood, August 21, 2007 (sent for review January 7, 2007) Transcription factors play a key role in integrating and modulating system. In this model system, we activated peripheral-blood-derived biological information. In this study, we comprehensively measured mononuclear cells, which can be loosely termed ‘‘macrophages,’’ the changing abundances of mRNAs over a time course of activation with lipopolysaccharide (LPS). We focused on the precise mea- of human peripheral-blood-derived mononuclear cells (‘‘macro- surement of mRNA concentrations. There is currently no high- phages’’) with lipopolysaccharide. Global and dynamic analysis of throughput technology that can precisely and sensitively measure all transcription factors in response to a physiological stimulus has yet to mRNAs in a system, although such technologies are likely to be be achieved in a human system, and our efforts significantly available in the near future. To demonstrate the potential utility of advanced this goal. We used multiple global high-throughput tech- such technologies, and to motivate their development and encour- nologies for measuring mRNA levels, including massively parallel age their use, we produced data from a combination of two distinct signature sequencing and GeneChip microarrays. -
Cooperativity of Imprinted Genes Inactivated by Acquired Chromosome 20Q Deletions
Cooperativity of imprinted genes inactivated by acquired chromosome 20q deletions Athar Aziz, … , Anne C. Ferguson-Smith, Anthony R. Green J Clin Invest. 2013;123(5):2169-2182. https://doi.org/10.1172/JCI66113. Research Article Oncology Large regions of recurrent genomic loss are common in cancers; however, with a few well-characterized exceptions, how they contribute to tumor pathogenesis remains largely obscure. Here we identified primate-restricted imprinting of a gene cluster on chromosome 20 in the region commonly deleted in chronic myeloid malignancies. We showed that a single heterozygous 20q deletion consistently resulted in the complete loss of expression of the imprinted genes L3MBTL1 and SGK2, indicative of a pathogenetic role for loss of the active paternally inherited locus. Concomitant loss of both L3MBTL1 and SGK2 dysregulated erythropoiesis and megakaryopoiesis, 2 lineages commonly affected in chronic myeloid malignancies, with distinct consequences in each lineage. We demonstrated that L3MBTL1 and SGK2 collaborated in the transcriptional regulation of MYC by influencing different aspects of chromatin structure. L3MBTL1 is known to regulate nucleosomal compaction, and we here showed that SGK2 inactivated BRG1, a key ATP-dependent helicase within the SWI/SNF complex that regulates nucleosomal positioning. These results demonstrate a link between an imprinted gene cluster and malignancy, reveal a new pathogenetic mechanism associated with acquired regions of genomic loss, and underline the complex molecular and cellular consequences of “simple” cancer-associated chromosome deletions. Find the latest version: https://jci.me/66113/pdf Research article Cooperativity of imprinted genes inactivated by acquired chromosome 20q deletions Athar Aziz,1,2 E. Joanna Baxter,1,2,3 Carol Edwards,4 Clara Yujing Cheong,5 Mitsuteru Ito,4 Anthony Bench,3 Rebecca Kelley,1,2 Yvonne Silber,1,2 Philip A. -
BIOINFORMATICS Pages 1–7
Vol. 00 no. 00 2010 BIOINFORMATICS Pages 1–7 Integrative classification and analysis of multiple arrayCGH datasets with probe alignment Ze Tian and Rui Kuang∗ Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, USA Received on XXXXX; revised on XXXXX; accepted on XXXXX Associate Editor: XXXXXXX ABSTRACT 2009). Chromosome copy number variations can be measured by Motivation: Array comparative genomic hybridization (ArrayCGH) comparative genomic hybridization (CGH), which compares the is widely used to measure DNA copy numbers in cancer research. copy number of a differentially labeled case sample with a reference ArrayCGH data report log-ratio intensities of thousands of probes DNA from a normal individual. ArrayCGH technology based on sampled along the chromosomes. Typically, the choices of the DNA microarray can currently allow genome-wide identification locations and the lengths of the probes vary in different experiments. of regions with copy number variations at different resolutions This discrepancy in choosing probes poses a challenge in integrated (Carter, 2007). The arrayCGH data was used to discriminate healthy classification or analysis across multiple arrayCGH datasets. We patients from cancer patients and classify patients of different cancer propose an alignment based framework to integrate arrayCGH subtypes. Thus, arrayCGH data is considered as a new source of samples generated from different probe sets. The alignment biomarkers that provide important information of candidate cancer framework seeks an optimal alignment between the probe series loci for the classification of patients and discovery of molecular of one arrayCGH sample and the probe series of another sample, mechanisms of cancers (Sykes et al., 2009). -
Binnenwerk Cindy Postma.Indd
CHAPTER 6 Multiple putative oncogenes at the chromosome 20q amplicon contribute to colorectal adenoma to carcinoma progression Gut 2009, 58: 79-89 Beatriz Carvalho Cindy Postma Sandra Mongera Erik Hopmans Sharon Diskin Mark A. van de Wiel Wim van Criekinge Olivier Thas Anja Matthäi Miguel A. Cuesta Jochim S. Terhaar sive Droste Mike Craanen Evelin Schröck Bauke Ylstra Gerrit A. Meijer 104 | Chapter 6 Abstract Objective: This study aimed to identify the oncogenes at 20q involved in colorectal adenoma to carcinoma progression by measuring the effect of 20q gain on mRNA expression of genes in this amplicon. Methods: Segmentation of DNA copy number changes on 20q was performed by array CGH in 34 non-progressed colorectal adenomas, 41 progressed adenomas (i.e. adenomas that present a focus of cancer) and 33 adenocarcinomas. Moreover, a robust analysis of altered expression of genes in these segments was performed by microarray analysis in 37 adenomas and 31 adenocarcinomas. Protein expression was evaluated by immunohistochemistry on tissue microarrays. Results: The genes C20orf24, AURKA, RNPC1, TH1L, ADRM1, C20orf20 and TCFL5, mapping at 20q were signifi cantly overexpressed in carcinomas compared to adenomas as consequence of copy number gain of 20q. Conclusion: This approach revealed C20orf24, AURKA, RNPC1, TH1L, ADRM1, C20orf20 and TCFL5 genes to be important in chromosomal instability-related adenoma to carcinoma progression. These genes therefore may serve as highly specifi c biomarkers for colorectal cancer with potential clinical applications. Putative oncogenes at chromosome 20q in colorectal carcinogenesis | 105 Introduction The majority of cancers are epithelial in origin and arise through a stepwise progression from normal cells, through dysplasia, into malignant cells that invade surrounding tissues and have metastatic potential. -
HSF-1 Activates the Ubiquitin Proteasome System to Promote Non-Apoptotic
HSF-1 Activates the Ubiquitin Proteasome System to Promote Non-Apoptotic Developmental Cell Death in C. elegans Maxime J. Kinet#, Jennifer A. Malin#, Mary C. Abraham, Elyse S. Blum, Melanie Silverman, Yun Lu, and Shai Shaham* Laboratory of Developmental Genetics The Rockefeller University 1230 York Avenue New York, NY 10065 USA #These authors contributed equally to this work *To whom correspondence should be addressed: Tel (212) 327-7126, Fax (212) 327- 7129, email [email protected] Kinet, Malin et al. Abstract Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs have been molecularly characterized, none appear to control developmental cell culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in C. elegans and vertebrate development, and is therefore a compelling candidate process complementing apoptosis. However, the details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal control pathway, and MAPKK signaling control HSF-1, a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin proteasome system, including the E2 ligase LET- 70/UBE2D2 functioning with E3 components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates. 2 Kinet, Malin et al. Introduction Animal development and homeostasis are carefully tuned to balance cell proliferation and death. -
Overexpression of RPN2 Suppresses Radiosensitivity of Glioma Cells By
Li et al. Molecular Medicine (2020) 26:43 Molecular Medicine https://doi.org/10.1186/s10020-020-00171-5 RESEARCH ARTICLE Open Access Overexpression of RPN2 suppresses radiosensitivity of glioma cells by activating STAT3 signal transduction Changyu Li1†, Haonan Ran2†, Shaojun Song1, Weisong Liu3, Wenhui Zou1, Bei Jiang4, Hongmei Zhao5 and Bin Shao6* Abstract Background: Radiation therapy is the primary method of treatment for glioblastoma (GBM). Therefore, the suppression of radioresistance in GBM cells is of enormous significance. Ribophorin II (RPN2), a protein component of an N-oligosaccharyl transferase complex, has been associated with chemotherapy drug resistance in multiple cancers, including GBM. However, it remains unclear whether this also plays a role in radiation therapy resistance in GBM. Methods: We conducted a bioinformatic analysis of RPN2 expression using the UCSC Cancer Genomics Browser and GEPIA database and performed an immunohistochemical assessment of RPN2 expression in biopsy specimens from 34 GBM patients who had received radiation-based therapy. We also studied the expression and function of RPN2 in radiation-resistant GBM cells. Results: We found that RPN2 expression was upregulated in GBM tumors and correlated with poor survival. The expression of RPN2 was also higher in GBM patients with tumor recurrence, who were classified to be resistant to radiation therapy. In the radiation-resistant GBM cells, the expression of RPN2 was also higher than in the parental cells. Depletion of RPN2 in resistant cells can sensitize these cells to radiation-induced apoptosis, and overexpression of RPN2 had the reverse effect. Myeloid cell leukemia 1 (MCL1) was found to be the downstream target of RPN2, and contributed to radiation resistance in GBM cells. -
MYBL2 & E2F1 Protein Protein Interaction Antibody Pair
MYBL2 & E2F1 Protein Protein Interaction Antibody Pair Catalog # : DI0186 規格 : [ 1 Set ] List All Specification Application Image Product This protein protein interaction antibody pair set comes with two In situ Proximity Ligation Assay (Cell) Description: antibodies to detect the protein-protein interaction, one against the MYBL2 protein, and the other against the E2F1 protein for use in in situ Proximity Ligation Assay. See Publication Reference below. enlarge Reactivity: Human Quality Control Protein protein interaction immunofluorescence result. Testing: Representative image of Proximity Ligation Assay of protein-protein interactions between MYBL2 and E2F1. HeLa cells were stained with anti-MYBL2 rabbit purified polyclonal antibody 1:1200 and anti-E2F1 mouse monoclonal antibody 1:50. Each red dot represents the detection of protein-protein interaction complex. The images were analyzed using an optimized freeware (BlobFinder) download from The Centre for Image Analysis at Uppsala University. Supplied Antibody pair set content: Product: 1. MYBL2 rabbit purified polyclonal antibody (20 ug) 2. E2F1 mouse monoclonal antibody (40 ug) *Reagents are sufficient for at least 30-50 assays using recommended protocols. Storage Store reagents of the antibody pair set at -20°C or lower. Please aliquot Instruction: to avoid repeated freeze thaw cycle. Reagents should be returned to - Page 1 of 4 2016/5/19 20°C storage immediately after use. MSDS: Download Publication Reference 1. An analysis of protein-protein interactions in cross-talk pathways reveals CRKL as a novel prognostic marker in hepatocellular carcinoma. Liu CH, Chen TC, Chau GY, Jan YH, Chen CH, Hsu CN, Lin KT, Juang YL, Lu PJ, Cheng HC, Chen MH, Chang CF, Ting YS, Kao CY, Hsiao M, Huang CY. -
20P Deletions FTNW
20p deletions rarechromo.org Deletions from chromosome 20p A chromosome 20p deletion is a rare genetic condition caused by the loss of material from one of the body’s 46 chromosomes. The material has been lost from the short arm (the top part in the diagram on the next page) of chromosome 20. Chromosomes are the structures in the nucleus of the body’s cells that carry the genetic information that controls development and function. In total every human individual normally has 46 chromosomes. Of these, two are a pair of sex chromosomes, XX (a pair of X chromosomes) in females and XY (one X chromosome and one Y chromosome) in males. The remaining 44 chromosomes are grouped in pairs. One chromosome from each pair is inherited from the mother while the other one is inherited from the father. Each chromosome has a short arm (called p) and a long arm (called q). Chromosome 20 is one of the smallest chromosomes in man. At present it is known to contain 737 genes out of the total of 20,000 to 25,000 genes in the human genome. You can’t see chromosomes with the naked eye, but if you stain them and magnify their image enough - about 850 times - you can see that each one has a distinctive pattern of light and dark bands. The diagram on the next page shows the bands of chromosome 20. These bands are numbered outwards starting from the point where the short and long arms meet (the centromere ). A low number, as in p11 in the short arm, is close to the centromere. -
In Vitro Analysis of Mutations Causing Myoclonus Epilepsy with Ragged-Red Fibers in the Mitochondrial Trnalys Gene: Two Genotypes Produce Similar Phenotypes JUDY P
MOLECULAR AND CELLULAR BIOLOGY, May 1995, p. 2872–2881 Vol. 15, No. 5 0270-7306/95/$04.0010 Copyright q 1995, American Society for Microbiology In Vitro Analysis of Mutations Causing Myoclonus Epilepsy with Ragged-Red Fibers in the Mitochondrial tRNALys Gene: Two Genotypes Produce Similar Phenotypes JUDY P. MASUCCI,1 MERCY DAVIDSON,2 YASUTOSHI KOGA,2† 1,2 2 ERIC A. SCHON, AND MICHAEL P. KING * Departments of Genetics and Development1 and Neurology,2 Columbia University, New York, New York 10032 Received 6 December 1994/Returned for modification 20 January 1995/Accepted 20 February 1995 Cytoplasts from patients with myoclonus epilepsy with ragged-red fibers harboring a pathogenic point mutation at either nucleotide 8344 or 8356 in the human mitochondrial tRNALys gene were fused with human cells lacking endogenous mitochondrial DNA (mtDNA). For each mutation, cytoplasmic hybrid (cybrid) cell lines containing 0 or 100% mutated mtDNAs were isolated and their genetic, biochemical, and morphological characteristics were examined. Both mutations resulted in the same biochemical and molecular genetic phenotypes. Specifically, cybrids containing 100% mutated mtDNAs, but not those containing the correspond- ing wild-type mtDNAs, exhibited severe defects in respiratory chain activity, in the rates of protein synthesis, and in the steady-state levels of mitochondrial translation products. In addition, aberrant mitochondrial translation products were detected with both mutations. No significant alterations were observed in the processing of polycistronic RNA precursor transcripts derived from the region containing the tRNALys gene. These results demonstrate that two different mtDNA mutations in tRNALys, both associated with the same mitochondrial disorder, result in fundamentally identical defects at the cellular level and strongly suggest that specific protein synthesis abnormalities contribute to the pathogenesis of myoclonus epilepsy with ragged-red fibers.