Overexpression of RPN2 Suppresses Radiosensitivity of Glioma Cells By

Total Page:16

File Type:pdf, Size:1020Kb

Overexpression of RPN2 Suppresses Radiosensitivity of Glioma Cells By Li et al. Molecular Medicine (2020) 26:43 Molecular Medicine https://doi.org/10.1186/s10020-020-00171-5 RESEARCH ARTICLE Open Access Overexpression of RPN2 suppresses radiosensitivity of glioma cells by activating STAT3 signal transduction Changyu Li1†, Haonan Ran2†, Shaojun Song1, Weisong Liu3, Wenhui Zou1, Bei Jiang4, Hongmei Zhao5 and Bin Shao6* Abstract Background: Radiation therapy is the primary method of treatment for glioblastoma (GBM). Therefore, the suppression of radioresistance in GBM cells is of enormous significance. Ribophorin II (RPN2), a protein component of an N-oligosaccharyl transferase complex, has been associated with chemotherapy drug resistance in multiple cancers, including GBM. However, it remains unclear whether this also plays a role in radiation therapy resistance in GBM. Methods: We conducted a bioinformatic analysis of RPN2 expression using the UCSC Cancer Genomics Browser and GEPIA database and performed an immunohistochemical assessment of RPN2 expression in biopsy specimens from 34 GBM patients who had received radiation-based therapy. We also studied the expression and function of RPN2 in radiation-resistant GBM cells. Results: We found that RPN2 expression was upregulated in GBM tumors and correlated with poor survival. The expression of RPN2 was also higher in GBM patients with tumor recurrence, who were classified to be resistant to radiation therapy. In the radiation-resistant GBM cells, the expression of RPN2 was also higher than in the parental cells. Depletion of RPN2 in resistant cells can sensitize these cells to radiation-induced apoptosis, and overexpression of RPN2 had the reverse effect. Myeloid cell leukemia 1 (MCL1) was found to be the downstream target of RPN2, and contributed to radiation resistance in GBM cells. Furthermore, STAT3 was found to be the regulator of MCL1, which can be activated by RPN2 dysregulation. Conclusion: Our study has revealed a novel function of RPN2 in radiation-resistant GBM, and has shown that MCL1 depletionorsuppressioncouldbeapromisingmethodoftherapytoovercometheresistancepromotedbyRPN2 dysregulation. Keywords: GBM, RPN2, STAT3, Signal transduction Background radiation, and temozolomide chemotherapy (Stupp et al., Glioblastomas (GBM) are tumors of the central nervous 2005). Despite these aggressive treatments, survival rates system and result in 1.2 ~ 1.4 × 104 deaths in the U.S. after treatment remain low, at an average of around 12– alone every year (Hess et al., 2004). The existing treat- 15 months (Preusser et al., 2011). It is thought that GBM ment methods are usually limited to surgical excision, tumors can obtain chemo and radiation therapy resist- ance by stimulating DNA repair systems or by initiating * Correspondence: [email protected] changes to the cell cycle and apoptosis (Mirimanoff †Changyu Li and Haonan Ran both authors contributed equally to this work et al., 2006; Mrugala & Chamberlain, 2008). Resistance and should be considered as equal first coauthors. 6 to chemotherapy has been widely investigated and has Neurosurgery, The First Affiliated Hospital of Harbin Medical University, MGMT – No.199 Dazhi Street, Nangang District, Harbin 150001, Heilongjiang, China mostly focused on the expression of (0 6 Full list of author information is available at the end of the article methylguanine-DNA Methyltransferase) (Perazzoli et al., © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Li et al. Molecular Medicine (2020) 26:43 Page 2 of 9 2015). However, the fundamental mechanisms under- Radiotherapy lying radiotherapy resistance and its generation are still Radiotherapy was conducted in the Radiotherapy Oncol- unclear. Radiation therapy remains a primary method of ogy department of the First Affiliated Hospital of Harbin treatment for GBM (Ghotme et al., 2017), and therefore Medical University, using a Varian 2100C linear acceler- the reduction of radioresistance in GBM cells and thera- ator (dose, 5 Gy; dose rate, 5 Gy/min). The cells were peutic targets is of huge significance. seeded in a 12-well plate and preserved under adjustable Ribophorin II (RPN2) is a protein component of an N- conditions for 1 day, and subsequently treated with radi- oligosaccharyl transferase complex, the downregulation ation, and cultivated again under identical conditions for of which can trigger apoptosis in human breast cancer 1 day more. cells resistant to docetaxel., and its silencing confers sen- sitivity of the tumor to cisplatin treatment (Honma Clonal radioresistant cell generation et al., 2008). In addition, gastric cancers with high RPN2 A172 and U87 cells were seeded in culture plates (100 expression have exhibited dramatically higher recurrence mm) and treated with a 1 Gy radiation dose until an ac- rates and lower 5-year survival rates relative to those cumulated dose of 5 Gy was reached. All dissociated with low expression (Fujimoto et al., 2017). These obser- cells were recovered using cloning cylinders (Sigma Al- vations suggest that RPN2 expression could serve as a drich) and seeded in a 96-well plate. Once proliferating, predictive biomarker for chemotherapy resistance. In a these cells were transferred to a 12-well plate, and subse- recent study, RPN2 was reported to be modulated by quently a 6-well plate. Colonel radioresistant cells were circNFIX, and promoted GBM tumor growth in vivo then obtained. and in vitro (Ding et al., 2019). However, the correlation of RPN2 expression and radiotherapy resistance in GBM Cell transfection remains unknown. 5 This study explored the function of RPN2 in radiore- U87 cells were inoculated in 12-well plates (1 × 10 cells/ RPN2 MCL1 STAT3 sistant GBM, and found that its high expression contrib- well). , , and siRNA or control siRNA utes to the tolerance of GBM to radiotherapy. The (GenePharma, Co., Ltd., Shanghai, China) were trans- ™ dysregulation of RPN2 led to abnormal myeloid cell fected into cells through Lipofectamine 2000 (Invitro- – leukemia 1 (MCL1) expression through the promotion gen, Shanghai, China) at 50 60% confluency. Two days of STAT3 transcription activity. Our study, therefore, later, the resulting cells were harvested and preserved provides a new target to overcome radioresistance in for future use. The siRNA sequences involved were: RPN2 ′ ′ MCL1 GBM therapy. ,5-GGCCACUGUUAAACUAGAACA-3 ; , 5′-CGCCGAAUUCAUUAAUUUAUU-3′; STAT3,5′- CUUCAGACCCGUCAACAAA-3′. The negative (mock) Methods siRNA sequence involved was 5′-ACGCCUCCCGAACG Bioinformatics analysis UTTUUCUUGUCGUC-3′.ThepcDNA-V5-RPN2 was The abnormal expression of RPN2 and MCL1 was constructed by inserting the RPN2 cDNA into pcDNA™3.1/ investigated through the UCSC Cancer Genomics V5-His TOPO vector (Thermofisher, Waltham, MA. USA) Browser (https://xena.ucsc.edu/welcome-to-ucsc-xena/) according to the manufacturer instructions. and GEPIA online database (http://gepia.cancer-pku.cn/). qPCR Patient samples and cell culture RNA was isolated using TRIzol (Thermo Fisher Scien- GBM samples were taken from 34 patients admitted to tific) and quantified using a NanoDrop 2000 (Thermo the First Affiliated Hospital of Harbin Medical Univer- Fisher). RNA was treated with RNase R (Geneseed, sity. These GBM patients had all received radiation ther- Guangzhou, China) to achieve circRNA purification. The apy, with 12 patients experiencing GBM recurrence. The cDNA was prepared from 0.5 μg RNA using a Prime- corresponding brain samples were harvested and pre- Script RT reagent kit (TaKaRa, Dalian, China) or Taq- served at − 80 °C. Informed consent was obtained from Man miRNA Reverse Transcription Kit (Applied Biosys- all participants, and the study was approved by the Eth- tems, FosterCity, CA, USA). qPCR was conducted using ics Committee of the First Affiliated Hospital of Harbin a PCR System (Bio-Rad). The following were primer se- Medical University. quences involved: RPN2 (Forward, 5′- AGGAAGTGGT The normal glioma cell lines (U87, T98, U251, U- GTTTGTTGCC-3′; Reverse, 5′-CAGTCGAGGGAGCT 118MG and A172) and astrocyte cell line (HA) were TCTTC-3′); MCL1 (5′-AAAGCCTGTCTGCCAAAT-3′ provided by BeNa Culture Collection (Beijing, China). and reverse primer 5′-CCTATAAACCCACCACTC-3′); These cells were cultivated in DMEM (Sigma, St. Louis, and GAPDH (Forward, 5′-GAATGGGCAGCCGTTAG- MO, USA) with 10% FBS at 37 °C under 5% CO2. GAA-3′; Reverse, 5′-AAAAGCATCACCCGGAGGAG-3′). Li et al. Molecular Medicine (2020) 26:43 Page 3 of 9 Western blot (WB) Results Western blot analysis was conducted to isolate the target Abnormal expression of RPN2 is correlated to poor proteins using RIPA buffer (Beyotime) containing prote- survival of GBM patients ase inhibitors. The protein concentrations were deter- To study the role of RPN2 in GBM radiotherapy, we first mined using
Recommended publications
  • 2010 Physical Biosciences Research Meeting
    2010 Physical Biosciences Research Meeting Sheraton Inner Harbor Hotel Baltimore, MD October 17-20, 2010 Office of Basic Energy Sciences Chemical Sciences, Geosciences & Biosciences Division 2010 Physical Biosciences Research Meeting Program and Abstracts Sheraton Inner Harbor Hotel Baltimore, MD October 17-20, 2010 Chemical Sciences, Geosciences, and Biosciences Division Office of Basic Energy Sciences Office of Science U.S. Department of Energy i Cover art is taken from the public domain and can be found at: http://commons.wikimedia.org/wiki/File:Blue_crab_on_market_in_Piraeus_-_Callinectes_sapidus_Rathbun_20020819- 317.jpg This document was produced under contract number DE-AC05-060R23100 between the U.S. Department of Energy and Oak Ridge Associated Universities. The research grants and contracts described in this document are, unless specifically labeled otherwise, supported by the U.S. DOE Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. ii Foreword This volume provides a record of the 2nd biennial meeting of the Principal Investigators (PIs) funded by the Physical Biosciences program, and is sponsored by the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences (BES) in the U.S. Department of Energy (DOE). Within DOE-BES there are two programs that fund basic research in energy-relevant biological sciences, Physical Biosciences and Photosynthetic Systems. These two Biosciences programs, along with a strong program in Solar Photochemistry, comprise the current Photo- and Bio- Chemistry Team. This meeting specifically brings together under one roof all of the PIs funded by the Physical Biosciences program, along with Program Managers and staff not only from DOE-BES, but also other offices within DOE, the national labs, and even other federal funding agencies.
    [Show full text]
  • Prognostic Significance of Autophagy-Relevant Gene Markers in Colorectal Cancer
    ORIGINAL RESEARCH published: 15 April 2021 doi: 10.3389/fonc.2021.566539 Prognostic Significance of Autophagy-Relevant Gene Markers in Colorectal Cancer Qinglian He 1, Ziqi Li 1, Jinbao Yin 1, Yuling Li 2, Yuting Yin 1, Xue Lei 1 and Wei Zhu 1* 1 Department of Pathology, Guangdong Medical University, Dongguan, China, 2 Department of Pathology, Dongguan People’s Hospital, Southern Medical University, Dongguan, China Background: Colorectal cancer (CRC) is a common malignant solid tumor with an extremely low survival rate after relapse. Previous investigations have shown that autophagy possesses a crucial function in tumors. However, there is no consensus on the value of autophagy-associated genes in predicting the prognosis of CRC patients. Edited by: This work screens autophagy-related markers and signaling pathways that may Fenglin Liu, Fudan University, China participate in the development of CRC, and establishes a prognostic model of CRC Reviewed by: based on autophagy-associated genes. Brian M. Olson, Emory University, United States Methods: Gene transcripts from the TCGA database and autophagy-associated gene Zhengzhi Zou, data from the GeneCards database were used to obtain expression levels of autophagy- South China Normal University, China associated genes, followed by Wilcox tests to screen for autophagy-related differentially Faqing Tian, Longgang District People's expressed genes. Then, 11 key autophagy-associated genes were identified through Hospital of Shenzhen, China univariate and multivariate Cox proportional hazard regression analysis and used to Yibing Chen, Zhengzhou University, China establish prognostic models. Additionally, immunohistochemical and CRC cell line data Jian Tu, were used to evaluate the results of our three autophagy-associated genes EPHB2, University of South China, China NOL3, and SNAI1 in TCGA.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Differential Expression of RPN2 in Human Epithelial Ovarian
    Differential expression of ribophorin II in human epithelial ovarian cancer. Shahan Mamoor, MS1 [email protected] East Islip, NY USA Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding ribophorin II, RPN2, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. RPN2 expression was significantly higher in high-grade serous ovarian tumors relative to normal fallopian tube. These data indicate that expression of RPN2 is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. RPN2 may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression. Keywords: ovarian cancer, epithelial ovarian cancer, HGSC, high-grade serous ovarian cancer, systems biology of ovarian cancer, targeted therapeutics in ovarian cancer. 1 The five-year survival rate for women diagnosed with high-grade serous ovarian cancer is between 30-40% and has not changed significantly in decades (4, 5). The development of novel, targeted therapeutics to treat HGSC can be facilitated by an enhanced understanding of the transcriptional behavior of ovarian tumors relative to that of the normal ovary. We mined published microarray data (2, 3) to compare global gene expression profiles between human ovarian tumors, including that of the HGSC subtype, and that of normal ovarian and fallopian tissue.
    [Show full text]
  • Identification of Potential Pathogenic Genes Associated with Osteoporosis
    610.BJBJR0010.1302/2046-3758.612.BJR-2017-0102 research-article2017 Freely available online OPEN ACCESS BJR RESEARCH Identification of potential pathogenic genes associated with osteoporosis Objectives B. Xia, Osteoporosis is a chronic disease. The aim of this study was to identify key genes in osteo- Y. Li, porosis. J. Zhou, Methods B. Tian, Microarray data sets GSE56815 and GSE56814, comprising 67 osteoporosis blood samples L. Feng and 62 control blood samples, were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in osteoporosis using Limma pack- Jining No. 1 People’s age (3.2.1) and Meta-MA packages. Gene Ontology and Kyoto Encyclopedia of Genes and Hospital, Jining, Genomes enrichment analyses were performed to identify biological functions. Further- Shandong Province, more, the transcriptional regulatory network was established between the top 20 DEGs and China transcriptional factors using the UCSC ENCODE Genome Browser. Receiver operating char- acteristic (ROC) analysis was applied to investigate the diagnostic value of several DEGs. Results A total of 1320 DEGs were obtained, of which 855 were up-regulated and 465 were down- regulated. These differentially expressed genes were enriched in Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways, mainly associated with gene expres- sion and osteoclast differentiation. In the transcriptional regulatory network, there were 6038 interactions pairs involving 88 transcriptional factors. In addition, the quantitative reverse transcriptase-polymerase chain reaction result validated the expression of several genes (VPS35, FCGR2A, TBCA, HIRA, TYROBP, and JUND). Finally, ROC analyses showed that VPS35, HIRA, PHF20 and NFKB2 had a significant diagnostic value for osteoporosis.
    [Show full text]
  • Supplementary Data
    SUPPLEMENTARY DATA Table S1. List of 114 proteins identified in RT TEX but not UT-TEXA Cdv3 Adss Actr2 Ptma;Gm6625 Tes;Gm4985 Srm Tceb1 Tpt1 Bri3bp Tardbp Gng2 Tmx3 Eif5a Gnb2l1 Kiaa1467 Epb4.1;Epb41 Tuba4a;Tuba8 Sept11;Sept6 Rbmx;Rbmxl1 Oas1g;Oas1a Rangap1 Rbbp7 Hsd17b12 Pygb Nrd1 Npepps Slco4a1 Bcat1 Scamp3;Tu52 Eif3l Tfg Farsb Eif3c Otub1 Aqp1 Lrrc8c Qdpr Ctsb Ciapin1 Sec11a Khsrp Rab14 Sqstm1 Adcy7 Brk1 Snrpa Hist1h1d;Hist1h1c Vcam1 Eif4g1 Prkcsh Rab31 Cse1l Tm9sf3 Taldo1 Alcam Naca Gps1 Ide Ptgs2 Kars Atp11a Dnajc13 Eif3e Psme1 Rap1a;Gm9392 Tmem33 Spr Kpna4;Kpna3 Tars Cyb5;Cyb5a Kpna2 Apmap Utrn Dbi Gsdmdc1 Pld3 Rpl14 Alad Api5 Dnaja1 Ipo7 Atp2a2;Atp2a1 Irgm1;Ifggd3 Tnfrsf23;Tnfrsf22 Vamp8 Rbbp4 Slc9a3r2 Cpd Cdc37 Hspe1-rs1;Hspe1 Pdia4 Bcap31 Uchl3;Uchl4 Aprt Rpn2 Tcirg1 Gpx1 Mpp1 Sigirr Rps16 Adh5 Txnrd1 Gstp1 Scrib Galk1 F3 Usp14 Asah1 Gna13 Slc9a1;Slc9a2 Gipc1 Psmb8 Nceh1 Rpl13a A A single protein, Rpl10a, was present in UT-TEX but not RT-TEX Table S2. Shared pathways predicted by IPA to be activated or inhibited in RT TEX as compared to UT-TEX ACTIVATED Z-score P-value INHIBITED Z-score P-value Thrombin Signaling 2.236 0.009 STAT3 Pathway -2 0.003954052 Tec Kinase Signaling 2.000 0.004 RhoGDI Signaling -1.667 4.0245E-07 Actin Cytoskeleton Signaling 1.941 1.57285E-08 PPAR Signaling -1 0.009262858 CXCR4 Signaling 1.890 0.000663358 PI3K/AKT Signaling 1.633 0.000815054 Cardiac Hypertrophy Signaling 1.633 0.00491384 Integrin Signaling 1.508 4.06632E-06 Regulation of Actin-based Motility by Rho 1.414 1.42092E-06 Phospholipase C Signaling
    [Show full text]
  • The DNA Sequence and Comparative Analysis of Human Chromosome 20
    articles The DNA sequence and comparative analysis of human chromosome 20 P. Deloukas, L. H. Matthews, J. Ashurst, J. Burton, J. G. R. Gilbert, M. Jones, G. Stavrides, J. P. Almeida, A. K. Babbage, C. L. Bagguley, J. Bailey, K. F. Barlow, K. N. Bates, L. M. Beard, D. M. Beare, O. P. Beasley, C. P. Bird, S. E. Blakey, A. M. Bridgeman, A. J. Brown, D. Buck, W. Burrill, A. P. Butler, C. Carder, N. P. Carter, J. C. Chapman, M. Clamp, G. Clark, L. N. Clark, S. Y. Clark, C. M. Clee, S. Clegg, V. E. Cobley, R. E. Collier, R. Connor, N. R. Corby, A. Coulson, G. J. Coville, R. Deadman, P. Dhami, M. Dunn, A. G. Ellington, J. A. Frankland, A. Fraser, L. French, P. Garner, D. V. Grafham, C. Grif®ths, M. N. D. Grif®ths, R. Gwilliam, R. E. Hall, S. Hammond, J. L. Harley, P. D. Heath, S. Ho, J. L. Holden, P. J. Howden, E. Huckle, A. R. Hunt, S. E. Hunt, K. Jekosch, C. M. Johnson, D. Johnson, M. P. Kay, A. M. Kimberley, A. King, A. Knights, G. K. Laird, S. Lawlor, M. H. Lehvaslaiho, M. Leversha, C. Lloyd, D. M. Lloyd, J. D. Lovell, V. L. Marsh, S. L. Martin, L. J. McConnachie, K. McLay, A. A. McMurray, S. Milne, D. Mistry, M. J. F. Moore, J. C. Mullikin, T. Nickerson, K. Oliver, A. Parker, R. Patel, T. A. V. Pearce, A. I. Peck, B. J. C. T. Phillimore, S. R. Prathalingam, R. W. Plumb, H. Ramsay, C. M.
    [Show full text]
  • Expression of Ribophorine II Is a Promising Prognostic Factor in Human Gastric Adenocarcinoma
    448 INTERNATIONAL JOURNAL OF ONCOLOGY 50: 448-456, 2017 Expression of ribophorine II is a promising prognostic factor in human gastric adenocarcinoma DAISUKE Fujimoto, TAKANORI GOI and YASUO HIRONO Department of Surgery 1, Faculty of Medicine, University of Fukui, Fukui 910-1193, Japan Received October 17, 2016; Accepted December 19, 2016 DOI: 10.3892/ijo.2016.3822 Abstract. The increased invasiveness of gastric adenocarci- Introduction noma is important for progression and metastasis. In recent molecular biological studies, ribophorine II (RPN2) induced Gastric adenocarcinoma has one of the highest prevalence epithelial-mesenchymal transition and metastatic activity. and mortality rates among malignant tumors (1). Global However, no studies have evaluated the relationship between incidence of primary tumor locations and the histological RPN2 expression, ability of cancer to invade/metastasis, and types are constantly changing: in United States and in patient prognosis in gastric adenocarcinoma. Therefore, we Western Europe the incidence of Barrett's type carcinoma have examined these factors. Immunohistochemical staining and gastric cardia adenocarcinoma is increasing (2), while was performed to detect RPN2 and p53 in the primary there has been a reduction of incidence of distal gastric lesion and adjacent normal gastric mucosa of 242 gastric adenocarcinoma since the 1970s (3). Although gastric adeno- adenocarcinoma patients who underwent resection surgery. carcinoma mortality has been reduced, it remains a disease We conducted clinicopathologic examinations and analyzed with poor prognosis and high mortality, second only to lung patient prognoses with the Kaplan-Meier method. Further, tumor in the world. The prognosis of gastric adenocarcinoma multivariate analysis was conducted using a Cox hazard depends on stage and signature metastasis type of peritoneal model.
    [Show full text]
  • Depletion of 26S Proteasomes in Mouse Brain Neurons Causes Neurodegeneration and Lewy-Like Inclusions Resembling Human Pale Bodies
    The Journal of Neuroscience, August 13, 2008 • 28(33):8189–8198 • 8189 Neurobiology of Disease Depletion of 26S Proteasomes in Mouse Brain Neurons Causes Neurodegeneration and Lewy-Like Inclusions Resembling Human Pale Bodies Lynn Bedford,1 David Hay,1 Anny Devoy,1 Simon Paine,1 Des G. Powe,2 Rashmi Seth,2 Trevor Gray,2 Ian Topham,1 Kevin Fone,1 Nooshin Rezvani,1 Maureen Mee,1 Tim Soane,1 Robert Layfield,1 Paul W. Sheppard,3 Ted Ebendal,4 Dmitry Usoskin,5 James Lowe,2* and R. John Mayer1* 1School of Biomedical Sciences and 2School of Molecular Medical Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom, 3BIOMOL International L.P., Exeter EX2 8NL, United Kingdom, 4Department of Neuroscience, Uppsala University, SE-751 23 Uppsala, Sweden, and 5Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden Ubiquitin-positive intraneuronal inclusions are a consistent feature of the major human neurodegenerative diseases, suggesting that dysfunction of the ubiquitin proteasome system is central to disease etiology. Research using inhibitors of the 20S proteasome to model Parkinson’s disease is controversial. We report for the first time that specifically 26S proteasomal dysfunction is sufficient to trigger neurodegenerative disease. Here, we describe novel conditional genetic mouse models using the Cre/loxP system to spatially restrict inactivation of Psmc1 (Rpt2/S4) to neurons of either the substantia nigra or forebrain (e.g., cortex, hippocampus, and striatum). PSMC1 is an essential subunit of the 26S proteasome and Psmc1 conditional knock-out mice display 26S proteasome depletion in targeted neurons, in which the 20S proteasome is not affected.
    [Show full text]
  • Anti-PSMD1 Antibody (ARG41122)
    Product datasheet [email protected] ARG41122 Package: 100 μl anti-PSMD1 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes PSMD1 Tested Reactivity Hu Tested Application WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name PSMD1 Antigen Species Human Immunogen Recombinant fusion protein corresponding to aa. 794-953 of Human PSMD1 (NP_002798.2). Conjugation Un-conjugated Alternate Names P112; Rpn2; S1; 26S proteasome subunit p112; 26S proteasome non-ATPase regulatory subunit 1; 26S proteasome regulatory subunit S1; 26S proteasome regulatory subunit RPN2 Application Instructions Application table Application Dilution WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control Jurkat Calculated Mw 106 kDa Observed Size 105 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS (pH 7.3), 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. www.arigobio.com 1/2 Bioinformation Gene Symbol PSMD1 Gene Full Name proteasome 26S subunit, non-ATPase 1 Background The 26S proteasome is a multicatalytic proteinase complex with a highly ordered structure composed of 2 complexes, a 20S core and a 19S regulator.
    [Show full text]
  • Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase
    BASIC RESEARCH www.jasn.org Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase † ‡ Yifei Zhong,* Edward Y. Chen, § Ruijie Liu,*¶ Peter Y. Chuang,* Sandeep K. Mallipattu,* ‡ ‡ † | ‡ Christopher M. Tan, § Neil R. Clark, § Yueyi Deng, Paul E. Klotman, Avi Ma’ayan, § and ‡ John Cijiang He* ¶ *Department of Medicine, Mount Sinai School of Medicine, New York, New York; †Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; ‡Department of Pharmacology and Systems Therapeutics and §Systems Biology Center New York, Mount Sinai School of Medicine, New York, New York; |Baylor College of Medicine, Houston, Texas; and ¶Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York ABSTRACT The Connectivity Map database contains microarray signatures of gene expression derived from approximately 6000 experiments that examined the effects of approximately 1300 single drugs on several human cancer cell lines. We used these data to prioritize pairs of drugs expected to reverse the changes in gene expression observed in the kidneys of a mouse model of HIV-associated nephropathy (Tg26 mice). We predicted that the combination of an angiotensin-converting enzyme (ACE) inhibitor and a histone deacetylase inhibitor would maximally reverse the disease-associated expression of genes in the kidneys of these mice. Testing the combination of these inhibitors in Tg26 mice revealed an additive renoprotective effect, as suggested by reduction of proteinuria, improvement of renal function, and attenuation of kidney injury. Furthermore, we observed the predicted treatment-associated changes in the expression of selected genes and pathway components. In summary, these data suggest that the combination of an ACE inhibitor and a histone deacetylase inhibitor could have therapeutic potential for various kidney diseases.
    [Show full text]
  • New Insights on Human Essential Genes Based on Integrated Multi
    bioRxiv preprint doi: https://doi.org/10.1101/260224; this version posted February 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. New insights on human essential genes based on integrated multi- omics analysis Hebing Chen1,2, Zhuo Zhang1,2, Shuai Jiang 1,2, Ruijiang Li1, Wanying Li1, Hao Li1,* and Xiaochen Bo1,* 1Beijing Institute of Radiation Medicine, Beijing 100850, China. 2 Co-first author *Correspondence: [email protected]; [email protected] Abstract Essential genes are those whose functions govern critical processes that sustain life in the organism. Comprehensive understanding of human essential genes could enable breakthroughs in biology and medicine. Recently, there has been a rapid proliferation of technologies for identifying and investigating the functions of human essential genes. Here, according to gene essentiality, we present a global analysis for comprehensively and systematically elucidating the genetic and regulatory characteristics of human essential genes. We explain why these genes are essential from the genomic, epigenomic, and proteomic perspectives, and we discuss their evolutionary and embryonic developmental properties. Importantly, we find that essential human genes can be used as markers to guide cancer treatment. We have developed an interactive web server, the Human Essential Genes Interactive Analysis Platform (HEGIAP) (http://sysomics.com/HEGIAP/), which integrates abundant analytical tools to give a global, multidimensional interpretation of gene essentiality. bioRxiv preprint doi: https://doi.org/10.1101/260224; this version posted February 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]