Copenhagen-Kissing-Bridge.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Copenhagen-Kissing-Bridge.Pdf COPENHAGEN’S ‘KISSING’ BRIDGE WEALTH CREATION The bridge’s sliding spans are cantilevering, steel box girders. Their undersides follow a smooth wave-like profile in elevation to provide the greatest structural depth at the support where the bending moment is largest. The structural depth then tapers to only 600 millimetres at the cantilever tip at midspan, where the two girders meet and interlock The middle spans on the Inner Harbour Bridge in Copenhagen slide apart to allow large boats to pass through the harbour. The spans then slide back together again and have earned the bridge the nickname Kyssebroen (the Kissing Bridge) © Jasper Carlberg Aside from COWI, the team the opening sections in a sliding focus more on functionality comprised architects Studio manner and create a functional than design. The team wanted Copenhagen is not a city that Bednarski, mechanical and and innovative bridge. to bring that sliding method is short on bridges, but one electrical designers Hardesty & The concept for the bridge of opening to an architectural was needed to link the heart Hanover, and lighting designers was decided early in the pedestrian bridge that would of the city with Christianshavn Speirs & Major Associates. process and the initial sketches create a surprise for onlookers in the east, an area that Working in a close collaborative reasonably reflect how the final who would expect the moving is undergoing substantial team, the designers came up bridge looks. Principal engineer spans to raise or swing rather COPENHAGEN’S development and is home with the innovative sliding Amar Bahra led the day-to-day than slide. Each time it opens, to Henning Larsen’s famous bridge idea in response to the design activity throughout the two curved, steel box girders new Opera House. In 2009, a geometry and character of the project. He worked regularly slide apart and then back again design team led by engineering site. The idea of a bascule bridge with Studio Bednarski to to gently meet at the centre – consultancy Flint & Neill (now (drawbridge) was dismissed as discuss the concept and hence its nickname, Kyssebroen COWI) won an international the designers felt that it would develop ideas, and was in or the Kissing Bridge. ‘KISSING’ BRIDGE design competition for a new, be an excessive visual intrusion close contact with Hardesty & opening pedestrian and cycle on Copenhagen’s cityscape Hanover in New York. From the An innovative sliding bridge opened to the public in Copenhagen in the summer of bridge over Copenhagen’s Inner when raised. Similarly, a swing very early stages, the designers SLIDING 2016. Although the project faced various challenges and delays, the Inner Harbour Harbour. Ten teams competed bridge was avoided as it would coordinated efforts to create a MECHANISMS to design a new crossing in this have compromised free passage structure that was conceived as The team investigated a variety of Bridge (Inderhavnsbroen) has reduced commuting time for thousands of pedestrians historic setting and to create of vessels in adjacent canals. a closely worked combination ways to drive the sliding motion and cyclists in the Danish capital each day, and has also become a popular attraction. what would become the first The required navigation channel of architecture, structure and of the bridge. At one point, the Ian Firth FREng, Director, and Amar Bahra, Principal Engineer, both of COWI, discuss bridge encountered by anyone opening was narrow compared mechanism. engineers considered a motorised entering Copenhagen harbour to the overall harbour width, There are other sliding front wheel that would positively the design and the bridge’s distinctive opening mechanism. from the sea. making it possible to withdraw bridges across the world that engage with a track underneath 18 INGENIA INGENIA ISSUE 73 DECEMBER 2017 19 COPENHAGEN’S ‘KISSING’ BRIDGE WEALTH CREATION A HIDDEN OPERATION Concrete chambers that house the bridge in the manner of a rack The drive mechanisms are all In cross section, the steel spans supported between fixed twin the motorised winch drums are and pinion to move the spans. housed in underground chambers appear like a W shape, with concrete box girders with a built within the east and west However, a simple winch drive within the quaysides at each end the roller track in the centre of wide eccentric (offset) cantilever quaysides. There are four drums system was eventually chosen, of the bridge, where they can be the underside and the varying carrying the fixed approaches in total, one for each of the four which comprises a series of easily accessed for operation and depth V-shaped box cells on (see image on page 22). concrete approach spans (a pair pulleys and steel winch ropes. maintenance. either side. The steel spans are Each of the moving steel in each chamber). sections is about 53 metres Because the structural long and weighs roughly 230 capacity and integrity of the tonnes. The front support to existing historic quay walls was the cantilever is provided by a unknown, mini-pile foundations pair of large 1.8 metre diameter and ground anchors were used wheels that stand on a fixed to support the buried concrete concrete pier close to the edge chambers, and on the east side, of the navigation channel on a new sheet-piled quay wall was the bridge centreline. The rear established. The steps and ramp support is provided by support at each end are supported by wheels that roll within stainless these chambers. In fact, they are steel tracks set in to the sides of Each drum within the buried chambers has a winch rope wrapped around it, one end of which runs along the track on structurally separate from the the side of the concrete spans and attaches to the rear of the steel span. The other end of the rope routes through the the fixed concrete spans. approach bridge and segregated inside of the concrete box girder, turns 180 degrees around a large deflector sheave (a pulley with a grooved wheel) As the spans slide apart and returns to attach to the steel span a few metres forward of the rear attachment point. Depending on the direction by a linear movement joint in which the drums are turned by the electric motors, the steel spans are made to either open or close to open the bridge, the rear to avoid imposing significant © Hardesty & Hanover support points move away bridge loads onto the existing from the front roller support, challenges in the design and curvature became obvious, and provide good shear resistance. quaysides. and the moving spans change construction. Aside from driving the rumoured ‘misalignment’ Therefore, the solution was to As there is no hydraulically from cantilevers in their service the bridges around these disappeared. While adding divide each inner web panel operated equipment in the position to simply supported curves, which required each complexity, the curvature helped into two triangles by creasing design, the potential risk of girders in the fully retracted of the four winch drums to be the engineers achieve a slightly on the diagonal and welding a oil spillage and consequent position. At each forward and slightly different diameters, the higher navigation clearance tee stiffener along the inside of contamination of the harbour is rear vertical support system, curvature complicated the shape in the middle of the bridge by the crease. As these inner web avoided. The operating system is there are also guide wheels that of the fixed and moving spans. providing more length. elements were the closing panels very efficient and uses very little control the transverse positions As an aside, the curved The steel spans are highly of the steel box girders and power because of the sliding of the moving spans. alignment led to an unfortunate complex in their geometry – no internal access for welding was nature of the movement. This A great advantage of the rumour that there was an error two cross sections are the same not possible in some places, the is a key aspect of the bridge’s design is that the approaches in the horizontal misalignment – and they constantly change tee stiffeners had to stop short low impact, sustainable design. remain open to pedestrians and that this was the reason because of the varying structural of the panel corners. The team The mechanisms and operating throughout the opening cycle. for the delayed delivery of the depths in elevation and the had to revert to first principles systems use simple, well-proven The design therefore had to steel spans. Standing on one curves on plan. The moving steel and non-linear finite element components and arrangements, consider that the opening concrete span and looking girders have four inclined webs modelling to prove that placing with all parts designed to sequence generates a complex straight across the water to the in the cross section: two inner gusset plates to the ends of these permit access for inspection and set of possible load effects in other concrete span, before webs and two outer webs. These stiffeners, at the relatively stiff maintenance. the concrete spans owing to the steel spans came to site, are the elements that primarily corners of the panel, afforded combinations of imposed patch it did indeed appear that the resist shear and torsion (twisting) them sufficient torsional restraint loads from pedestrians together DESIGN CHALLENGES spans were transversely offset. in the girder. The outer webs are to ensure their stability and that with the loads from the moving The sinusoidal plan curvature, However, when the steel spans formed from conical surfaces, of the overall web panel. Top: The front roller and tracks are fixed, so stay where they are while the spans are pulled back.
Recommended publications
  • Cutting Through Complexity: Managing the Design and Build Contract for CUHK Medical Centre
    Issue 9 2021 Foresight Innovation Research Sharing Training Cutting through complexity: Managing the design and build contract for CUHK Medical Centre arup.com Foreword Contents Planning, designing and building healthcare facilities in the post-COVID 19 era involves Technical solutions complex infrastructure and operational design considerations. Whether it is managing the design Cutting through complexity: Managing the design 4 and build of a hospital or structurally designing a seismically resilient hospital in an earthquake and build contract for CUHK Medical Centre zone, two recently completed healthcare projects that Arup took part in, both highlighted in this issue, reaffirm that the top priority is to keep medical personnel – and their patients – safe. Chapel of Sound 10 Hospital projects demand a high degree of accuracy in execution. For the CUHK Medical Centre Delivering CCGT power plant for CLP 14 (CUHKMC) in Hong Kong, we adopted a systematic approach to managing the complexity Designing a seismically resilient hospital 18 of planning, design, construction, fit-out, procurement and installation works. In Istanbul, we in Turkey designed the world’s largest base-isolated complex, which comprises more than 2,000 seismic isolators, within an area that has suffered highly destructive earthquakes in the past. Contributing towards Hanoi’s seamless mobility 22 The global health crisis has prompted not only the healthcare industry but also policymakers, planners and building professionals to rethink the design of future healthcare. In a recent Profiles publication, our Foresight team envisions that future healthcare infrastructure, delivery models and services will be made resilient enough to mitigate the effects of climate change while Strategic leader: Raul Manlapig 26 providing more inclusive, accessible services to keep citizens healthy at a lower cost.
    [Show full text]
  • Going for Gold in a Changing World
    Feature President’s Inaugural Address thestructuralengineer.org Ian Firth BSc, MSc, DIC, CEng, FREng, Going for gold in FIStructE, FICE 2017 President of The Institution a changing world of Structural Engineers Synopsis to express them. We need to discover our In his inaugural address, 2017 President of The Institution of Structural voice and make ourselves heard so as to Engineers, Ian Firth, celebrates the role of the structural engineer in draw attention to our vital role in the built environment. contributing to the built environment and highlights some of the challenges Our members are engaged in a broad and opportunities facing the profession today: the need to communicate spectrum of diff erent kinds of work. We to the public what structural engineers do and to inspire young people to celebrate some of the big, headline-grabbing join the profession; the value society places on aesthetics and high-quality projects at our Structural Awards every design; the dangers of forgoing independent checking and supervision; the year. These are great for drawing attention threat to innovation from ever-shorter preconstruction times; the questions to our vital role in society and we will continue to shout about these whenever posed by environmental considerations; the moral imperative to engage we can. But most of our members do in humanitarian activities; and the creative disruption brought about by excellent and important work without such technological change. recognition. Their role is no less vital to the public they serve, and we need to celebrate and promote their work too. This year we Introduction by and large, engineers tend to be very bad relaunch the Structural Awards, with new In the beginning was the world – a world at communicating what they do.
    [Show full text]
  • Journal 2010 Issue4.Indd
    CTBUH Journal International Journal on Tall Buildings and Urban Habitat Tall buildings: design, construction and operation | 2010 Issue IV Hong Kong International Commerce Centre The Vertical Living Kids Research Project Tuned Liquid Dampers for Slender Tall Buildings Greening Modernism: Westraven Tower Educational Studio: The Remaking of Mumbai (II) Tallest World Records Talking Tall: Dormitowers Editor's Message Editor It is with a mix of new ways for the Journal to inform and inspire Jan Klerks, CTBUH strong emotions that its readership. [email protected] I hand over the It was a great pleasure to see the Journal Associate Editors editorial reigns of the develop to its current level in such a short Zak Kostura, Arup CTBUH Journal to Jan [email protected] time. I am excited to transform my role into a Klerks from this Robert Lau, Roosevelt University liaison between the Journal and industry. As a [email protected] edition onwards. practicing structural engineer with Arup in Alongside the Antony Wood, CTBUH/Illinois Institute of Technology New York, I hope to offer perspectives and [email protected] sadness I feel ideas that will further enrich the content of the knowing that work pressures are now Journal. I look forward to my future work with Editorial Board preventing me from continuing as sole editor, I Ahmad Abdelrazaq, Samsung Corporation Jan in this role and offer him my full support as Hojjat Adeli, Ohio State University am delighted to stand at this particular he infuses the position of editor with his Mir Ali, University of Illinois at Urbana-Champaign vantage point and survey how tremendously unique understanding of (and curiosity in) the Richard W.
    [Show full text]
  • Materials Suitable for the Construction of Long-Span Bridges Construction of Bridges 1
    Materials suitable for the Construction of Long-span Bridges Construction of Bridges 1. Stone – in arch masonry 2. Steel – in girder or box-section constructed in steel plates and standard sections Information prepared by Raymond Wong Division of Building Science and Technology, 3. Steel – truss constructed of standard sections City University of Hong Kong 4. Reinforced Concrete – in arch or spanned forms e-mail of Raymond Wong [email protected] 5. Tensioned RC – in various forms 6. Precast – mainly in box-section girder Common Bridge Forms Simple Supported – span effective from 10m to 60m Actual example – Route 3 Interchange at Au Tau, Yuen Long Continuous Span – from 10m to 100m Balanced Cantilever – span from 25m to 200m Actual example – balanced cantilever bridge series Actual example – construction of a span of continual section forming the approach to the Ting Kau Bridge of elevated highway bridge at Route 3, Kwai Chung Balanced cantilever bridge for viaduct of West Rail at Au Tau Interchange Balanced Cantilever Suspended Span – span from 50m to 300m A suspended deck from the main truss will become the pedestrian walkway afterward Steel Truss – 50m to 100m Main truss Footbridge (Langham Place) about 25m span constructed Actual example – using steel truss supported 5-span steel truss on bearing beam on two sides bridge in western and with a suspended deck part of Pearl River, erected afterward Guangzhou Steel Arch (framed or trussed) – from 150m to 500m Stone arch – from 15m to 50m Close up view of the bridge trusses Sydney Harbour Bridge and its approach Close up of the bridge at the tower support Steel arch-truss bridge crossing Pearl River Delta for the China Express Rail Steel arch-truss bridge is very common and can be found in many parts of the world Concrete Arch (ribbed or unribbed) – from 50m to 300m Concrete Arch (ribbed) approx.
    [Show full text]
  • Stonecutters Bridge – Detailed Design
    Concrete Structures: the Challenge of Creativity Stonecutters Bridge – Detailed Design Klaus FALBE-HANSEN Lars HAUGE Naeem HUSSAIN Director Director Director Arup COWI Arup Hong Kong SAR Copenhagen, Denmark Hong Kong SAR Summary Highways Department (HyD) of Hong Kong SAR is going to build a bridge across the entrance to Kwai Chung Container Port. Due to the spectacular location HyD decided to procure the concept for the bridge through an international design competition. The competition took place in the first half of 2000 and the winning scheme was a cable-stayed structure with freestanding towers located between twin box girders. The 1018m main span is in steel, while the four back spans each side are in concrete. The two towers stand on shore, providing unobstructed access to the busy container port with minimum navigation headroom of 73.5m. A number of modifications were introduced to the scheme during subsequent technical review. Detailed design started in March 2002 and tender was called in August 2003 and returned in December 2003. Completion of the bridge is scheduled for mid 2008. This paper concerns the detailed design. Keywords: Cable-stayed bridge; twin-box deck; freestanding central tower; stainless steel; composite construction; orthotropic steel deck; prestressed concrete. 1. Introduction Stonecutters Bridge is part of Route 9, an east-west expressway providing a further link between the Hong Kong International Airport at Lantau Island and the urban areas of West Kowloon. The Tsing Ma Bridge and Kap Shui Mun Bridge completed in 1997 also form part of this route. Fig. 1 Location of Stonecutters Bridge Fig.
    [Show full text]
  • Annual Report 2011 Civil Engineers at the Heart of Society, Delivering Sustainable Development Through Knowledge, Skills and Professional Expertise
    Annual Report 2011 Civil engineers at the heart of society, delivering sustainable development through knowledge, skills and professional expertise Key ICE Group statistics 2011 Key ICE Group statistics 2011 Recorded events Events TTL profit 95 89.9% £1.8m with over 18,000 overall satisfaction in 2011 online views rate HK Professional Reviews New apprenticeships Website 14.2% 53 30% increase in number enrolments in ICE increase in conducted in Advanced Technical visitor numbers Hong Kong Apprenticeship (December 2010-11) 02 ICE Annual Report 2011 Key ICE Group statistics 2011 Media coverage Pre-19 activities UK Professional Reviews 1,616 39,861 10.8% print and broadcast people reached increase in number hits in trade/regional/ through our UK conducted national media regional activities Membership Fellowship Technician 82,872 53% 34% total UK and increase increase overseas members in applications in applications ICE Annual Report 2011 03 Contents Main image Project name: Barclays Cycle Hire ICE award: Infrastructure Award, ICE London Civil Engineering Awards 2011 Client: Transport for London Partner: Serco Location: London Credit: Transport for London Contents About ICE Key ICE Group statistics 2011 02 President’s foreword Director General’s foreword A global organisation The Institution of Civil Engineers (ICE) is About ICE 04 President’s foreword Director General’s foreword an international membership organisation 2011 has continued to provide The relationship between our profession This is my first report as Director international presence continues to challenges for our industry, and government is absolutely crucial. General and Secretary of the grow, with ICE’s membership and activity affecting many of our members.
    [Show full text]
  • The 1950S Were a Period of Huge Change for Hong Kong. the End of Japanese Occupation, the Establishment of the People’S Republic of China, the U.S
    1950s The 1950s were a period of huge change for Hong Kong. The end of Japanese occupation, the establishment of the People’s Republic of China, the U.S. and U.N. trade embargoes on China and a mass influx of Mainland immigrants bringing low-cost labour to the city, shaped much of Hong Kong’s social and economic landscape during this decade. Coupled with ambitious infrastructure plans and investment-friendly policies, Hong Kong laid the foundations that, over the coming decades, were to create one of the world’s greatest trading hubs. It was during this time that Dragages was awarded the contract to construct what was to become an internationally recognised Hong Kong icon: the runway jutting out into Victoria Harbour for Kai Tak Airport. Other major projects soon followed, including the Shek Pik and Plover Cove Reservoirs, which became essential lifelines providing fresh water to Hong Kong’s rapidly growing population. For Dragages, it was a decade which was to establish its credentials as a leading partner in Hong Kong’s modernisation for the next 50 years. = = 1955 – 1958 Kai Tak Airport Runway Demand for marine expertise brings Dragages to Hong Kong Increasing demand for air travel combined with the growth in airplane size led the Hong Kong Government to plan the reconstruction and extension of the existing Kai Tak runway. By extending the runway two kilometres into Victoria Harbour, Hong Kong was the first city in the world to attempt such an ambitious project. The challenges of the project, requiring extensive dredging and more than 120 hectares of reclamation, called for a construction company with strong marine and dredging experience.
    [Show full text]
  • China and LA County, BYD Has Offices in Europe, Japan, South Korea, India, Taiwan, and Other Regions
    GROWING TOGETHER China and Los Angeles County GROWING TOGETHER China and Los Angeles County PREPARED BY: Ferdinando Guerra, International Economist Principal Researcher and Author with special thanks to George Entis, Research Assistant June, 2014 Los Angeles County Economic Development Corporation Kyser Center for Economic Research 444 S. Flower St., 37th Floor Los Angeles, CA 90071 Tel: (213) 622-4300 or (888) 4-LAEDC-1 Fax: (213)-622-7100 E-mail: [email protected] Web: http://www.laedc.org The LAEDC, the region’s premier business leadership organization, is a private, non-profit 501(c)3 organization established in 1981. GROWING TOGETHER China and Los Angeles County As Southern California’s premier economic development organization, the mission of the LAEDC is to attract, retain, and grow businesses and jobs for the regions of Los Angeles County. Since 1996, the LAEDC has helped retain or attract more than 198,000 jobs, providing over $12 billion in direct economic impact from salaries and over $850 million in property and sales tax revenues to the County of Los Angeles. LAEDC is a private, non-profit 501(c)3 organization established in 1981. Regional Leadership The members of the LAEDC are civic leaders and ranking executives of the region’s leading public and private organizations. Through financial support and direct participation in the mission, programs, and public policy initiatives of the LAEDC, the members are committed to playing a decisive role in shaping the region’s economic future. Business Services The LAEDC’s Business Development and Assistance Program provides essential services to L.A. County businesses at no cost, including coordinating site searches, securing incentives and permits, and identifying traditional and nontraditional financing including industrial development bonds.
    [Show full text]
  • Erection Control Analysis – Meeting the Demands of New Construction Techniques
    Erection Control Analysis – Meeting the Demands of New Construction Techniques Dorian Janjic Johann Stampler TDV Technische Daten- TDV Technische Daten- verarbeitung GmbH verarbeitung GmbH /Bentley Systems, Inc. /Bentley Systems, Inc. Gleisdorfer Gasse 5 Gleisdorfer Gasse 5 8010 Graz, Austria 8010 Graz, Austria [email protected] [email protected] Summary New bridge construction techniques such as the pre-cast segmental construction method yield special requirements for the design and proof checking process. In the case of stage-wise erection, an exact anticipate calculation of the bridge deformations arising throughout the construction schedule – and therefore the definition of the required pre-camber values and fabrication shapes – was for long time an almost insoluble problem. An appropriate tool allowing for getting the ability to determine the effects of constraining the structure into a certain pre-defined position at any stage of construction has recently been provided. The respective erection control facility accurately controls the position and the forces in the segments in stage-wise built structures. The presented erection control tool also supports the definition of required compensation measures due to deviations from the scheduled position. Keywords: Erection Control, geometry control, pre-camber, pre-cast segmental construction 1. Stress-less Geometry – Camber A common requirement in bridge engineering is that the final bridge shape (after deformations due to permanent loads have occurred) should comply with the theoretical design shape. Therefore, in order to compensate the deformations, the main girders of bridge structures are usually “pre- cambered” during construction. In some cases this deformation compensation process is also applied to other structural parts, such as for instance the pylons of large cable-stayed bridges.
    [Show full text]
  • HONG KONG in Brief
    2020 HONG KONG in brief Brand Hong Kong’s visual identity and brandline have become familiar to people at home and around the world – the flying dragon and 'Asia’s world city' have become synonymous with Hong Kong. The blue and green ribbons that extend from the dragon symbolise blue sky and a sustainable environment, while Lion Rock – the famous landmark that represents Hong Kong people’s 'can-do' spirit – is silhouetted by the red ribbon. The fluid shape of the ribbons evokes versatility, and the multiple colours signify the city’s diversity and dynamism. Contents ABOUT HONG KONG 4 Location Population Language Climate International Trade Centre Global Services Centre International Corporate Base Free Trade and Free Market Efficient Government Monetary System Legal System Airport Hong Kong Port ECONOMY 9 Economic Policy International Financial Centre Economic Links with the Mainland LIVING IN HONG KONG 16 Government Structure Rule of Law Employment Education Health Housing Transport Pollution and Environmental Control Law and Order Tax System Mandatory Provident Fund Media Telecommunications COMING TO HONG KONG 32 Tourism Immigration Leisure and Culture Traditional Festivals FUTURE OF HONG KONG 38 Asia’s Cyber City Building for the Future HONG KONG: THE FACTS 44 USEFUL CONTACTS 46 3 ABOUT HONG KONG About Hong Kong Population About Hong Kong At mid-2019, the population was about 7.51 million, predominantly of Chinese ethnicity but also including 652 896 non-PRC nationals. The three largest foreign groups were from the Philippines (200 925), Indonesia (177 530) and India (35 012). Overall population density was 6 930 people per sq km.
    [Show full text]
  • IABSE News, the Newsletter of the British Group of IABSE
    Newsletter of the British Group of the International Association for Bridge and Structural Engineering No. 24 January 2007 National Swimming Centre, Beijing, China – Concept and Reality Image ©Arup/CSCEC/PTW Contents British Group News 2 Events 2007 3 Presentation of the Milne Medal for 2006 4 Report – Milne Medal Lecture 2006: ‘Poised between Gravity & Levity’ 5 Report – IABSE Symposium, Budapest: ‘Responding to Tomorrow’s Challenges in 6 Structural Engineering’ Project Feature – Challenges in the Construction of Stonecutters Bridge 7 IABSE British Group Directory 12 www.iabse-uk.org IABSE British Group News ________________________________________________________________________________________ Editorial Welcome to IABSE News, the newsletter of the British Group of IABSE. The start of a new year offers the opportunity to look ahead and survey the possibilities offered by the next twelve months. This is no less the case for IABSE and it’s members than for anyone else as the calendar of events for 2007 shows. The Milne Medal lecture (see page 4 to find out the 2006 winner!) should prove a great attraction as will also the proposed half-day meeting ‘Factor 10 engineering for sustainable cities’ (the theme of the 2006 Henderson Colloquium) which will present state-of-the-art guidance and examples of how the ‘order of magnitude’ improvement in sustainability performance, suggested in some quarters as being necessary for our future, can be achieved. During 2006 it has been a pleasure to welcome over 20 new members to the IABSE British Group and I hope that members both old and new will encourage others to join in 2007. It is, perhaps, fair to say that the British Group programme of events focuses on quality rather than quantity.
    [Show full text]
  • Stonecutters Bridge
    Stonecutters Bridge Stonecutters Bridge spans across the 900m(approx.) wide The bridge has a highly distinctive structural form that comprises Rambler Channel at the entrance to the Kwai Tsing Container a bridge deck of about 53m wide with steel twin-box connected by Terminals, forming the centrepiece of the section of Route 8 cross girders, supported by two monopole towers of height up to between Tsing Yi and Cheung Sha Wan. This section of Route 8 +298.0 mPD. The streamlined split deck enhances stability under is a 7.6km long, dual three-lane road that includes Stonecutters high wind. Bridge and its approach viaducts. Besides serving as a main route to Hong Kong International Airport, this section also provides direct trunk connections to the container terminals at The towers are constructed in concrete up to a height of about Kwai Chung and Tsing Yi. +175 mPD, and the upper sections are in composite stainless steel- concrete. This is the fi rst time to use high-grade duplex stainless steel skin as an integral structural part of the upper towers. This solution is chosen to enhance the structural stability and to reduce maintenance cost by eliminating the need for re-painting. The raw materials of the bridge were sourced around the world. The stainless steel used in the upper section of the towers was imported from Sweden and fabricated into stainless steel skins in China (Zhongshan). The steel used in the deck was from Japan, Austria and Belgium and was fabricated into deck panels in Northern China (Shanhaiguan) and assembled into deck segments in Southern China (Dongguan).
    [Show full text]