Institute of Astronautical Science Space

Total Page:16

File Type:pdf, Size:1020Kb

Institute of Astronautical Science Space Institute of Space and Astronautical Science 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, JAPAN http://www.isas.jaxa.jp/e/ Towards the Affluent Future Pioneered by Space Science Greetings As a core institute conducting space science researches Saku Tsuneta, Director General of ISAS Missions of ISAS The missions of ISAS aim to push ahead academic researches through the planning, development, ying experiments, operations and result production of characteristic and excellent space science missions consistently with the cooperation from universities, institutes in Japan and each foreign space institutes with the use of satellites, probes, sound rockets, big balloons and international space station. The biggest advantage of ISAS is that researchers of space engineering and space science cooperate with each other to research and develop, which means that engineers lead science missions with advanced technologies and new technologies that scientists expect can be developed efciently. ● To solutions to the fundamental problems of the modern space science and make them common intellectual properties of the society ● To create and execute new exploration programs such as landing on The Institute of Space and Astronautical Science( ISAS)is an celestial bodies like the moon, the Mars and its satellites and collecting essential part of Japan Aerospace eXploration Agency (JAXA) extraterrestrial materials and going back to the earth through the close and is as well a unique institute. ISAS becomes a hub for cooperation between space science and space engineering. universities or institutes to work together with all the researchers in Japan to realize the space science missions which are ● To continuously evolve the space transportation system to execute impossible to start for them individually. We will live up to the missions with lower cost and higher frequency. expectations both inside and outside JAXA, and through academic researches, we will contribute to the wide-ranging ● To sustainably realize advanced space science missions with tasks that JAXA and Japan are facing during space development. So far, basing on the close cooperation between researchers the cooperative structure that universities and institutes from both inside of space science and space engineering, our institute have and outside the country work together according to the Inter-University successively proposed and realized ambitious projects such as Research Institute System. “Hayabusa” and etc. Space science in the world is becoming more and more advanced and large-scale and diversied ● To cultivate talents to get involved in space development and researches international cooperation has become a trend. It is also on space science. important for ISAS to cooperate with main space institutes from other countries and start more international missions in the future. ● To contribute to the space development of Japan including space utilization. The 21st century should be the century when mankind can get a comprehensive description on the origin of the Universe and life for the rst time. As explorations go on, a new world is showing more and more aspects far beyond our imaginations, The ISAS is going to put scientific satellite and exploration programs which such as the presence of dark energy and dark matters, will become more and more large-scale and complicated in the future, exoplanets, as well as the various appearances of the planets, into practice, through the cooperation with the engineers and researchers satellites and asteroids in our solar system. ISAS, with astrophysics and solar system science going hand in hand with with excellent administrative abilities and experience from JAXA. the space engineering, which opens up new possibilities toward At the same time, by conducting demonstrations of advanced technologies the space, will continue to challenge this magnicent exploration of knowledge with the cooperation of universities promptly with the use of the Epsilon rockets, which is a way to execute and institutes from inside and outside our country. Our institute missions with lower cost and higher frequency, we will make more contributions will start new missions while steadily executing the missions in to the developmentnt o space exploration including the space utilization development. We are looking forward to your understanding, support and suggestions. prompted by JAXA and private companies. 2 3 Researches and Development Making the Impossible Possible “It is because of high risk that it is the frontier, and it is because of difficult projects that we can expect great achievements.” Researchers with such a will are conducting researches every day. The space engineering is a treasure house of new e technologies and it is expected to have great development in the future when successfully developed. c n ie c s e Space: The Frontier for Humankind spac The space is still a frontier for humankind. The space requires for system integration to combine and harmonize these technologies is technologies under environments completely different in gravity, also an important subject of our institute. pressure or temperature from what are natural on the ground. To perform activities outside the atmosphere, facing all the engineering The progress of space engineering has made direct contributions to problems under sever or unknown environments, we have to keep the expansion of human’s area of activity and knowledge. At the developing new technologies with high reliability. same time, besides transportation, the progresses of space technologies have been integrated with communication, positioning Space engineering consists of various specialized elds and we and earth observation technologies and are closely related to our are pursuing extreme performance and reliability in each of them. everyday life. With this background, our institute is conducting basic However, it is not enough for us to design and realize advanced researches in the related elds of space engineering and is hardware such as rockets, satellites and probes by only developing developing and demonstrating technologies that help to solve all the Technology Demonstration of Reusable Sounding Rockets advanced technologies in each eld. To achieve a purpose, we advanced problems not only in space engineering but also have to harmonize each technology transversally as a system. The engineering in general. The future when we can do round trips frequently between the earth and space with reusable rockets. Smart Lander for Investigating Moon Combustion test of the LOX/LH2 rocket engine To realize a high-reliable space transportation system like passenger planes with a low cost to do round trips frequently between the earth and space, it is important to reuse the body of a launch vehicle. Aiming at the future application, we are conducting researches and demonstration tests to use the reusable rockets as sounding rockets. We developed a rocket “SLIM” is a plan to demonstrate the landing technology for probes to land at where they engine reusable for over 100 times with liquid hydrogen and liquid oxygen as fuels and succeeded in demonstration tests. want (an accuracy of 100 meters) with small probes so as to expand the possibilities of scientic explorations. Epsilon Launch Vehicle Sounding Rockets Balloons Small rockets developed for various scientic experiments with about-10-minute ballistic ights. They are being widely used by most researchers for conduct space demonstrations in advance on innovative key technologies and technical verication of new ying bodies. They are also playing an important role for direct observations of the vertical structure of the upper atmosphere between 100-300km high which is difcult for articial satellites as well as investigation of the initial behaviors of material Solar Power Sail Small Solar Power Sail Demonstrator "IKAROS" Balloons have relaxed limitations on the size and weight of onboard devices, more (Artists rendering of IKAROS ) The Launch of Epsilon Launch Vehicle generated under microgravity chance to y and is possible to recycle the onboard devices. To make full use of environment. these features, we are conducting state-of-the-art ambitious or germinating With the combination of solar sail technology, which makes it possible to y in the space The Epsilon Launch Vehicle was born with the concept to make it easier to launch experiments. Furthermore, we are developing the world’ s most advanced next with solar radiation pressure with sails deployed in the space, and the technology to rockets and to lower the threshold towards the space. generation balloons for ying longer and higher. operate the high-efcient ion engines with the power generated by thin lm solar cells, Sounding Rockets S-520 we are creating new possibilities for solar system explorations in the future. 4 5 Technologies Supporting the Missions e c n ie The space science approaches the formation of the Universe, and even the origin of life. We make the challenging c s e activities possible, and tackle the development of technologies that create new possibilities. spac Technologies Supporting Deep Space Exploration Advanced Observation Technologies Atmospheric Entry System Autonomous Image Navigation and Guidance Control Stirling Cooler and Joule-Thomson Cooler Looking toward the era when we do round trips To get closer to or land on the celestial bodies away from the It is necessary to cool the detectors close to between space and the earth actively or when we earth, autonomous functions are
Recommended publications
  • Chandrayaan-2 Completes a Year Around the Moon
    One-year completion of Chandrayaan-2 Lunar orbit insertion (August 20, 2019) Chandrayaan-2 completes a year around the Moon The Moon provides the best linkage to understand Earth’s early history and offers an undisturbed record of the inner Solar system environment. It could also be a base for future human space exploration of the solar system and a unique laboratory, unlike any on Earth, for fundamental physics investigations. In spite of several missions to the Moon, there remains several unanswered questions. Continued high resolution studies of its surface, sub-surface/interior and its low-density exosphere, are essential to address diversities in lunar surface composition and to trace back the origin and evolution of the Moon. The clear evidence from India’s first mission to the Moon, Chandrayaan-1, on the extensive presence of surface water and the indication for sub- surface polar water-ice deposits, argues for more focused studies on the extent of water on the surface, below the surface and in the tenuous lunar exosphere, to address the true origin and availability of water on Moon. With the goal of expanding the lunar scientific knowledge through detailed studies of topography, mineralogy, surface chemical composition, thermo-physical characteristics and the lunar exosphere, Chandrayaan-2 was launched on 22nd July 2019 and inserted into the lunar orbit on 20th August 2019, exactly one year ago. Though the soft-landing attempt was not successful, the orbiter, which was equipped with eight scientific instruments, was successfully placed in the lunar orbit. The orbiter completed more than 4400 orbits around the Moon and all the instruments are currently performing well.
    [Show full text]
  • Institute of Astronautical Science Space
    Institute of Space and Astronautical Science 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, JAPAN http://www.isas.jaxa.jp/e/ Towards the Affluent Future Pioneered by Space Science Greetings As a core institute conducting space science researches Saku Tsuneta, Director General of ISAS Missions of ISAS The missions of ISAS aim to push ahead academic researches through the planning, development, ying experiments, operations and result production of characteristic and excellent space science missions consistently with the cooperation from universities, institutes in Japan and each foreign space institutes with the use of satellites, probes, sound rockets, big balloons and international space station. The biggest advantage of ISAS is that researchers of space engineering and space science cooperate with each other to research and develop, which means that engineers lead science missions with advanced technologies and new technologies that scientists expect can be developed efciently. ● To solutions to the fundamental problems of the modern space science and make them common intellectual properties of the society ● To create and execute new exploration programs such as landing on The Institute of Space and Astronautical Science( ISAS)is an celestial bodies like the moon, the Mars and its satellites and collecting essential part of Japan Aerospace eXploration Agency (JAXA) extraterrestrial materials and going back to the earth through the close and is as well a unique institute. ISAS becomes a hub for cooperation between space science and space engineering. universities or institutes to work together with all the researchers in Japan to realize the space science missions which are ● To continuously evolve the space transportation system to execute impossible to start for them individually.
    [Show full text]
  • Transmittal of Geotail Prelaunch Mission Operation Report
    National Aeronautics and Space Administration Washington, D.C. 20546 ss Reply to Attn of: TO: DISTRIBUTION FROM: S/Associate Administrator for Space Science and Applications SUBJECT: Transmittal of Geotail Prelaunch Mission Operation Report I am pleased to forward with this memorandum the Prelaunch Mission Operation Report for Geotail, a joint project of the Institute of Space and Astronautical Science (ISAS) of Japan and NASA to investigate the geomagnetic tail region of the magnetosphere. The satellite was designed and developed by ISAS and will carry two ISAS, two NASA, and three joint ISAS/NASA instruments. The launch, on a Delta II expendable launch vehicle (ELV), will take place no earlier than July 14, 1992, from Cape Canaveral Air Force Station. This launch is the first under NASA’s Medium ELV launch service contract with the McDonnell Douglas Corporation. Geotail is an element in the International Solar Terrestrial Physics (ISTP) Program. The overall goal of the ISTP Program is to employ simultaneous and closely coordinated remote observations of the sun and in situ observations both in the undisturbed heliosphere near Earth and in Earth’s magnetosphere to measure, model, and quantitatively assess the processes in the sun/Earth interaction chain. In the early phase of the Program, simultaneous measurements in the key regions of geospace from Geotail and the two U.S. satellites of the Global Geospace Science (GGS) Program, Wind and Polar, along with equatorial measurements, will be used to characterize global energy transfer. The current schedule includes, in addition to the July launch of Geotail, launches of Wind in August 1993 and Polar in May 1994.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • FACTORS" with Multiple Compact Satellites for the Space-Earth Coupling Mechanisms
    PCG21-05 Japan Geoscience Union Meeting 2018 Science Objectives and Mission Plan of "FACTORS" with Multiple Compact Satellites for the Space-Earth Coupling Mechanisms *Masafumi Hirahara1, Yoshifumi Saito2, Hirotsugu Kojima3, Naritoshi Kitamura2, Kazushi Asamura 2, Ayako Matsuoka2, Takeshi Sakanoi4, Yoshizumi Miyoshi1, Shin-ichiro Oyama1, Masatoshi Yamauchi5, Yuichi Tsuda2, Nobutaka Bando2 1. Institute of Space-Earth Environmental Research, Nagoya University, 2. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3. Research Institute for Sustainable Humanosphere, Kyoto University, 4. Planetary Plasma and Atmospheric Research Center, Graduate School of Science, Tohoku University, 5. Swedish Institute of Space Physics After the successful launch and the recent observational progresses of the ERG(Arase) satellite mission, we have been leading the next community exploration mission in the Japanese space physics research. In the ERG mission, we are focusing on the unique space plasma mechanisms and conditions causing the terrestrial radiation belt through the wave-particle interaction analyses and the triangle-type research system consisting the satellite and ground-based observations and the data analyses/modelings/simulations. Our next exploration target is the space-Earth connection processes/mechanisms responsible for the formation and coupling of the terrestrial magnetosphere/ionoshere/thermosphere and the acceleration and transportation of the space plasma and neutral atmospheric particles, which could be
    [Show full text]
  • Geotail/CPI Publications
    Geotail/CPI Publications L. A. Frank, et al. Department of Physics and Astronomy The University of Iowa Iowa City, IA 1994 1. Frank, L. A., K. L. Ackerson, W. R. Paterson, J. A. Lee, M. R. English and G. L. Pickett, The Comprehensive Plasma Instrumentation (CPI) for the Geotail Spacecraft, J. Geomag. and Geoelectr., 46, 23-37, 1994. 2. Kokubun, S., H. Kawano, M. Nakamura, T. Yamamoto, K. Tsuruda, H. Hayakawa, A. Matsuoka and L. A. Frank, Quasi-periodic Oscillations of the Magnetopause During Northward Sheath Magnetic Field, Geophys. Res. Lett., 21. 2883-2886, 1994. 3. Kojima, H., H. Matsumoto, T. Miyatake, I. Nagano, A. Fujita, L. A. Frank, T. Mukai, W. R. Paterson, Y. Saito, S. Machida and R. R. Anderson, Relation Between Electrostatic Solitary Waves and Hot Plasma Flow in the Plasma Sheet Boundary Layer: GEOTAIL Observations, Geophys. Res. Lett., 21, 2919-2922, 1994. 4. Frank, L. A. and W. R. Paterson, Survey of Electron and Ion Bulk Flows in the Distant Magnetotail With the Geotail Spacecraft, Geophys. Res. Lett., 21, 2963-2966, 1994. 5. Frank, L. A., W. R. Paterson, K. L. Ackerson, S. Kokubun, T. Yamamoto, D. H. Fairfield and R. P. Lepping, Observations of Plasmas Associated With the Magnetic Signature of a Plasmoid in the Distant Magnetotail, Geophys. Res. Lett., 21, 2967-2970, 1994. 6. Paterson, W. R. and L. A. Frank, Survey of Plasma Parameters in Earth's Distant Magnetotail With the Geotail Spacecraft, Geophys. Res. Lett., 21, 2971-2974, 1994. 7. Siscoe, G. L., L. A. Frank, K. L. Ackerson and W. R.
    [Show full text]
  • The Moon Beyond 2002: Next Steps in Lunar Science and Exploration
    The Moon Beyond 2002: Next Steps in Lunar Science and Exploration September 12-14, 2002 Taos, New Mexico Sponsors Los Alamos National laboratory The University of California Institute of Geophysics and Planetary Physics (ICPP) Los Alamos Center for Space Science and Exploration Lunar and Planetary Institute Meeting Organizer David J. Lawrence (Los Alamos National Laboratory) Scientific Organizing Committee Mike Duke (Colorado School of Mines) Sarah Dunkin (Rutherford Appleton Laboratory) Rick Elphic (Los Alamos National Laboratory) Ray Hawke (University of Hawai’i) Lon Hood (University of Arizona) Brad Jolliff (Washington University) David Lawrence (Los Alamos National Laboratory) Chip Shearer (University of New Mexico) Harrison Schmitt (University of Wisconsin) Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1128 Compiled in 2002 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (2002) Title of abstract. In The Moon Beyond 2002: Next Steps in Lunar Science and Exploration, P. XX. LPI Contribution No. 1128, Lunar and Planetary Institute, Houston. The volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113, USA Phone: 281-486-2172 Fax: 281-486-2186 E-mail: [email protected] Mail order requestors will be invoiced for the cost of shipping and handling.
    [Show full text]
  • Global Satellite Communications Technology and Systems
    International Technology Research Institute World Technology (WTEC) Division WTEC Panel Report on Global Satellite Communications Technology and Systems Joseph N. Pelton, Panel Chair Alfred U. Mac Rae, Panel Chair Kul B. Bhasin Charles W. Bostian William T. Brandon John V. Evans Neil R. Helm Christoph E. Mahle Stephen A. Townes December 1998 International Technology Research Institute R.D. Shelton, Director Geoffrey M. Holdridge, WTEC Division Director and ITRI Series Editor 4501 North Charles Street Baltimore, Maryland 21210-2699 WTEC Panel on Satellite Communications Technology and Systems Sponsored by the National Science Foundation and the National Aeronautics and Space Administration of the United States Government. Dr. Joseph N. Pelton (Panel Chair) Dr. Charles W. Bostian Mr. Neil R. Helm Institute for Applied Space Research Director, Center for Wireless Deputy Director, Institute for George Washington University Telecommunications Applied Space Research 2033 K Street, N.W., Rm. 304 Virginia Tech George Washington University Washington, DC 20052 Blacksburg, VA 24061-0111 2033 K Street, N.W., Rm. 340 Washington, DC 20052 Dr. Alfred U. Mac Rae (Panel Chair) Mr. William T. Brandon President, Mac Rae Technologies Principal Engineer Dr. Christoph E. Mahle 72 Sherbrook Drive The Mitre Corporation (D270) Communications Satellite Consultant Berkeley Heights, NJ 07922 202 Burlington Road 5137 Klingle Street, N.W. Bedford, MA 01730 Washington, DC 20016 Dr. Kul B. Bhasin Chief, Satellite Networks Dr. John V. Evans Dr. Stephen A. Townes and Architectures Branch Vice President Deputy Manager, Communications NASA Lewis Research Center and Chief Technology Officer Systems and Research Section MS 54-2 Comsat Corporation Jet Propulsion Laboratory 21000 Brookpark Rd.
    [Show full text]
  • VOWOX^ >OMRXYVYQSO] PY\ >\KTOM^Y\C .O]SQX PY\ 6 XK
    !" #$! %&#! & ' ($ ! # "" !" ($ ' ) ' ! ## * # ! '! ! " !" !#$! !&#! & ' ! & !+ ,&! &-&# ! !.,/0! & ! 1 !* && 2 ! $# ! " ! ! # #! !2 #2! ! "2 $ & ' ! * !#$! %&#! & ' + ! )'#$! + ! + # #& &$# !&#! -&# !#$! -&# ! ) & $ !) %$% $ % &$ ) &&' * $% $ ,$ + ' $$ % &+ !$ && 6 !"##$ % & $ ' ) ! & $'/ $& $ ($ % & ) % $ % ( & & $ ! * $ + (* ,$ +) & %+($ $$ R(& $+ (+ $ '- % (* ,$ $ $ 6 ) & ' + ) & * $$%& . $ 7)' * $ *$ 6 ) & $ & )+$&( )% * $ ( %& $ % ( & ,$ +) & & + $ &+& $%' *(! $ $6 / 0& & $ 11#' & $&)&+& ! 6 ) & ,$ +) & % $ $+ ) & $ % ( &*&&% $! 6 ) $ %& % & $ R ! *&& & ( & + $$ & & +& 2& + ,$' 0& +! ) & 2& + $& & + ! !$'' $ )$& & + & &% ! % ) 3( * ) + $ $ $! *% *+ $ + & $ +' 4 &+! ) & $* * !% $ & $ R& $($& &$ &$& *)$ +$ )$ ) (% & $ )$& & +' $ % $ & $ 3 *4 #$! + ! + !&.40* 456 & # $ !& 3 *5 !& " $'##$! 78* 3 *6 #$! + ! + !&.60* %&+ ):&R& *! ) (+ ! & % 6 $ ' ) (+ ' % / $! $& &&$ &! & $ + % $ $$ ,$ +) & 2& $ $ ) & $%& $ ) + ' % & ( &'$ (!& $* * & ) * % & $ &$& &$$ & & $ & * $ !$ )% % 8 $' $%$ & & ! ( ) # %) & $ $+' * )+- $ 4 $ ) ) ,$ % ! $! % ( 4## + * ) && + 6) &* &$%$ & & & &3 )) (+ &% $& & +' *#6) & )&$$ & & ' ) .$ ) - ( & %! * $$& ( ) % ' $& !% 6 & % ) ;
    [Show full text]
  • Earth's Magnetosphere and Outer Radiation Belt Under Sub-Alfvénic
    ARTICLE Received 29 Apr 2016 | Accepted 19 Aug 2016 | Published 3 Oct 2016 DOI: 10.1038/ncomms13001 OPEN Earth’s magnetosphere and outer radiation belt under sub-Alfve´nic solar wind Noe´ Lugaz1,2, Charles J. Farrugia1,2, Chia-Lin Huang1,2, Reka M. Winslow1, Harlan E. Spence1,2 & Nathan A. Schwadron1,2 The interaction between Earth’s magnetic field and the solar wind results in the formation of a collisionless bow shock 60,000–100,000 km upstream of our planet, as long as the solar wind fast magnetosonic Mach (hereafter Mach) number exceeds unity. Here, we present one of those extremely rare instances, when the solar wind Mach number reached steady values o1 for several hours on 17 January 2013. Simultaneous measurements by more than ten spacecraft in the near-Earth environment reveal the evanescence of the bow shock, the sunward motion of the magnetopause and the extremely rapid and intense loss of electrons in the outer radiation belt. This study allows us to directly observe the state of the inner magnetosphere, including the radiation belts during a type of solar wind-magnetosphere coupling which is unusual for planets in our solar system but may be common for close-in extrasolar planets. 1 Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, 8 College Road, Durham, New Hampshire 03824, USA. 2 Department of Physics, University of New Hampshire, Durham, New Hampshire 03824, USA. Correspondence and requests for materials should be addressed to N.L. (email: [email protected]). NATURE COMMUNICATIONS | 7:13001 | DOI: 10.1038/ncomms13001 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13001 nder normal solar wind conditions, a bow shock forms Results sunward of Earth with a subsolar distance of 11–14 Bow shock and magnetopause locations.
    [Show full text]
  • A Profile of Humanity: the Cultural Signature of Earth's Inhabitants
    International Journal of A profile of humanity: the cultural signature of Astrobiology Earth’s inhabitants beyond the atmosphere cambridge.org/ija Paul E. Quast Beyond the Earth foundation, Edinburgh, UK Research Article Abstract Cite this article: Quast PE (2018). A profile of The eclectic range of artefacts and ‘messages’ we dispatch into the vast expanse of space may humanity: the cultural signature of Earth’s become one of the most enduring remnants of our present civilization, but how does his pro- inhabitants beyond the atmosphere. tracted legacy adequately document the plurality of societal values and common, cultural heri- International Journal of Astrobiology 1–21. https://doi.org/10.1017/S1473550418000290 tage on our heterogeneous world? For decades now, this rendition of the egalitarian principle has been explored by the Search for Extra-Terrestrial Intelligence community in order to draft Received: 18 April 2018 theoretical responses to ‘who speaks for Earth?’ for hypothetical extra-terrestrial communica- Revised: 13 June 2018 tion strategies. However, besides the moral, ethical and democratic advancements made by Accepted: 21 June 2018 this particular enterprise, there remains little practical exemplars of implementing this gar- Key words: nered knowledge into other experimental elements that could function as mutual emissaries Active SETI; data storage; deep time messages; of Earth; physical artefacts that could provide accessible details about our present world for eternal memory archives; future archaeology; future archaeological observations by our space-faring progeny, potential visiting extrasolar long-term communication strategies; SETI; time capsules denizens or even for posterity. While some initiatives have been founded to investigate this enduring dilemma of humanity over the last half-century, there are very few comparative stud- Author for correspondence: ies in regards to how these objects, time capsules and transmission events collectively dissem- Paul E.
    [Show full text]
  • National and International Aerospace Programs National Aerospace
    National and International Aerospace Programs National Aerospace Programs USA NASA https://www.nasa.gov/ https://en.wikipedia.org/wiki/NASA Private companies Virgin Galactic Scaled Space Adventures Sierra Nevada Corporation Russia ROSCOSMOS http://en.roscosmos.ru/ https://en.wikipedia.org/wiki/Roscosmos_State_Corporation Launcher manufacturers TsSKB Progress: Soyuz-FG, Soyuz-U, Soyuz-2 Khrunichev: Proton, Proton-M, Angara (in development), Briz-M Production Corporation Polyot Engines NPO Energomash Production Corporation Polyot KBKhA KBKhM Kuznetsov Design Bureau Keldysh Research Center OKB Fakel NIIMash TsNIIMash Proton-PM Voronezh Mechanical Plant RKK Energiya Satellite developers ISS-Reshetnev: GLONASS, Express NPO Lavochkin: Elektro–L Gazprom Space Systems SPUTNIX Ltd DAURIA Aerospace Satellite Launchers Services Eurockot Launch Services International Launch Services COSMOS International ISC Kosmotras Starsem Sea Launch Land Launch China CNSA < Ministry of industry and information technology http://www.cnsa.gov.cn/n6443408/index.html https://en.wikipedia.org/wiki/China_National_Space_Administration India ISRO < Ministry for Space < Prime Ministar http://isro.gov.in https://en.wikipedia.org/wiki/Indian_Space_Research_Organisation Space research and development Vikram Sarabhai Space Centre Liquid Propulsion Systems Centre Satish Dhawan Space Centre ISRO Propulsion Complex ISRO Satellite Centre Space Applications Centre National Remote Sensing Centre ISRO Inertial Systems Unit Development and Educational Communication Unit Master Control
    [Show full text]