Unified Inference and Training at the Edge

Total Page:16

File Type:pdf, Size:1020Kb

Unified Inference and Training at the Edge Unified Inference and Training at the Edge By Linley Gwennap Principal Analyst October 2020 www.linleygroup.com Unified Inference and Training at the Edge By Linley Gwennap, Principal Analyst, The Linley Group As more edge devices add AI capabilities, some applications are becoming increasingly complex. Wearables and other IoT devices often have multiple sensors, requiring different neural networks for each sensor, or they may use a single complex network to combine all the input data, a tech- nique called sensor fusion. Others implement on-device training to customize the application. The GPX-10 processor can handle these advanced AI applications while keeping power to a minimum. Ambient Scientific sponsored this white paper, but the opinions and analysis are those of the author. Introduction As more IoT products implement AI inferencing on the device, some applications are becoming increasingly complex. Instead of just a single sensor, they may have several, such as a wearable device that has accelerometer, pulse rate, and temperature sensors. Each sensor may require a different neural network, or a single complex network can combine all the input data, a technique called sensor fusion. A microcontroller (e.g., Cortex-M) or DSP can handle a single sensor, but these simple cores are inefficient for more complex IoT applications. Training introduces additional complication to edge devices. Today’s neural networks are trained in the cloud using generic data from many users. This approach takes advan- tage of the massive compute power in cloud data centers, but it creates a one-size-fits-all AI model. The trained model can be distributed to many devices, but even if each device performs the inferencing, the model performs the same way for all users. To provide truly personal services, an edge device must adapt the neural network to the user. For example, a voice-recognition model could be trained to recognize a specific voice. This approach doesn’t require training the model from scratch, a computationally intensive task; instead, an existing model can be retrained on the device to more accu- rately respond to a particular user or use case. This type of on-device training shouldn’t be confused with federated learning, a different concept in which each user’s data is compressed and sent to the cloud for retraining the master model. The benefits of on-device retraining go beyond personalization. The retraining occurs without sending the user’s data to the cloud, improving privacy. On-device training reduces the burden on cloud data centers, which would otherwise need many new servers to keep up with billions of edge devices. Severing the cloud connection also reduces cellular or other network costs that might accrue to either the end user or the cloud-service provider (CSP). Finally, on-device retraining can constantly adapt and improve without waiting for the CSP to update the model. On-device training has many applications. In a consumer setting, a smart speaker or other voice-operated device could recognize commands only from a designated user, preventing visitors from ordering products or accessing personal information, thus ©2020 The Linley Group, Inc. - 1 - Unified Inference and Training at the Edge improving security. A wearable device could learn the user’s normal health parameters (e.g., pulse rate, blood oxygen) and quickly recognize any unusual results that could indicate a medical problem. A voice-operated kiosk in an airport or shopping mall could be trained to recognize and filter out the background noise in its specific location to better isolate the user’s voice. In a factory, an audio device (sometimes in conjunction with a vibration sensor) could monitor the ambient conditions to detect anomalies that might indicate that certain machinery is failing. These consumer and industrial use cases all require some device-specific training or retraining. Multisensor Inferencing Wearable devices pose the biggest challenge for neural-network inferencing. These devices continue to add sensors, particularly for health monitoring. The new Apple Watch 6 includes blood-oxygen, ECG (electrocardiogram), and pulse-rate sensors as well as an altimeter, six-axis accelerometer, and microphone. Even low-cost wearables typically have several sensors. Wearables can also connect to external sensors using Bluetooth and other wireless protocols. For example, a cyclist can connect their smartwatch to sensors on their bike than detect pedal rate, power, and speed. The data from these “dumb” sensors must be analyzed either in the cloud or in the wearable, but only the latter provides real-time information during a ride. This implementation can be combined with retraining to deliver personalized coaching to the rider. Some wearable sensors are always on, while others are enabled only during certain activities. When enabled, these sensors may have different sampling rates and different resolutions (e.g., 4 bits, 8 bits, or 12 bits per sample). Inferencing even a single sensor on a Cortex-M CPU is far less efficient than using a purpose-built AI accelerator. As the workload becomes more complex, this inefficiency starts to sap battery life. Waking the CPU to process each incoming data sample further strains the battery, which in a wear- able is already small. Always-on inferencing on a separate AI accelerator allows the CPU to remain in sleep mode as much as possible, conserving battery life. Sensor fusion provides more advanced capabilities to the end user. This approach feeds the data from multiple sensors into a single neural network. In the cycling example, a standard device can analyze data from each of the sensors individually and display the speed and power, for example. But a sensor-fusion model can combine all these factors with pulse rate and blood oxygen to create a recommended pedal rate that optimizes the rider’s workout. This advanced capability requires a complex neural network that can inference in real time without draining the wearable’s battery during a long ride. Only a carefully optimized hardware design can meet these objectives. Retraining Challenges To achieve high accuracy across many possible input cases, neural networks are trained using a large set (corpus) of labeled data, often containing millions of items. Using the traditional stochastic gradient descent (SGD) approach, the model must evaluate each item in the training set, then its weights are adjusted slightly. This process is repeated ©2020 The Linley Group, Inc. - 2 - Unified Inference and Training at the Edge dozens of times until the model converging on a solution. Simply storing an entire corpus is well beyond the capability of most edge devices. Furthermore, the required computations can consume a high-end server for days or weeks and would take far longer on a low-cost edge processor. Fortunately, edge devices can adopt a simpler process. By starting with a pretrained model, only a few training passes are required to adapt it to new data. Furthermore, the training-data set can be fairly small, since the model has already been trained for a broad set of cases and only needs updating for the specific user. If the model is frequently re- trained, each retraining session can add only a few new cases, limiting the computation required. Even so, the computation can be challenging for an edge device. For example, an SoC based on a 1.0GHz Cortex-A55 CPU can compute 32 billion AI operations per second (GOPS)—a data-center GPU chip can compute thousands of times faster. A common microcontroller using a 100MHz Cortex-M4 CPU produces only 0.1 GOPS. Thus, for retraining a simple network, the SoC might take a few minutes of continuous com- puting, but the microcontroller could take several hours or more. For many edge devices, a Cortex-A55 or similar SoC is impractical. Such a processor typically costs $10 or more, whereas a microcontroller costs only a few dollars, making it better suited for cost-sensitive devices. Power is also a consideration. An SoC can easily require 1W or more, far too much for a battery-operated or wireless device. For these devices, a critical factor is GOPS/mW, that is, the ability to compute AI operations while using the least amount of energy. While CPUs are good for general-purpose computa- tion, maximizing AI efficiency requires a more specialized design. Ambient Solution Ambient Scientific has developed a custom architecture optimized for low-power AI operations called DigAn. The name refers to the use of standard digital CMOS to implement an analog math engine. Analog computation is orders of magnitude more efficient than the purely digital approach in CPUs and GPUs, but it is more difficult to design. Combining proprietary design techniques with standard CMOS, Ambient is the first company to bring an analog AI engine into volume production. As implemented in its new GPX-10 chip, a single DigAn core can generate 51 GOPS, outperforming the aforementioned Cortex-A55 while using less than 0.1% of its power. The chip contains 10 cores that together can deliver 512 GOPS while using just 120mW. That works out to 4.3 TOPS/W, which is far better than any CPU or GPU and ahead of most other AI-centric products as well. The design achieves this efficiency in a low-cost 40nm process; the company estimates it will achieve more than 20 TOPS/W in state-of- the-art 7nm technology. The GPX-10 can also operate in always-on mode, using five cores at a low speed, while consuming just 80 microwatts (0.08mW). In this mode, the chip can listen for a wake word and then quickly power up to analyze the rest of the phrase. It can also monitor other sensors to detect anomalous data that requires additional analysis.
Recommended publications
  • Accenture AI Inferencing in Action
    POV POV PUT YOUR AI SOLUTION ON STEROIDS POV PUT YOUR AI SOLUTION ON STEROIDS POINT OF VIEW POV PUT YOUR AI SOLUTION ON STEROIDS POV MATCH GPU PERFORMANCE AT HALF THE COST FOR AI INFERENCE WORKLOADS Proven CPU-based solution from Accenture and Intel boosts the performance and lowers the cost of AI inferencing by enabling an easy-to-deploy, scalable, and cost-efficient architecture AI INFERENCING—THE NEXT CRITICAL STEP AFTER AI ALGORITHM TRAINING Artificial Intelligence (AI) solutions include three main functions—identifying and preparing data, training an artificial intelligence algorithm, and using the algorithm for inferring new outcomes. Each function requires different compute recourses and deployment architecture. The choices of infrastructure components and technologies significantly impact the performance and costs associated with deploying an end-to-end AI solution. Data scientists and machine learning (ML) engineers spend significant time devising the right architecture for all stages of the AI pipeline. MODEL DATA TRAINING AND SCORING AND PREPARATION OPTIMIZATION INFERENCE Once an AI computer/algorithm has been trained through traditional or deep learning techniques, it can deliver value by interpreting data (i.e., inferring). Through inference, an AI algorithm can analyze data to: • Differentiate between various items • Identify trends and patterns that can be leveraged during decision-making • Reveal opportunities and possible solutions • Recognize voices, faces, images, etc. POV PUT YOUR AI SOLUTION ON STEROIDS POV Revealing hidden As we look to the future, AI inference will become increasingly possibilities— important to businesses operating in all segments—from health care to financial services to aerospace. And as the reliance on AI inference continues to grow, so Accenture AIP, does the importance of choosing the right AI infrastructure to support it.
    [Show full text]
  • GPU Developments 2018
    GPU Developments 2018 2018 GPU Developments 2018 © Copyright Jon Peddie Research 2019. All rights reserved. Reproduction in whole or in part is prohibited without written permission from Jon Peddie Research. This report is the property of Jon Peddie Research (JPR) and made available to a restricted number of clients only upon these terms and conditions. Agreement not to copy or disclose. This report and all future reports or other materials provided by JPR pursuant to this subscription (collectively, “Reports”) are protected by: (i) federal copyright, pursuant to the Copyright Act of 1976; and (ii) the nondisclosure provisions set forth immediately following. License, exclusive use, and agreement not to disclose. Reports are the trade secret property exclusively of JPR and are made available to a restricted number of clients, for their exclusive use and only upon the following terms and conditions. JPR grants site-wide license to read and utilize the information in the Reports, exclusively to the initial subscriber to the Reports, its subsidiaries, divisions, and employees (collectively, “Subscriber”). The Reports shall, at all times, be treated by Subscriber as proprietary and confidential documents, for internal use only. Subscriber agrees that it will not reproduce for or share any of the material in the Reports (“Material”) with any entity or individual other than Subscriber (“Shared Third Party”) (collectively, “Share” or “Sharing”), without the advance written permission of JPR. Subscriber shall be liable for any breach of this agreement and shall be subject to cancellation of its subscription to Reports. Without limiting this liability, Subscriber shall be liable for any damages suffered by JPR as a result of any Sharing of any Material, without advance written permission of JPR.
    [Show full text]
  • Persistent Memory for Artificial Intelligence
    Persistent Memory for Artificial Intelligence Bill Gervasi Principal Systems Architect [email protected] Santa Clara, CA August 2018 1 Demand Outpacing Capacity In-Memory Computing Artificial Intelligence Machine Learning Deep Learning Memory Demand DRAM Capacity Santa Clara, CA August 2018 2 Driving New Capacity Models Non-volatile memories Industry successfully snuggling large memories to the processors… Memory Demand DRAM Capacity …but we can do oh! so much more Santa Clara, CA August 2018 3 My Three Talks at FMS NVDIMM Analysis Memory Class Storage Artificial Intelligence Santa Clara, CA August 2018 4 History of Architectures Let’s go back in time… Santa Clara, CA August 2018 5 Historical Trends in Computing Edge Co- Computing Processing Power Failure Santa Clara, CA August 2018 Data Loss 6 Some Moments in History Central Distributed Processing Processing Shared Processor Processor per user Dumb terminals Peer-to-peer networks Santa Clara, CA August 2018 7 Some Moments in History Central Distributed Processing Processing “Native Signal Processing” Hercules graphics Main CPU drivers Sound Blaster audio Cheap analog I/O Rockwell modem Ethernet DSP Tightly-coupled coprocessing Santa Clara, CA August 2018 8 The Lone Survivor… Integrated graphics Graphics add-in cards …survived the NSP war Santa Clara, CA August 2018 9 Some Moments in History Central Distributed Processing Processing Phone providers Phone apps provide controlled all local services data processing Edge computing reduces latency Santa Clara, CA August 2018 10 When the Playing
    [Show full text]
  • AI Accelerator Latencies in Hybrid Vehicular Simulation
    AI Accelerator Latencies in Hybrid Vehicular Simulation Jussi Hanhirova Matias Hyyppä Abstract Aalto University Aalto University We study the use of accelerators for vehicular AI (Artifi- Espoo, Finland Espoo, Finland cial Intelligence) applications. Managing the computation jussi.hanhirova@aalto.fi juho.hyyppa@aalto.fi is complex as vehicular AI applications call for high per- formance computations in a real-time distributed environ- ment, in which low and predictable latencies are essential. We have used the CARLA simulator together with machine learning based on CNNs (Convolutional Neural Networks) in our research. In this paper, we present the latency be- Anton Debner Vesa Hirvisalo havior with GPU acceleration for CNN processing. Our ex- Aalto University Aalto University perimentation is motivated by using the simulator to find the Espoo, Finland Espoo, Finland corner cases that are demanding for the accelerated CNN anton.debner@aalto.fi vesa.hirvisalo@aalto.fi processing. Author Keywords Computation acceleration; GPU; deep learning ACM Classification Keywords D.4.8 [Performance]: Simulation; I.2.9 [Robotics]: Autonomous vehicles; I.3.7 [Three-Dimensional Graphics and Realism]: Virtual reality Introduction In this paper, we address the usage of accelerators in ve- hicular AI (Artificial Intelligence) systems and in the simula- tors that are needed in the development of such systems. The recent development of AI system is enabling many new Convolutional Neural Net- applications including autonomous driving of motor vehi- software [5] together with deep learning based inference on works (CNN) are a specific cles on public roads. Many of such systems process sen- TensorFlow [6]. Our measurements show the basic viability class of neural networks that sor data related to environment perception in real-time, be- of the hybrid simulation approach, but they also underline are often used in deep form cause they trigger actions which have latency requirements.
    [Show full text]
  • Low-Power Ultra-Small Edge AI Accelerators for Image Recog- Nition with Convolution Neural Networks: Analysis and Future Directions
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2021 doi:10.20944/preprints202107.0375.v1 Review Low-power Ultra-small Edge AI Accelerators for Image Recog- nition with Convolution Neural Networks: Analysis and Future Directions Weison Lin 1, *, Adewale Adetomi 1 and Tughrul Arslan 1 1 Institute for Integrated Micro and Nano Systems, University of Edinburgh, Edinburgh EH9 3FF, UK; [email protected]; [email protected] * Correspondence: [email protected] Abstract: Edge AI accelerators have been emerging as a solution for near customers’ applications in areas such as unmanned aerial vehicles (UAVs), image recognition sensors, wearable devices, ro- botics, and remote sensing satellites. These applications not only require meeting performance tar- gets but also meeting strict reliability and resilience constraints due to operations in harsh and hos- tile environments. Numerous research articles have been proposed, but not all of these include full specifications. Most of these tend to compare their architecture with other existing CPUs, GPUs, or other reference research. This implies that the performance results of the articles are not compre- hensive. Thus, this work lists the three key features in the specifications such as computation ability, power consumption, and the area size of prior art edge AI accelerators and the CGRA accelerators during the past few years to define and evaluate the low power ultra-small edge AI accelerators. We introduce the actual evaluation results showing the trend in edge AI accelerator design about key performance metrics to guide designers on the actual performance of existing edge AI acceler- ators’ capability and provide future design directions and trends for other applications with chal- lenging constraints.
    [Show full text]
  • Survey and Benchmarking of Machine Learning Accelerators
    1 Survey and Benchmarking of Machine Learning Accelerators Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, and Jeremy Kepner MIT Lincoln Laboratory Supercomputing Center Lexington, MA, USA freuther,pmichaleas,michael.jones,vijayg,sid,[email protected] Abstract—Advances in multicore processors and accelerators components play a major role in the success or failure of an have opened the flood gates to greater exploration and application AI system. of machine learning techniques to a variety of applications. These advances, along with breakdowns of several trends including Moore’s Law, have prompted an explosion of processors and accelerators that promise even greater computational and ma- chine learning capabilities. These processors and accelerators are coming in many forms, from CPUs and GPUs to ASICs, FPGAs, and dataflow accelerators. This paper surveys the current state of these processors and accelerators that have been publicly announced with performance and power consumption numbers. The performance and power values are plotted on a scatter graph and a number of dimensions and observations from the trends on this plot are discussed and analyzed. For instance, there are interesting trends in the plot regarding power consumption, numerical precision, and inference versus training. We then select and benchmark two commercially- available low size, weight, and power (SWaP) accelerators as these processors are the most interesting for embedded and Fig. 1. Canonical AI architecture consists of sensors, data conditioning, mobile machine learning inference applications that are most algorithms, modern computing, robust AI, human-machine teaming, and users (missions). Each step is critical in developing end-to-end AI applications and applicable to the DoD and other SWaP constrained users.
    [Show full text]
  • Efficient Management of Scratch-Pad Memories in Deep Learning
    Efficient Management of Scratch-Pad Memories in Deep Learning Accelerators Subhankar Pal∗ Swagath Venkataramaniy Viji Srinivasany Kailash Gopalakrishnany ∗ y University of Michigan, Ann Arbor, MI IBM TJ Watson Research Center, Yorktown Heights, NY ∗ y [email protected] [email protected] fviji,[email protected] Abstract—A prevalent challenge for Deep Learning (DL) ac- TABLE I celerators is how they are programmed to sustain utilization PERFORMANCE IMPROVEMENT USING INTER-NODE SPM MANAGEMENT. Incep Incep Res Multi- without impacting end-user productivity. Little prior effort has Alex VGG Goog SSD Res Mobile Squee tion- tion- Net- Head Geo been devoted to the effective management of their on-chip Net 16 LeNet 300 NeXt NetV1 zeNet PTB v3 v4 50 Attn Mean Scratch-Pad Memory (SPM) across the DL operations of a 1 SPM 1.04 1.19 1.94 1.64 1.58 1.75 1.31 3.86 5.17 2.84 1.02 1.06 1.76 Deep Neural Network (DNN). This is especially critical due to 1-Step 1.04 1.03 1.01 1.10 1.11 1.33 1.18 1.40 2.84 1.57 1.01 1.02 1.24 trends in complex network topologies and the emergence of eager execution. This work demonstrates that there exists up to a speedups of 12 ConvNets, LSTM and Transformer DNNs [18], 5.2× performance gap in DL inference to be bridged using SPM management, on a set of image, object and language networks. [19], [21], [26]–[33] compared to the case when there is no We propose OnSRAM, a novel SPM management framework SPM management, i.e.
    [Show full text]
  • Infiltration of AI/ML in Particle Physics Aspects of Data Handling
    Infiltration of AI/ML in Particle Physics Aspects of data handling Snowmass Community Planning Meeting Oct 5-8, 2020 Jean-Roch Vlimant [email protected] @vlimant Outline I.Motivations for Machine Learning II.Path to the Future of AI in HEP AI/ML in HEP, J-R Vlimant, Snowmass CPM !2 Motivations for Using Machine Learning in High Energy Physics and elsewhere ... 8/27/20 AI/ML in HEP, J-R Vlimant, Snowmass CPM !3 Machine Learning in Industry https://www.nvidia.com/en-us/deep-learning-ai/ http://www.shivonzilis.com/machineintelligence ● Prominent field in industry nowadays ● Lots of data, lots of applications, lots of potential use cases, lots of money ➔ Knowing machine learning can open significantly career horizons !4 8/27/20 AI/ML in HEP, J-R Vlimant, Snowmass CPM Learning to Control Learning to Walk via Deep Reinforcement Learning https://arxiv.org/abs/1812.11103 Mastering the game of Go with deep neural networks and tree search, https://doi.org/10.1038/nature16961 Modern machine learning boosts control technologies. AI, gaming, robotic, self-driving vehicle, etc. AI/ML in HEP, J-R Vlimant, Snowmass CPM !5 Learning from Complexity Machine learning model can extract information from complex dataset. More classical algorithm counter part may take years of development. !6 8/27/20 AI/ML in HEP, J-R Vlimant, Snowmass CPM Learn Physics P. Komiske, E. Metodiev, J. Thaler, https://arxiv.org/abs/1810.05165 Machine Learning can help understand Physics. !7 8/27/20 AI/ML in HEP, J-R Vlimant, Snowmass CPM Use Physics A.
    [Show full text]
  • Ai Accelerator Ecosystem: an Overview
    AI ACCELERATOR ECOSYSTEM: AN OVERVIEW DAVID BURNETTE, DIRECTOR OF ENGINEERING, MENTOR, A SIEMENS BUSINESS HIGH-LEVEL SYNTHESIS WHITEPAPER www.mentor.com AI Accelerator Ecosystem: An Overview One of the fastest growing areas of hardware and software design is Artificial Intelligence (AI)/Machine Learning (ML), fueled by the demand for more autonomous systems like self-driving vehicles and voice recognition for personal assistants. Many of these algorithms rely on convolutional neural networks (CNNs) to implement deep learning systems. While the concept of convolution is relatively straightforward, the application of CNNs to the ML domain has yielded dozens of different neural network approaches. While these networks can be executed in software on CPUs/GPUs, the power requirements for these solutions make them impractical for most inferencing applications, the majority of which involve portable, low-power devices. To improve the power/performance, hardware teams are forming to create ML hardware acceleration blocks. However, the process of taking any one of these compute-intensive networks into hardware, especially energy-efficient hardware, is a time consuming process if the team employs a traditional RTL design flow. Consider all of these interdependent activities using a traditional flow: ■ Expressing the algorithm correctly in RTL. ■ Choosing the optimal bit-widths for kernel weights and local storage to meet the memory budget. ■ Designing the microarchitecture to have a low enough latency to be practical for the target application, while determining how the accelerator communicates across the system bus without killing the latency the team just fought for. ■ Verifying the algorithm early on and throughout the implementation process, especially in the context of the entire system.
    [Show full text]
  • MYTHIC MULTIPLIES in a FLASH Analog In-Memory Computing Eliminates DRAM Read/Write Cycles
    MYTHIC MULTIPLIES IN A FLASH Analog In-Memory Computing Eliminates DRAM Read/Write Cycles By Mike Demler (August 27, 2018) ................................................................................................................... Machine learning is a hot field that attracts high-tech The startup plans by the end of this year to tape out investors, causing the number of startups to explode. As its first product, which can store up to 50 million weights. these young companies strive to compete against much larg- At that time, it also aims to release the alpha version of its er established players, some are revisiting technologies the software tools and a performance profiler. The company veterans may have dismissed, such as analog computing. expects to begin volume shipments in 4Q19. Mythic is riding this wave, using embedded flash-memory technology to store neural-network weights as analog pa- Solving a Weighty Problem rameters—an approach that eliminates the power consumed Mythic uses Fujitsu’s 40nm embedded-flash cell, which it in moving data between the processor and DRAM. plans to integrate in an array along with digital-to-analog The company traces its origin to 2012 at the University converters (DACs) and analog-to-digital converters (ADCs), of Michigan, where CTO Dave Fick completed his doctoral as Figure 1 shows. By storing a range of analog voltages in degree and CEO Mike Henry spent two and a half years as the bit cells, the technique uses the cell’s voltage-variable a visiting scholar. The founders worked on a DoD-funded conductance to represent weights with 8-bit resolution. This project to develop machine-learning-powered surveillance drones, eventually leading to the creation of their startup.
    [Show full text]
  • Driving Intelligence at the Edge: Axiomtek's Edge AI Solutions
    Driving Intelligence at the Edge Axiomtek’s Edge AI Solutions Copyright 2019 Axiomtek Co., Ltd. All Rights Reserved Driving Intelligence at the Edge: Axiomtek’s Edge AI Solutions From IoT to AIoT – Smart IoT Powered by AI IoT data overload While IoT allows enterprises to turn device data into actionable insights to optimize business processes and prevent problems, the ability to handle data in a timely, effective manner will determine whether an enterprise can fully enjoy the benefits of IoT. With numerous flows of data streamed from connected sensors and devices that are increasing by billion per year, it is only a matter of time that the enterprise clouds, growing slowly at an annual rate of thousands, will eventually be overwhelmed by enormous volumes of datasets which are beyond their capacity to digest. Also, in applications like autonomous machine operation, security surveillance, and manufacturing process monitoring, local devices need to act instantly in response to time-critical events. Waiting for feedback from the cloud can result in a response delay and make devices less likely to accomplish the tasks in real time. To resolve the issues of data overload and response lag, a growing number of companies are now seeking to incorporate edge computing and AI solutions into their IoT systems. Edge computing: processing data where it is needed Edge computing is a distributed computing technology which brings computation to the edge of an IoT network, where local devices are able to process time-sensitive data as close to its source as possible, rather than having to send the data to a centralized control server for analysis.
    [Show full text]
  • Low-Power Ultra-Small Edge AI Accelerators for Image Recognition with Convolution Neural Networks: Analysis and Future Directions
    electronics Review Low-Power Ultra-Small Edge AI Accelerators for Image Recognition with Convolution Neural Networks: Analysis and Future Directions Weison Lin *, Adewale Adetomi and Tughrul Arslan Institute for Integrated Micro and Nano Systems, University of Edinburgh, Edinburgh EH9 3FF, UK; [email protected] (A.A.); [email protected] (T.A.) * Correspondence: [email protected] Abstract: Edge AI accelerators have been emerging as a solution for near customers’ applications in areas such as unmanned aerial vehicles (UAVs), image recognition sensors, wearable devices, robotics, and remote sensing satellites. These applications require meeting performance targets and resilience constraints due to the limited device area and hostile environments for operation. Numerous research articles have proposed the edge AI accelerator for satisfying the applications, but not all include full specifications. Most of them tend to compare the architecture with other existing CPUs, GPUs, or other reference research, which implies that the performance exposé of the articles are not comprehensive. Thus, this work lists the essential specifications of prior art edge AI accelerators and the CGRA accelerators during the past few years to define and evaluate the low power ultra-small edge AI accelerators. The actual performance, implementation, and productized examples of edge AI accelerators are released in this paper. We introduce the evaluation results showing the edge AI accelerator design trend about key performance metrics to guide designers. Citation: Lin, W.; Adetomi, A.; Last but not least, we give out the prospect of developing edge AI’s existing and future directions Arslan, T. Low-Power Ultra-Small Edge AI Accelerators for Image and trends, which will involve other technologies for future challenging constraints.
    [Show full text]