Low-Power Ultra-Small Edge AI Accelerators for Image Recognition with Convolution Neural Networks: Analysis and Future Directions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bootstomp: on the Security of Bootloaders in Mobile Devices
BootStomp: On the Security of Bootloaders in Mobile Devices Nilo Redini, Aravind Machiry, Dipanjan Das, Yanick Fratantonio, Antonio Bianchi, Eric Gustafson, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna, UC Santa Barbara https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/redini This paper is included in the Proceedings of the 26th USENIX Security Symposium August 16–18, 2017 • Vancouver, BC, Canada ISBN 978-1-931971-40-9 Open access to the Proceedings of the 26th USENIX Security Symposium is sponsored by USENIX BootStomp: On the Security of Bootloaders in Mobile Devices Nilo Redini, Aravind Machiry, Dipanjan Das, Yanick Fratantonio, Antonio Bianchi, Eric Gustafson, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna fnredini, machiry, dipanjan, yanick, antoniob, edg, yans, chris, [email protected] University of California, Santa Barbara Abstract by proposing simple mitigation steps that can be im- plemented by manufacturers to safeguard the bootloader Modern mobile bootloaders play an important role in and OS from all of the discovered attacks, using already- both the function and the security of the device. They deployed hardware features. help ensure the Chain of Trust (CoT), where each stage of the boot process verifies the integrity and origin of 1 Introduction the following stage before executing it. This process, in theory, should be immune even to attackers gaining With the critical importance of the integrity of today’s full control over the operating system, and should pre- mobile and embedded devices, vendors have imple- vent persistent compromise of a device’s CoT. However, mented a string of inter-dependent mechanisms aimed at not only do these bootloaders necessarily need to take removing the possibility of persistent compromise from untrusted input from an attacker in control of the OS in the device. -
FAN53525 3.0A, 2.4Mhz, Digitally Programmable Tinybuck® Regulator
FAN53525 — 3.0 A, 2.4 MHz, June 2014 FAN53525 3.0A, 2.4MHz, Digitally Programmable TinyBuck® Regulator Digitally Programmable TinyBuck Digitally Features Description . Fixed-Frequency Operation: 2.4 MHz The FAN53525 is a step-down switching voltage regulator that delivers a digitally programmable output from an input . Best-in-Class Load Transient voltage supply of 2.5 V to 5.5 V. The output voltage is 2 . Continuous Output Current Capability: 3.0 A programmed through an I C interface capable of operating up to 3.4 MHz. 2.5 V to 5.5 V Input Voltage Range Using a proprietary architecture with synchronous . Digitally Programmable Output Voltage: rectification, the FAN53525 is capable of delivering 3.0 A - 0.600 V to 1.39375 V in 6.25 mV Steps continuous at over 80% efficiency, maintaining that efficiency at load currents as low as 10 mA. The regulator operates at Programmable Slew Rate for Voltage Transitions . a nominal fixed frequency of 2.4 MHz, which reduces the . I2C-Compatible Interface Up to 3.4 Mbps value of the external components to 330 nH for the output inductor and as low as 20 µF for the output capacitor. PFM Mode for High Efficiency in Light Load . Additional output capacitance can be added to improve . Quiescent Current in PFM Mode: 50 µA (Typical) regulation during load transients without affecting stability, allowing inductance up to 1.2 µH to be used. Input Under-Voltage Lockout (UVLO) ® At moderate and light loads, Pulse Frequency Modulation Regulator Thermal Shutdown and Overload Protection . (PFM) is used to operate in Power-Save Mode with a typical . -
Accenture AI Inferencing in Action
POV POV PUT YOUR AI SOLUTION ON STEROIDS POV PUT YOUR AI SOLUTION ON STEROIDS POINT OF VIEW POV PUT YOUR AI SOLUTION ON STEROIDS POV MATCH GPU PERFORMANCE AT HALF THE COST FOR AI INFERENCE WORKLOADS Proven CPU-based solution from Accenture and Intel boosts the performance and lowers the cost of AI inferencing by enabling an easy-to-deploy, scalable, and cost-efficient architecture AI INFERENCING—THE NEXT CRITICAL STEP AFTER AI ALGORITHM TRAINING Artificial Intelligence (AI) solutions include three main functions—identifying and preparing data, training an artificial intelligence algorithm, and using the algorithm for inferring new outcomes. Each function requires different compute recourses and deployment architecture. The choices of infrastructure components and technologies significantly impact the performance and costs associated with deploying an end-to-end AI solution. Data scientists and machine learning (ML) engineers spend significant time devising the right architecture for all stages of the AI pipeline. MODEL DATA TRAINING AND SCORING AND PREPARATION OPTIMIZATION INFERENCE Once an AI computer/algorithm has been trained through traditional or deep learning techniques, it can deliver value by interpreting data (i.e., inferring). Through inference, an AI algorithm can analyze data to: • Differentiate between various items • Identify trends and patterns that can be leveraged during decision-making • Reveal opportunities and possible solutions • Recognize voices, faces, images, etc. POV PUT YOUR AI SOLUTION ON STEROIDS POV Revealing hidden As we look to the future, AI inference will become increasingly possibilities— important to businesses operating in all segments—from health care to financial services to aerospace. And as the reliance on AI inference continues to grow, so Accenture AIP, does the importance of choosing the right AI infrastructure to support it. -
GPU Developments 2018
GPU Developments 2018 2018 GPU Developments 2018 © Copyright Jon Peddie Research 2019. All rights reserved. Reproduction in whole or in part is prohibited without written permission from Jon Peddie Research. This report is the property of Jon Peddie Research (JPR) and made available to a restricted number of clients only upon these terms and conditions. Agreement not to copy or disclose. This report and all future reports or other materials provided by JPR pursuant to this subscription (collectively, “Reports”) are protected by: (i) federal copyright, pursuant to the Copyright Act of 1976; and (ii) the nondisclosure provisions set forth immediately following. License, exclusive use, and agreement not to disclose. Reports are the trade secret property exclusively of JPR and are made available to a restricted number of clients, for their exclusive use and only upon the following terms and conditions. JPR grants site-wide license to read and utilize the information in the Reports, exclusively to the initial subscriber to the Reports, its subsidiaries, divisions, and employees (collectively, “Subscriber”). The Reports shall, at all times, be treated by Subscriber as proprietary and confidential documents, for internal use only. Subscriber agrees that it will not reproduce for or share any of the material in the Reports (“Material”) with any entity or individual other than Subscriber (“Shared Third Party”) (collectively, “Share” or “Sharing”), without the advance written permission of JPR. Subscriber shall be liable for any breach of this agreement and shall be subject to cancellation of its subscription to Reports. Without limiting this liability, Subscriber shall be liable for any damages suffered by JPR as a result of any Sharing of any Material, without advance written permission of JPR. -
Embedded Computer Solutions for Advanced Automation Control «
» Embedded Computer Solutions for Advanced Automation Control « » Innovative Scalable Hardware » Qualifi ed for Industrial Software » Open Industrial Communication The pulse of innovation » We enable Automation! « Open Industrial Automation Platforms Kontron, one of the leaders of embedded computing technol- ogy has established dedicated global business units to provide application-ready OEM platforms for specifi c markets, includ- ing Industrial Automation. With our global corporate headquarters located in Germany, Visualization & Control Data Storage Internet-of-Things and regional headquarters in the United States and Asia-Pa- PanelPC Industrial Server cifi c, Kontron has established a strong presence worldwide. More than 1000 highly qualifi ed engineers in R&D, technical Industrie 4.0 support, and project management work with our experienced sales teams and sales partners to devise a solution that meets M2M SYMKLOUD your individual application’s demands. When it comes to embedded computing, you can focus on your core capabilities and rely on Kontron as your global OEM part- ner for a successful long-term business relationship. In addition to COTS standards based products, Kontron also of- fers semi- and full-custom ODM services for a full product port- folio that ranges from Computer-on-Modules and SBCs, up to embedded integrated systems and application ready platforms. Open for new technologies Kontron provides an exceptional range of hardware for any kind of control solution. Open for individual application Kontron systems are available either as readily integrated control solutions, or as open platforms for customers who build their own control applications with their own look and feel. Open for real-time Kontron’s Industrial Automation platforms are open for Real- Industrial Ethernet Time operating systems like VxWorks and Linux with real time extension. -
Persistent Memory for Artificial Intelligence
Persistent Memory for Artificial Intelligence Bill Gervasi Principal Systems Architect [email protected] Santa Clara, CA August 2018 1 Demand Outpacing Capacity In-Memory Computing Artificial Intelligence Machine Learning Deep Learning Memory Demand DRAM Capacity Santa Clara, CA August 2018 2 Driving New Capacity Models Non-volatile memories Industry successfully snuggling large memories to the processors… Memory Demand DRAM Capacity …but we can do oh! so much more Santa Clara, CA August 2018 3 My Three Talks at FMS NVDIMM Analysis Memory Class Storage Artificial Intelligence Santa Clara, CA August 2018 4 History of Architectures Let’s go back in time… Santa Clara, CA August 2018 5 Historical Trends in Computing Edge Co- Computing Processing Power Failure Santa Clara, CA August 2018 Data Loss 6 Some Moments in History Central Distributed Processing Processing Shared Processor Processor per user Dumb terminals Peer-to-peer networks Santa Clara, CA August 2018 7 Some Moments in History Central Distributed Processing Processing “Native Signal Processing” Hercules graphics Main CPU drivers Sound Blaster audio Cheap analog I/O Rockwell modem Ethernet DSP Tightly-coupled coprocessing Santa Clara, CA August 2018 8 The Lone Survivor… Integrated graphics Graphics add-in cards …survived the NSP war Santa Clara, CA August 2018 9 Some Moments in History Central Distributed Processing Processing Phone providers Phone apps provide controlled all local services data processing Edge computing reduces latency Santa Clara, CA August 2018 10 When the Playing -
AI Accelerator Latencies in Hybrid Vehicular Simulation
AI Accelerator Latencies in Hybrid Vehicular Simulation Jussi Hanhirova Matias Hyyppä Abstract Aalto University Aalto University We study the use of accelerators for vehicular AI (Artifi- Espoo, Finland Espoo, Finland cial Intelligence) applications. Managing the computation jussi.hanhirova@aalto.fi juho.hyyppa@aalto.fi is complex as vehicular AI applications call for high per- formance computations in a real-time distributed environ- ment, in which low and predictable latencies are essential. We have used the CARLA simulator together with machine learning based on CNNs (Convolutional Neural Networks) in our research. In this paper, we present the latency be- Anton Debner Vesa Hirvisalo havior with GPU acceleration for CNN processing. Our ex- Aalto University Aalto University perimentation is motivated by using the simulator to find the Espoo, Finland Espoo, Finland corner cases that are demanding for the accelerated CNN anton.debner@aalto.fi vesa.hirvisalo@aalto.fi processing. Author Keywords Computation acceleration; GPU; deep learning ACM Classification Keywords D.4.8 [Performance]: Simulation; I.2.9 [Robotics]: Autonomous vehicles; I.3.7 [Three-Dimensional Graphics and Realism]: Virtual reality Introduction In this paper, we address the usage of accelerators in ve- hicular AI (Artificial Intelligence) systems and in the simula- tors that are needed in the development of such systems. The recent development of AI system is enabling many new Convolutional Neural Net- applications including autonomous driving of motor vehi- software [5] together with deep learning based inference on works (CNN) are a specific cles on public roads. Many of such systems process sen- TensorFlow [6]. Our measurements show the basic viability class of neural networks that sor data related to environment perception in real-time, be- of the hybrid simulation approach, but they also underline are often used in deep form cause they trigger actions which have latency requirements. -
Unified Inference and Training at the Edge
Unified Inference and Training at the Edge By Linley Gwennap Principal Analyst October 2020 www.linleygroup.com Unified Inference and Training at the Edge By Linley Gwennap, Principal Analyst, The Linley Group As more edge devices add AI capabilities, some applications are becoming increasingly complex. Wearables and other IoT devices often have multiple sensors, requiring different neural networks for each sensor, or they may use a single complex network to combine all the input data, a tech- nique called sensor fusion. Others implement on-device training to customize the application. The GPX-10 processor can handle these advanced AI applications while keeping power to a minimum. Ambient Scientific sponsored this white paper, but the opinions and analysis are those of the author. Introduction As more IoT products implement AI inferencing on the device, some applications are becoming increasingly complex. Instead of just a single sensor, they may have several, such as a wearable device that has accelerometer, pulse rate, and temperature sensors. Each sensor may require a different neural network, or a single complex network can combine all the input data, a technique called sensor fusion. A microcontroller (e.g., Cortex-M) or DSP can handle a single sensor, but these simple cores are inefficient for more complex IoT applications. Training introduces additional complication to edge devices. Today’s neural networks are trained in the cloud using generic data from many users. This approach takes advan- tage of the massive compute power in cloud data centers, but it creates a one-size-fits-all AI model. The trained model can be distributed to many devices, but even if each device performs the inferencing, the model performs the same way for all users. -
Low-Power Ultra-Small Edge AI Accelerators for Image Recog- Nition with Convolution Neural Networks: Analysis and Future Directions
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2021 doi:10.20944/preprints202107.0375.v1 Review Low-power Ultra-small Edge AI Accelerators for Image Recog- nition with Convolution Neural Networks: Analysis and Future Directions Weison Lin 1, *, Adewale Adetomi 1 and Tughrul Arslan 1 1 Institute for Integrated Micro and Nano Systems, University of Edinburgh, Edinburgh EH9 3FF, UK; [email protected]; [email protected] * Correspondence: [email protected] Abstract: Edge AI accelerators have been emerging as a solution for near customers’ applications in areas such as unmanned aerial vehicles (UAVs), image recognition sensors, wearable devices, ro- botics, and remote sensing satellites. These applications not only require meeting performance tar- gets but also meeting strict reliability and resilience constraints due to operations in harsh and hos- tile environments. Numerous research articles have been proposed, but not all of these include full specifications. Most of these tend to compare their architecture with other existing CPUs, GPUs, or other reference research. This implies that the performance results of the articles are not compre- hensive. Thus, this work lists the three key features in the specifications such as computation ability, power consumption, and the area size of prior art edge AI accelerators and the CGRA accelerators during the past few years to define and evaluate the low power ultra-small edge AI accelerators. We introduce the actual evaluation results showing the trend in edge AI accelerator design about key performance metrics to guide designers on the actual performance of existing edge AI acceler- ators’ capability and provide future design directions and trends for other applications with chal- lenging constraints. -
Tegra Linux Driver Package
TEGRA LINUX DRIVER PACKAGE RN_05071-R32 | March 18, 2019 Subject to Change 32.1 Release Notes RN_05071-R32 Table of Contents 1.0 About this Release ................................................................................... 3 1.1 Login Credentials ............................................................................................... 4 2.0 Known Issues .......................................................................................... 5 2.1 General System Usability ...................................................................................... 5 2.2 Boot .............................................................................................................. 6 2.3 Camera ........................................................................................................... 6 2.4 CUDA Samples .................................................................................................. 7 2.5 Multimedia ....................................................................................................... 7 3.0 Top Fixed Issues ...................................................................................... 9 3.1 General System Usability ...................................................................................... 9 3.2 Camera ........................................................................................................... 9 4.0 Documentation Corrections ..................................................................... 10 4.1 Adaptation and Bring-Up Guide ............................................................................ -
Survey and Benchmarking of Machine Learning Accelerators
1 Survey and Benchmarking of Machine Learning Accelerators Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, and Jeremy Kepner MIT Lincoln Laboratory Supercomputing Center Lexington, MA, USA freuther,pmichaleas,michael.jones,vijayg,sid,[email protected] Abstract—Advances in multicore processors and accelerators components play a major role in the success or failure of an have opened the flood gates to greater exploration and application AI system. of machine learning techniques to a variety of applications. These advances, along with breakdowns of several trends including Moore’s Law, have prompted an explosion of processors and accelerators that promise even greater computational and ma- chine learning capabilities. These processors and accelerators are coming in many forms, from CPUs and GPUs to ASICs, FPGAs, and dataflow accelerators. This paper surveys the current state of these processors and accelerators that have been publicly announced with performance and power consumption numbers. The performance and power values are plotted on a scatter graph and a number of dimensions and observations from the trends on this plot are discussed and analyzed. For instance, there are interesting trends in the plot regarding power consumption, numerical precision, and inference versus training. We then select and benchmark two commercially- available low size, weight, and power (SWaP) accelerators as these processors are the most interesting for embedded and Fig. 1. Canonical AI architecture consists of sensors, data conditioning, mobile machine learning inference applications that are most algorithms, modern computing, robust AI, human-machine teaming, and users (missions). Each step is critical in developing end-to-end AI applications and applicable to the DoD and other SWaP constrained users. -
Efficient Management of Scratch-Pad Memories in Deep Learning
Efficient Management of Scratch-Pad Memories in Deep Learning Accelerators Subhankar Pal∗ Swagath Venkataramaniy Viji Srinivasany Kailash Gopalakrishnany ∗ y University of Michigan, Ann Arbor, MI IBM TJ Watson Research Center, Yorktown Heights, NY ∗ y [email protected] [email protected] fviji,[email protected] Abstract—A prevalent challenge for Deep Learning (DL) ac- TABLE I celerators is how they are programmed to sustain utilization PERFORMANCE IMPROVEMENT USING INTER-NODE SPM MANAGEMENT. Incep Incep Res Multi- without impacting end-user productivity. Little prior effort has Alex VGG Goog SSD Res Mobile Squee tion- tion- Net- Head Geo been devoted to the effective management of their on-chip Net 16 LeNet 300 NeXt NetV1 zeNet PTB v3 v4 50 Attn Mean Scratch-Pad Memory (SPM) across the DL operations of a 1 SPM 1.04 1.19 1.94 1.64 1.58 1.75 1.31 3.86 5.17 2.84 1.02 1.06 1.76 Deep Neural Network (DNN). This is especially critical due to 1-Step 1.04 1.03 1.01 1.10 1.11 1.33 1.18 1.40 2.84 1.57 1.01 1.02 1.24 trends in complex network topologies and the emergence of eager execution. This work demonstrates that there exists up to a speedups of 12 ConvNets, LSTM and Transformer DNNs [18], 5.2× performance gap in DL inference to be bridged using SPM management, on a set of image, object and language networks. [19], [21], [26]–[33] compared to the case when there is no We propose OnSRAM, a novel SPM management framework SPM management, i.e.