Section a Pages 1 to 9 for Ann Rpt 2016
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity, Abundance, and Distribution of Wood-Decay Fungi in Major Parks of Hong Kong
Article Diversity, Abundance, and Distribution of Wood-Decay Fungi in Major Parks of Hong Kong Shunping Ding 1,2,* , Hongli Hu 2,3 and Ji-Dong Gu 2,4,* 1 Wine and Viticulture, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA 2 Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China; [email protected] 3 Ministry of Agriculture Key Laboratory of Subtropical Agro-Biological Disaster and Management, Fujian Agriculture and Forestry University, Fuzhou 350002, China 4 Environmental Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou 515041, China * Correspondence: [email protected] (S.D.); [email protected] (J.-D.G.) Received: 15 August 2020; Accepted: 21 September 2020; Published: 24 September 2020 Abstract: Wood-decay fungi are one of the major threats to the old and valuable trees in Hong Kong and constitute a main conservation and management challenge because they inhabit dead wood as well as living trees. The diversity, abundance, and distribution of wood-decay fungi associated with standing trees and stumps in four different parks of Hong Kong, including Hong Kong Park, Hong Kong Zoological and Botanical Garden, Kowloon Park, and Hong Kong Observatory Grounds, were investigated. Around 4430 trees were examined, and 52 fungal samples were obtained from 44 trees. Twenty-eight species were identified from the samples and grouped into twelve families and eight orders. Phellinus noxius, Ganoderma gibbosum, and Auricularia polytricha were the most abundant species and occurred in three of the four parks. -
Published Version
8 Damage to stems, branches and twigs of broadleaf woody plants M. Kacprzyk, I. Matsiakh, D.L. Musolin, A.V. Selikhovkin, Y.N. Baranchikov, D. Burokiene, T. Cech, V. Talgø, A.M. Vettraino, A. Vannini, A. Zambounis and S. Prospero 8.1. Root and stem rot Description: External, aboveground symptoms on individual trees are variable and may include suppressed growth, reduced vigour, discoloured or smaller than average-sized foliage, premature leaf shedding, branch dieback, crown thinning, bleeding lesions on the lower stem and root collar, wilting and eventual death of trees. It is common for root and butt rots to remain unnoticed until annual or perennial (conks) fruiting bodies appear on branches or the main trunk. Possible cause of damage: Oomycetes (water moulds: Figs. 8.1.1 – 8.1.3); Fungi: Basidiomycota (Figs. 8.1.4 – 8.1.7) and Ascomycota (Fig. 8.1.8). Fig. 8.1.1. Root collar of European beech Fig. 8.1.2. Stem of grey alder (Alnus (Fagus sylvatica) with a bleeding bark lesion incana) with bark lesion caused by an caused by an Oomycete (Phytophthora Oomycete (Phytophthora x alni). Tyrol, cambivora). Bavaria, Germany, TC. Austria, TC. ©CAB International 2017. Field Guide for the Identification of Damage on Woody Sentinel Plants (eds A. Roques, M. Cleary, I. Matsiakh and R. Eschen) Damage to stems, branches and twigs of broadleaf woody plants 105 Fig. 8.1.3. European chestnut (Castanea Fig. 8.1.4. Collar of European beech sativa) showing bark lesion caused by an (Fagus sylvatica) with fungal fruiting Oomycete (Phytophthora cinnamomi). bodies (Polyporus squamosus). -
TORTS Newsletter of the Troop of Reputed Tortricid Systematists
Volume 6 13 July 2005 Issue 2 TORTS Newsletter of the Troop of Reputed Tortricid Systematists TORTRICIDAE OF TAIWAN “I ELEN” MEETING IN NOW ON-LINE CAMPINAS, BRAZIL According to Shen-Horn Yen, the on-line I ELEN (I Encontro Sobre Lepidoptera checklist of the Lepidoptera of Taiwan has been Neotropicais), roughly translated as the “First uploaded to the "Taiwan Biodiversity Meeting On The Neotropical Lepidoptera,” was Information Network" (http://taibnet.sinica. held in Campinas, Brazil, 17-21 April 2005. edu.tw/english/home.htm). A recently revised Hosted and organized by two Brazilian and updated checklist of the Tortricidae of lepidopterists, Andre Victor Lucci Freitas and Taiwan can be found there. The literature and Marcelo Duarte, the meeting was attended by image databases are still under construction, over 200 Lepidoptera enthusiasts, primarily and Shen-Horn indicates that those will be Latin Americans, over half of which were completed within about 2 years. students. The large number of young people _____________________________________ was in stark contrast to most North American Lepidoptera meetings in which the crowd is TORTRICID CATALOG dominated by geriatric (or nearly geriatric, as in my case) professionals, with student AVAILABLE FROM participation about 20-30%. Among the APOLLO BOOKS attendees were about 8-10 North Americans and about 5-6 Europeans, with the remainder of the World Catalogue of Insects, Volume 5, audience and presenters from Central and South Lepidoptera, Tortricidae is now available from America, with nearly every Latin American Apollo Books. The catalog treats over 9,100 country represented by one or more participants. valid species and over 15,000 names; it is 741 The talks, presented mostly in Portuguese pages in length. -
BIOLOGICAL FIELD STATION Cooperstown, New York
BIOLOGICAL FIELD STATION Cooperstown, New York 50th ANNUAL REPORT 2017 Photo credit: Holly Waterfield STATE UNIVERSITY OF NEW YORK COLLEGE AT ONEONTA OCCASIONAL PAPERS PUBLISHED BY THE BIOLOGICAL FIELD STATION No. 1. The diet and feeding habits of the terrestrial stage of the common newt, Notophthalmus viridescens (Raf.). M.C. MacNamara, April 1976 No. 2. The relationship of age, growth and food habits to the relative success of the whitefish (Coregonus clupeaformis) and the cisco (C. artedi) in Otsego Lake, New York. A.J. Newell, April 1976. No. 3. A basic limnology of Otsego Lake (Summary of research 1968-75). W. N. Harman and L. P. Sohacki, June 1976. No. 4. An ecology of the Unionidae of Otsego Lake with special references to the immature stages. G. P. Weir, November 1977. No. 5. A history and description of the Biological Field Station (1966-1977). W. N. Harman, November 1977. No. 6. The distribution and ecology of the aquatic molluscan fauna of the Black River drainage basin in northern New York. D. E Buckley, April 1977. No. 7. The fishes of Otsego Lake. R. C. MacWatters, May 1980. No. 8. The ecology of the aquatic macrophytes of Rat Cove, Otsego Lake, N.Y. F. A Vertucci, W. N. Harman and J. H. Peverly, December 1981. No. 9. Pictorial keys to the aquatic mollusks of the upper Susquehanna. W. N. Harman, April 1982. No. 10. The dragonflies and damselflies (Odonata: Anisoptera and Zygoptera) of Otsego County, New York with illustrated keys to the genera and species. L.S. House III, September 1982. -
Microlepidoptera.Hu Redigit: Fazekas Imre
Microlepidoptera.hu Redigit: Fazekas Imre 5 2012 Microlepidoptera.hu A magyar Microlepidoptera kutatások hírei Hungarian Microlepidoptera News A journal focussed on Hungarian Microlepidopterology Kiadó—Publisher: Regiograf Intézet – Regiograf Institute Szerkesztő – Editor: Fazekas Imre, e‐mail: [email protected] Társszerkesztők – Co‐editors: Pastorális Gábor, e‐mail: [email protected]; Szeőke Kálmán, e‐mail: [email protected] HU ISSN 2062–6738 Microlepidoptera.hu 5: 1–146. http://www.microlepidoptera.hu 2012.12.20. Tartalom – Contents Elterjedés, biológia, Magyarország – Distribution, biology, Hungary Buschmann F.: Kiegészítő adatok Magyarország Zygaenidae faunájához – Additional data Zygaenidae fauna of Hungary (Lepidoptera: Zygaenidae) ............................... 3–7 Buschmann F.: Két új Tineidae faj Magyarországról – Two new Tineidae from Hungary (Lepidoptera: Tineidae) ......................................................... 9–12 Buschmann F.: Új adatok az Asalebria geminella (Eversmann, 1844) magyarországi előfordulásához – New data Asalebria geminella (Eversmann, 1844) the occurrence of Hungary (Lepidoptera: Pyralidae, Phycitinae) .................................................................................................. 13–18 Fazekas I.: Adatok Magyarország Pterophoridae faunájának ismeretéhez (12.) Capperia, Gillmeria és Stenoptila fajok új adatai – Data to knowledge of Hungary Pterophoridae Fauna, No. 12. New occurrence of Capperia, Gillmeria and Stenoptilia species (Lepidoptera: Pterophoridae) ………………………. -
Bulletin 132
fj/^ (U^^tj^.J-'^'^^^^ ^^^^ S>nTHSONI.\N INSTITTTION UNITED STATES NATIONAL MUSEUM Bulletin 132 REVISION OF THE NORTH AMERICAN MOTHS OF THE SUBFAMILIES LASPEYRESIINAE AND OLETHREUTINAE BY CARL HEINRICH Of the Bureau of Entomology, United St^es Deparimirtt of Agriculture WASHINGTON GOVERNMENT PRINTING OFFICE 1926 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 75 CENTS PER COPY — ADVERTISEMENT The scientific publications of the National Museum consist of two series Proceedings and Bulletins. The Proceedings, the first volume of which was issued in 1878, are intended primarily as a medium for the publication of original papers based on the collections of the National Museum, setting forth newly acquired facts in biology, anthropology, and geology derived therefrom, or containing descriptions of new forms and revisions of limited groups. One or two volumes are completed annually and copies of each paper, in pamphlet form, are dis- tributed as soon as published to libraries and scientific organizations and to specialists and others interested in the different subjects. The dates at which these separate papers are published are recorded in the table of contents of the volume. The Bulletins^ the first of which was issued in 1875, consist of a series of separate organizations comprising chiefly monographs of large zoological groups and other general systematic treatises (occa- sionally in several volumes), faunal works, reports of expeditions, and catalogues of type specimens, special collections, etc. The majority of the volumes are octavos, but a quarto size has been adopted in a few instances in which large plates were regarded as indispensable. -
Města Brna – Historie a Současnost
2020 Motýli (Lepidoptera) města Brna – historie a současnost Zdeněk Laštůvka, Aleš Laštůvka af.mendelu.cz 2020 Zdeněk Laštůvka, Aleš Laštůvka Motýli (Lepidoptera) města Brna – historie a současnost Vědečtí recenzenti: Ing. Jan Liška, Výzkumný ústav lesního hospodářství a myslivosti, v.v.i., Jíloviště-Strnady Ing. Jan Šumpich, Národní muzeum, Praha Možná citace: Laštůvka Z. & Laštůvka A., 2020: Motýli (Lepidoptera) města Brna – historie a současnost. Mendelova univerzita v Brně, Brno, 120 s. © Zdeněk Laštůvka & Aleš Laštůvka, 2020 © Mendelova Univerzita v Brně, Zemědělská 1, 613 00 Brno ISBN 978-80-7509-750-7 (Print) ISBN 978-80-7509-769-9 (On-line) Motýli (lepidoptera) Města Brna – historie a současnost OBSAH Abstrakt . 4 Abstract ...................................................................4 1 Úvod ....................................................................5 2 Historie studia motýlů na Brněnsku ........................................6 2.1 Nejstarší badatelé . 6 2.2 První polovina 20. století ................................................... 6 2.3 Poválečné období.......................................................... 7 2.4 Současnost ................................................................ 7 3 Přírodní poměry, proměny města a biotopy .................................8 4 Metodika ...............................................................13 5 Celkové výsledky . 17 6 Přehled zjištěných druhů.................................................20 7 Změny v průběhu času ...................................................53 -
Bioblitz Results
BioBlitz Results Hills of Gold May 16th and 17th 2015 RESULTS FROM THE 2015 HILLS OF GOLD BIODIVERSITY SURVEY JOHNSON COUNTY, INDIANA Compiled from the Science Team Reports Assembled by Don Ruch (Indiana Academy of Science) Table of Contents Title Page………………………………………………………………………….………… 1 Table of Contents…………………………………………………………………………… 2 General Introduction ……..………………………………………………………..……….. 3-4 Maps…………………………………………………………………………………….…... 5-6 History of the Hills of Gold Conservation Area ……………………….……………….….. 7-10 Geology Report – Hills of Gold Conservation Area …………………….……………….… 10-30 Results Title Page …………………………………………………………………………... 31 Bat Team Results ..………………………………….….………………………..…………. 32-34 Beetle Team Results ………………………………………………...……………………… 35-37 Bird Team Results ……………………………………..…………………………………… 38-43 Fish Team Results ……………………………………………………….…………………. 44-45 Freshwater Mussel Team Results …………………………………………………………... 46 Herpetofauna Team Results ……………………………………………............................... 47-52 Mammal Team Results ……………………………………………………………………… 53-54 Moth, Singing Insect, and Non-target Arthropod Species Team Results ………………….. 55-57 Mushroom, Fungi, and Slime Mold Team Results …………………………………………. 58-62 Non-vascular Plants (Bryophyta) Team Results ……………………………………………. 63-66 Snail-killing Flies (Sciomyzidae) Team Results ……………………………………………. 67-68 Spider Team Results ………………………………………………………………………… 69-73 Vascular Plant Team Results …………………………..……………………………………. 74-97 Biodiversity Survey Participants ……………………………………………………………. 98-100 Biodiversity Survey Sponsors -
Fungal Survey of the Wye Valley Woodlands Special Area of Conservation (SAC) Alan Lucas Freelance Ecologist
Fungal Survey of the Wye Valley Woodlands Special Area of Conservation (SAC) Alan Lucas Freelance Ecologist NRW Evidence Report No 242 Date www.naturalresourceswales.gov.uk About Natural Resources Wales Natural Resources Wales’ purpose is to pursue sustainable management of natural resources. This means looking after air, land, water, wildlife, plants and soil to improve Wales’ well-being, and provide a better future for everyone. Evidence at Natural Resources Wales Natural Resources Wales is an evidence based organisation. We seek to ensure that our strategy, decisions, operations and advice to Welsh Government and others are underpinned by sound and quality-assured evidence. We recognise that it is critically important to have a good understanding of our changing environment. We will realise this vision by: Maintaining and developing the technical specialist skills of our staff; Securing our data and information; Having a well resourced proactive programme of evidence work; Continuing to review and add to our evidence to ensure it is fit for the challenges facing us; and Communicating our evidence in an open and transparent way. This Evidence Report series serves as a record of work carried out or commissioned by Natural Resources Wales. It also helps us to share and promote use of our evidence by others and develop future collaborations. However, the views and recommendations presented in this report are not necessarily those of NRW and should, therefore, not be attributed to NRW. www.naturalresourceswales.gov.uk Page 2 Report -
Common Tree Decays
Evolving Urban Landscapes: Trees, Bees and IPM Strategies, City of Seattle 2018 IPM Seminars Common Tree Decays presented by, Bess Bronstein Horticultural Consultant & ISA Certified Arborist [email protected] Photo: Jay W. Pscheidt, 2018 Plant Pathogenic Fungi Symptoms Susan K. Hagle, USDA Forest Service, Bugwood.org • cankers • galls • leaf spots • leaf blotches • root rots • stem rots • wilts • deformity Signs • mycelia • spores • fruiting bodies Robert L. Anderson, USDA Forest Service, Bugwood.org Fruiting Bodies https://en.wikipedia.org/wiki/Lycoperdon_perlatum puffballs Laura Sims, 2012, PNW Disease Handbook mushrooms conks Magickcanoe.com Fungi Characteristics hypha (pl., hyphae) mycelium (pl., mycelia) • made up of hyphae, which form mycelia • cell wall is mostly chitin, sometimes has cellulose • reproduce by spores (sexual/asexual), budding (asexual), and fragmentation (asexual) Fungi Characteristics http://biology-pictures.blogspot.com Plant Pathogenic Fungi How do they survive? • survival spores • mycelial pieces • fruiting bodies (mushrooms, brackets, conks) • saprophytes in plant debris How do they spread? • infected plant debris • infested seeds • spore dispersal in air • splashing water • tools • insects https://en.wikipedia.org/wiki/Armillaria_mellea Basidiomycete Life Cycle http://www.cals.ncsu.edu Basidiospores Image courtesy of Dr C. Jeffree Wood Decay Fungi white rot: fungus decays cellulose and lignin (decayed wood appears bleached and is often spongy or stringy) brown rot: fungus decays cellulose, but leaves lignin -
Climate Change and Shifts in the Distribution of Moth Species in Finland, with a Focus on the Province of Kainuu
14 Climate Change and Shifts in the Distribution of Moth Species in Finland, with a Focus on the Province of Kainuu Juhani H. Itämies1, Reima Leinonen2 and V. Benno Meyer-Rochow3,4 1Kaitoväylä 25 A 6; SF-90570 Oulu; 2Centre for Economic Development, Transport and the Environment for Kainuu, Kajaani, 3Faculty of Engineering and Sciences, Jacobs University Bremen, Research II, D-28759 4Bremen and Department of Biology; Oulu University; SF-90014 Oulu, 1,2,3Finland 4Germany 1. Introduction Distributions and abundances of insect species depend on a variety of factors, but whether we focus on food plants and availability, environmental niches and shelters, predators or parasites, by far the most important limiting factor is climate. Shifts in insect community structure have successfully been correlated with glacial and inter-glacial periods (Coope 1995; Ashworth 1997; Morgan 1997), but have also attracted the attention of researchers concerned with current climate trends. Parmesan (2001) and Forester et al. (2010) examined examples from North America and Europe and emphasized that predictions of responses to a warmer climate must incorporate observations on habitat loss or alteration, land management and dispersal abilities of the species in question. For the United Kingdom, Hill et al. (2001) have summarized data on changes in the distribution of specifically three butterfly species (Pararge aegeria, Aphantopus hyperantus, and Pyronia tithonus). These authors report that the three species have been shifting northward since the 1940s and they present maps of simulated butterfly distributions for the period 2070-2099, based on the changes seen since the 1940s. According to that scenario Iceland will see some colonies of these three species in less than a hundred years. -
Xylariales, Ascomycota), Designation of an Epitype for the Type Species of Iodosphaeria, I
VOLUME 8 DECEMBER 2021 Fungal Systematics and Evolution PAGES 49–64 doi.org/10.3114/fuse.2021.08.05 Phylogenetic placement of Iodosphaeriaceae (Xylariales, Ascomycota), designation of an epitype for the type species of Iodosphaeria, I. phyllophila, and description of I. foliicola sp. nov. A.N. Miller1*, M. Réblová2 1Illinois Natural History Survey, University of Illinois Urbana-Champaign, Champaign, IL, USA 2Czech Academy of Sciences, Institute of Botany, 252 43 Průhonice, Czech Republic *Corresponding author: [email protected] Key words: Abstract: The Iodosphaeriaceae is represented by the single genus, Iodosphaeria, which is composed of nine species with 1 new taxon superficial, black, globose ascomata covered with long, flexuous, brown hairs projecting from the ascomata in a stellate epitypification fashion, unitunicate asci with an amyloid apical ring or ring lacking and ellipsoidal, ellipsoidal-fusiform or allantoid, hyaline, phylogeny aseptate ascospores. Members of Iodosphaeria are infrequently found worldwide as saprobes on various hosts and a wide systematics range of substrates. Only three species have been sequenced and included in phylogenetic analyses, but the type species, taxonomy I. phyllophila, lacks sequence data. In order to stabilize the placement of the genus and family, an epitype for the type species was designated after obtaining ITS sequence data and conducting maximum likelihood and Bayesian phylogenetic analyses. Iodosphaeria foliicola occurring on overwintered Alnus sp. leaves is described as new. Five species in the genus form a well-supported monophyletic group, sister to thePseudosporidesmiaceae in the Xylariales. Selenosporella-like and/or ceratosporium-like synasexual morphs were experimentally verified or found associated with ascomata of seven of the nine accepted species in the genus.