FPGA Virtualization 4

Total Page:16

File Type:pdf, Size:1020Kb

FPGA Virtualization 4 Accelerate Your AI cloud With SUSE Linux Enterprise Server: A Virtualization Perspective DEV-1158 Liang Yan, Senior Virtualization Engineer [email protected] 1 Outline 1. Background Cloud & AI Hardware Accelerator 2. GPU virtualization 3. FPGA virtualization 4. AI chips virtualization 5. Conclusion 6. Q&A 2 Liang Yan Virtualization Area for 8 years – IO Virtualization(GPU, Network) – Memory Virtualization Optimization New Arch (ARM64/S390x) Work at home for 3 years – Louisville Kentucky, USA 3 Background 4 Cloud Cloud is a default option today. – Public Cloud: 4-50 nodes is a good range – Private Cloud: – Hybrid Cloud 5 AI AI is everywhere today. AI / Machine Learning / Deep Learning Autonomous vehicles: Tesla, Uber, Waymo Healthcare CoronaVirus Finance Hedge Founding, four meltdown Electronic Commerce: Delivery Transport, Recommend Sale Language Translations Face/Image/Sound Recognition 6 AI And Cloud Gartner Report on Cloud market: 2017: 145 billions 2018: 175 billions 2019: 206 billions Gartner Report on AI market: 7 AI https://www.zhihu.com/question/57770020 8 Deep Learning Deep Learning is a branch of machine learning in which the models (typically neural networks) are graphed like “deep” structures with multiple layers. Deep learning is used to learn features and patterns that best represent data. It achieves an algorithm not designed by human. The more data and layer it has, the more accurate results it will get. Artificial neural networks DNN => CNN => RNN Model 9 Deep Learning Image source: Shutterstock 10 Deep Learning People actually do not develop model directly, A lot of Frameworks exist today! •TensorFlow • PyTorch • MxNet • Keras • Theano Workflow : Framework IR(Intermediate Representation) Backend API Backend Backend support: Library: CUDA/OpenCL/Native Implementation Vendor: GPU, FPGA, TPU 11 We Need An AI Cloud... Because whole AI stack is complicated and setup is painful Because it is usually integrated with other exist systems Because it usually comes with huge data But… We still want everything work smoothly and efficiently 12 Deep Learning / Neural Network GEMM, General Matrix to Matrix Multiplication for(i = 0; i < n; i++) { for(j = 0; j < n; j++) { C[i][j] = 0; for(k = 0; k < n; k++) C[i][j] += A[i][k] * B[k][j]; } } Think about millions of layers and parameters 13 AI Accelerator GPUs ● Nvidia ● AMD ● Intel FPGA: Field Programmable Gate Array Software Algorithm Oriented Xilinux, Altera(acquired by intel in 2015 as $16.7 B) Support OpenCL and HSL(High Level Synthesis) 2011, Altera introduced OpenCL for FPGA, CNN algorithms AI chip(ASIC-Application Specific Integrated Circuits) ASIC specific for DL algorithms 14 AI Cloud GPU/FPGA As a Service GPU: Google Colaboratory Paperspace Gradient FloydHub Workspace Lambda GPU Cloud AWS Deep Learning AMIs GCP Deep Learning VM Images FPGA: AWS+Xlinux Ali Cloud + Intel Altera MS + Intel Altera AI chips are more used in Mobile/Edge end for inference 15 GPU Virtualization 16 Full GPU Virtualization As a cloud resident, it should have moderate multiplexing capability Run native graphics driver in VM Achieve good performance ● Split Time Slices Framebuffer memory ● Isolate Give a neat access between VM and Host Physical Device IOMMU/Mdev and VFIO DMA Interrupt ● Schedule Efficient and Robust Pretty fix for AMD, More flexible for NVIDIA, RR, BOND 17 Full GPU Virtualization Nvidia Mdev + vGPU ~80% Tesla Series: Volta Pascal Maxwell M6 M10 M60 P4 P6 P40 P100 V100 Tensor processor, cuDNN Inference production: Jetson Nano, Xavier, TX2 http://www.nvidia.com/object/grid-certified-servers.html AMD SRIOV + vGPU ~90% less code Radeon Instinct MI25, MI50 ROCm https://lists.freedesktop.org/archives/amd-gfx/2016-December/004075.html Intel Mdev + vGPU ~80% share VRAM Haswell(3VMs) Broadwell(7VMs) Skylake, Kaby Lake Dedicated GPU next year OpenVINO(Open Visual Inferencing and Neural Network Optimization) https://github.com/intel/gvt-linux/wiki 18 Full GPU Virtualization - SUSE SUSE Status - Intel KVMGT technical ready(Evaluation Version is ready) SLE12-SP4~ SLE15~ - Nvidia vGPU technical ready(Evaluation Version is ready) SLE15~ SLE12-SP5~ - AMD MxGPU on going (Trial is available) SLE12-SP3~ SLE15~ - Even not official support yet, Setup consultant/assistant is available - AI VM image service is available 19 Full GPU Virtualization - SUSE SUSE Status GPU virtualization for CAASP(Container as a service platform) - cuda-docker-2.0 - vGPU for Kata (POC) - AI container image service is available 20 FPGA Virtualization 21 FPGA: Field Programmable Gate Array xilinux announced the first fpga(xc2000) in 1985. It was used as prototype development by HDL(Verilog/VHDL). Now start to be used as complicate situation, like DL. https://medium.com/@ckyrkou/what-are-fpgas-c9121ac2a7ae 22 FPGA Virtualization FPGA virtualization is a technique that provides an abstraction to the FPGA hardware. Three main directions: Overlays: a programmable architecture on top of an FPGA Dynamic modules: PR(Partial Reconfiguration) Intel Altera Stratix 10 Xilinx UltraScale FPGA resource pool: MS catapult project Multiple Nodes, Cloud Oriented Catapult Project V3 Bing Network => NN FPGA resources pool 5670 servers with FPGAs over 15 countries 23 FPGA Virtualization SUSE - Working on POC - Start work on Intel FPGA Upstream - Linux kernel FPGA subsystem - Xilinx contributes Alveo FPGA Accelerator Drivers - Vendor keep releasing new hardware It’s pretty new, but definitely an alternative option for some specific customer who want to use it in a private environment. 24 AI Chips 25 26 AI Chips Today Designless-Fabless: Software Define Chip. Optimization is more specific, cost of hardware implementation is even cheaper than software way. 1. Mostly for Deep Learning/Neural Network MatrixMultply 2. Mostly for inference, Mobil/Edge End 3. Mostly for specific usage, no general platform like CUDA 27 AI Chips Future Linux Hardware Accelerator Subsystem ARM+ASIC Need a general platform(ARM NN) AI Chips Software ecosystem AI Chips Virtualization 28 SUSE Effort Most of the hardware are not public, like TPU. We keep an close eye on upstream and vendors, try to enable as much as possible. 1. PCIE AI Chips 2. AI sticks 3. Some ARM NPU board Enablement Jetson Nano VIM Pro3 Google Edge TPU Sophon Edge Working on POC for Virtualization Scenario, currently are passthrough only. 29 Conclusion 30 Heterogeneous Architecture Hardware Acceleration: Work load is so heavy that computing load is even higher than data movement and hardware latency. Hardware implementation for software algorithm New IO virtualization trends: (AWS Nitro) Device is focus on virtualization implementation(resource split, kernel bypass) Workload is re-assigned to Backend driver. Data plane between virtualization stack is much simple today(freeway). 31 SUSE Focus 1. Best Bridge: Keep close with Hardware Vendors and Customers: Enable New Feature, Official Tech Support, Friendly User Experience 2. Embedded Backend of Framework in our production Best OS above AI hardware Accelerators, provide a engine for AI stack 3. Focus on bottleneck, provide the best performance always Split Compute Task automatically Advanced IO virtualization techniques 32 Questions? Thank you for the time! Special Thanks to Raj Meel (Global Product Marketing Manager ) 34 General Disclaimer This document is not to be construed as a promise by any participating company to develop, deliver, or market a product. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. SUSE makes no representations or warranties with respect to the contents of this document, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. The development, release, and timing of features or functionality described for SUSE products remains at the sole discretion of SUSE. Further, SUSE reserves the right to revise this document and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes. All SUSE marks referenced in this presentation are trademarks or registered trademarks of SUSE, LLC, Inc. in the United States and other countries. All third-party trademarks are the property of their respective owners. 35.
Recommended publications
  • Accenture AI Inferencing in Action
    POV POV PUT YOUR AI SOLUTION ON STEROIDS POV PUT YOUR AI SOLUTION ON STEROIDS POINT OF VIEW POV PUT YOUR AI SOLUTION ON STEROIDS POV MATCH GPU PERFORMANCE AT HALF THE COST FOR AI INFERENCE WORKLOADS Proven CPU-based solution from Accenture and Intel boosts the performance and lowers the cost of AI inferencing by enabling an easy-to-deploy, scalable, and cost-efficient architecture AI INFERENCING—THE NEXT CRITICAL STEP AFTER AI ALGORITHM TRAINING Artificial Intelligence (AI) solutions include three main functions—identifying and preparing data, training an artificial intelligence algorithm, and using the algorithm for inferring new outcomes. Each function requires different compute recourses and deployment architecture. The choices of infrastructure components and technologies significantly impact the performance and costs associated with deploying an end-to-end AI solution. Data scientists and machine learning (ML) engineers spend significant time devising the right architecture for all stages of the AI pipeline. MODEL DATA TRAINING AND SCORING AND PREPARATION OPTIMIZATION INFERENCE Once an AI computer/algorithm has been trained through traditional or deep learning techniques, it can deliver value by interpreting data (i.e., inferring). Through inference, an AI algorithm can analyze data to: • Differentiate between various items • Identify trends and patterns that can be leveraged during decision-making • Reveal opportunities and possible solutions • Recognize voices, faces, images, etc. POV PUT YOUR AI SOLUTION ON STEROIDS POV Revealing hidden As we look to the future, AI inference will become increasingly possibilities— important to businesses operating in all segments—from health care to financial services to aerospace. And as the reliance on AI inference continues to grow, so Accenture AIP, does the importance of choosing the right AI infrastructure to support it.
    [Show full text]
  • GPU Developments 2018
    GPU Developments 2018 2018 GPU Developments 2018 © Copyright Jon Peddie Research 2019. All rights reserved. Reproduction in whole or in part is prohibited without written permission from Jon Peddie Research. This report is the property of Jon Peddie Research (JPR) and made available to a restricted number of clients only upon these terms and conditions. Agreement not to copy or disclose. This report and all future reports or other materials provided by JPR pursuant to this subscription (collectively, “Reports”) are protected by: (i) federal copyright, pursuant to the Copyright Act of 1976; and (ii) the nondisclosure provisions set forth immediately following. License, exclusive use, and agreement not to disclose. Reports are the trade secret property exclusively of JPR and are made available to a restricted number of clients, for their exclusive use and only upon the following terms and conditions. JPR grants site-wide license to read and utilize the information in the Reports, exclusively to the initial subscriber to the Reports, its subsidiaries, divisions, and employees (collectively, “Subscriber”). The Reports shall, at all times, be treated by Subscriber as proprietary and confidential documents, for internal use only. Subscriber agrees that it will not reproduce for or share any of the material in the Reports (“Material”) with any entity or individual other than Subscriber (“Shared Third Party”) (collectively, “Share” or “Sharing”), without the advance written permission of JPR. Subscriber shall be liable for any breach of this agreement and shall be subject to cancellation of its subscription to Reports. Without limiting this liability, Subscriber shall be liable for any damages suffered by JPR as a result of any Sharing of any Material, without advance written permission of JPR.
    [Show full text]
  • Persistent Memory for Artificial Intelligence
    Persistent Memory for Artificial Intelligence Bill Gervasi Principal Systems Architect [email protected] Santa Clara, CA August 2018 1 Demand Outpacing Capacity In-Memory Computing Artificial Intelligence Machine Learning Deep Learning Memory Demand DRAM Capacity Santa Clara, CA August 2018 2 Driving New Capacity Models Non-volatile memories Industry successfully snuggling large memories to the processors… Memory Demand DRAM Capacity …but we can do oh! so much more Santa Clara, CA August 2018 3 My Three Talks at FMS NVDIMM Analysis Memory Class Storage Artificial Intelligence Santa Clara, CA August 2018 4 History of Architectures Let’s go back in time… Santa Clara, CA August 2018 5 Historical Trends in Computing Edge Co- Computing Processing Power Failure Santa Clara, CA August 2018 Data Loss 6 Some Moments in History Central Distributed Processing Processing Shared Processor Processor per user Dumb terminals Peer-to-peer networks Santa Clara, CA August 2018 7 Some Moments in History Central Distributed Processing Processing “Native Signal Processing” Hercules graphics Main CPU drivers Sound Blaster audio Cheap analog I/O Rockwell modem Ethernet DSP Tightly-coupled coprocessing Santa Clara, CA August 2018 8 The Lone Survivor… Integrated graphics Graphics add-in cards …survived the NSP war Santa Clara, CA August 2018 9 Some Moments in History Central Distributed Processing Processing Phone providers Phone apps provide controlled all local services data processing Edge computing reduces latency Santa Clara, CA August 2018 10 When the Playing
    [Show full text]
  • AI Accelerator Latencies in Hybrid Vehicular Simulation
    AI Accelerator Latencies in Hybrid Vehicular Simulation Jussi Hanhirova Matias Hyyppä Abstract Aalto University Aalto University We study the use of accelerators for vehicular AI (Artifi- Espoo, Finland Espoo, Finland cial Intelligence) applications. Managing the computation jussi.hanhirova@aalto.fi juho.hyyppa@aalto.fi is complex as vehicular AI applications call for high per- formance computations in a real-time distributed environ- ment, in which low and predictable latencies are essential. We have used the CARLA simulator together with machine learning based on CNNs (Convolutional Neural Networks) in our research. In this paper, we present the latency be- Anton Debner Vesa Hirvisalo havior with GPU acceleration for CNN processing. Our ex- Aalto University Aalto University perimentation is motivated by using the simulator to find the Espoo, Finland Espoo, Finland corner cases that are demanding for the accelerated CNN anton.debner@aalto.fi vesa.hirvisalo@aalto.fi processing. Author Keywords Computation acceleration; GPU; deep learning ACM Classification Keywords D.4.8 [Performance]: Simulation; I.2.9 [Robotics]: Autonomous vehicles; I.3.7 [Three-Dimensional Graphics and Realism]: Virtual reality Introduction In this paper, we address the usage of accelerators in ve- hicular AI (Artificial Intelligence) systems and in the simula- tors that are needed in the development of such systems. The recent development of AI system is enabling many new Convolutional Neural Net- applications including autonomous driving of motor vehi- software [5] together with deep learning based inference on works (CNN) are a specific cles on public roads. Many of such systems process sen- TensorFlow [6]. Our measurements show the basic viability class of neural networks that sor data related to environment perception in real-time, be- of the hybrid simulation approach, but they also underline are often used in deep form cause they trigger actions which have latency requirements.
    [Show full text]
  • Unified Inference and Training at the Edge
    Unified Inference and Training at the Edge By Linley Gwennap Principal Analyst October 2020 www.linleygroup.com Unified Inference and Training at the Edge By Linley Gwennap, Principal Analyst, The Linley Group As more edge devices add AI capabilities, some applications are becoming increasingly complex. Wearables and other IoT devices often have multiple sensors, requiring different neural networks for each sensor, or they may use a single complex network to combine all the input data, a tech- nique called sensor fusion. Others implement on-device training to customize the application. The GPX-10 processor can handle these advanced AI applications while keeping power to a minimum. Ambient Scientific sponsored this white paper, but the opinions and analysis are those of the author. Introduction As more IoT products implement AI inferencing on the device, some applications are becoming increasingly complex. Instead of just a single sensor, they may have several, such as a wearable device that has accelerometer, pulse rate, and temperature sensors. Each sensor may require a different neural network, or a single complex network can combine all the input data, a technique called sensor fusion. A microcontroller (e.g., Cortex-M) or DSP can handle a single sensor, but these simple cores are inefficient for more complex IoT applications. Training introduces additional complication to edge devices. Today’s neural networks are trained in the cloud using generic data from many users. This approach takes advan- tage of the massive compute power in cloud data centers, but it creates a one-size-fits-all AI model. The trained model can be distributed to many devices, but even if each device performs the inferencing, the model performs the same way for all users.
    [Show full text]
  • Low-Power Ultra-Small Edge AI Accelerators for Image Recog- Nition with Convolution Neural Networks: Analysis and Future Directions
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2021 doi:10.20944/preprints202107.0375.v1 Review Low-power Ultra-small Edge AI Accelerators for Image Recog- nition with Convolution Neural Networks: Analysis and Future Directions Weison Lin 1, *, Adewale Adetomi 1 and Tughrul Arslan 1 1 Institute for Integrated Micro and Nano Systems, University of Edinburgh, Edinburgh EH9 3FF, UK; [email protected]; [email protected] * Correspondence: [email protected] Abstract: Edge AI accelerators have been emerging as a solution for near customers’ applications in areas such as unmanned aerial vehicles (UAVs), image recognition sensors, wearable devices, ro- botics, and remote sensing satellites. These applications not only require meeting performance tar- gets but also meeting strict reliability and resilience constraints due to operations in harsh and hos- tile environments. Numerous research articles have been proposed, but not all of these include full specifications. Most of these tend to compare their architecture with other existing CPUs, GPUs, or other reference research. This implies that the performance results of the articles are not compre- hensive. Thus, this work lists the three key features in the specifications such as computation ability, power consumption, and the area size of prior art edge AI accelerators and the CGRA accelerators during the past few years to define and evaluate the low power ultra-small edge AI accelerators. We introduce the actual evaluation results showing the trend in edge AI accelerator design about key performance metrics to guide designers on the actual performance of existing edge AI acceler- ators’ capability and provide future design directions and trends for other applications with chal- lenging constraints.
    [Show full text]
  • Survey and Benchmarking of Machine Learning Accelerators
    1 Survey and Benchmarking of Machine Learning Accelerators Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, and Jeremy Kepner MIT Lincoln Laboratory Supercomputing Center Lexington, MA, USA freuther,pmichaleas,michael.jones,vijayg,sid,[email protected] Abstract—Advances in multicore processors and accelerators components play a major role in the success or failure of an have opened the flood gates to greater exploration and application AI system. of machine learning techniques to a variety of applications. These advances, along with breakdowns of several trends including Moore’s Law, have prompted an explosion of processors and accelerators that promise even greater computational and ma- chine learning capabilities. These processors and accelerators are coming in many forms, from CPUs and GPUs to ASICs, FPGAs, and dataflow accelerators. This paper surveys the current state of these processors and accelerators that have been publicly announced with performance and power consumption numbers. The performance and power values are plotted on a scatter graph and a number of dimensions and observations from the trends on this plot are discussed and analyzed. For instance, there are interesting trends in the plot regarding power consumption, numerical precision, and inference versus training. We then select and benchmark two commercially- available low size, weight, and power (SWaP) accelerators as these processors are the most interesting for embedded and Fig. 1. Canonical AI architecture consists of sensors, data conditioning, mobile machine learning inference applications that are most algorithms, modern computing, robust AI, human-machine teaming, and users (missions). Each step is critical in developing end-to-end AI applications and applicable to the DoD and other SWaP constrained users.
    [Show full text]
  • Efficient Management of Scratch-Pad Memories in Deep Learning
    Efficient Management of Scratch-Pad Memories in Deep Learning Accelerators Subhankar Pal∗ Swagath Venkataramaniy Viji Srinivasany Kailash Gopalakrishnany ∗ y University of Michigan, Ann Arbor, MI IBM TJ Watson Research Center, Yorktown Heights, NY ∗ y [email protected] [email protected] fviji,[email protected] Abstract—A prevalent challenge for Deep Learning (DL) ac- TABLE I celerators is how they are programmed to sustain utilization PERFORMANCE IMPROVEMENT USING INTER-NODE SPM MANAGEMENT. Incep Incep Res Multi- without impacting end-user productivity. Little prior effort has Alex VGG Goog SSD Res Mobile Squee tion- tion- Net- Head Geo been devoted to the effective management of their on-chip Net 16 LeNet 300 NeXt NetV1 zeNet PTB v3 v4 50 Attn Mean Scratch-Pad Memory (SPM) across the DL operations of a 1 SPM 1.04 1.19 1.94 1.64 1.58 1.75 1.31 3.86 5.17 2.84 1.02 1.06 1.76 Deep Neural Network (DNN). This is especially critical due to 1-Step 1.04 1.03 1.01 1.10 1.11 1.33 1.18 1.40 2.84 1.57 1.01 1.02 1.24 trends in complex network topologies and the emergence of eager execution. This work demonstrates that there exists up to a speedups of 12 ConvNets, LSTM and Transformer DNNs [18], 5.2× performance gap in DL inference to be bridged using SPM management, on a set of image, object and language networks. [19], [21], [26]–[33] compared to the case when there is no We propose OnSRAM, a novel SPM management framework SPM management, i.e.
    [Show full text]
  • Infiltration of AI/ML in Particle Physics Aspects of Data Handling
    Infiltration of AI/ML in Particle Physics Aspects of data handling Snowmass Community Planning Meeting Oct 5-8, 2020 Jean-Roch Vlimant [email protected] @vlimant Outline I.Motivations for Machine Learning II.Path to the Future of AI in HEP AI/ML in HEP, J-R Vlimant, Snowmass CPM !2 Motivations for Using Machine Learning in High Energy Physics and elsewhere ... 8/27/20 AI/ML in HEP, J-R Vlimant, Snowmass CPM !3 Machine Learning in Industry https://www.nvidia.com/en-us/deep-learning-ai/ http://www.shivonzilis.com/machineintelligence ● Prominent field in industry nowadays ● Lots of data, lots of applications, lots of potential use cases, lots of money ➔ Knowing machine learning can open significantly career horizons !4 8/27/20 AI/ML in HEP, J-R Vlimant, Snowmass CPM Learning to Control Learning to Walk via Deep Reinforcement Learning https://arxiv.org/abs/1812.11103 Mastering the game of Go with deep neural networks and tree search, https://doi.org/10.1038/nature16961 Modern machine learning boosts control technologies. AI, gaming, robotic, self-driving vehicle, etc. AI/ML in HEP, J-R Vlimant, Snowmass CPM !5 Learning from Complexity Machine learning model can extract information from complex dataset. More classical algorithm counter part may take years of development. !6 8/27/20 AI/ML in HEP, J-R Vlimant, Snowmass CPM Learn Physics P. Komiske, E. Metodiev, J. Thaler, https://arxiv.org/abs/1810.05165 Machine Learning can help understand Physics. !7 8/27/20 AI/ML in HEP, J-R Vlimant, Snowmass CPM Use Physics A.
    [Show full text]
  • Ai Accelerator Ecosystem: an Overview
    AI ACCELERATOR ECOSYSTEM: AN OVERVIEW DAVID BURNETTE, DIRECTOR OF ENGINEERING, MENTOR, A SIEMENS BUSINESS HIGH-LEVEL SYNTHESIS WHITEPAPER www.mentor.com AI Accelerator Ecosystem: An Overview One of the fastest growing areas of hardware and software design is Artificial Intelligence (AI)/Machine Learning (ML), fueled by the demand for more autonomous systems like self-driving vehicles and voice recognition for personal assistants. Many of these algorithms rely on convolutional neural networks (CNNs) to implement deep learning systems. While the concept of convolution is relatively straightforward, the application of CNNs to the ML domain has yielded dozens of different neural network approaches. While these networks can be executed in software on CPUs/GPUs, the power requirements for these solutions make them impractical for most inferencing applications, the majority of which involve portable, low-power devices. To improve the power/performance, hardware teams are forming to create ML hardware acceleration blocks. However, the process of taking any one of these compute-intensive networks into hardware, especially energy-efficient hardware, is a time consuming process if the team employs a traditional RTL design flow. Consider all of these interdependent activities using a traditional flow: ■ Expressing the algorithm correctly in RTL. ■ Choosing the optimal bit-widths for kernel weights and local storage to meet the memory budget. ■ Designing the microarchitecture to have a low enough latency to be practical for the target application, while determining how the accelerator communicates across the system bus without killing the latency the team just fought for. ■ Verifying the algorithm early on and throughout the implementation process, especially in the context of the entire system.
    [Show full text]
  • MYTHIC MULTIPLIES in a FLASH Analog In-Memory Computing Eliminates DRAM Read/Write Cycles
    MYTHIC MULTIPLIES IN A FLASH Analog In-Memory Computing Eliminates DRAM Read/Write Cycles By Mike Demler (August 27, 2018) ................................................................................................................... Machine learning is a hot field that attracts high-tech The startup plans by the end of this year to tape out investors, causing the number of startups to explode. As its first product, which can store up to 50 million weights. these young companies strive to compete against much larg- At that time, it also aims to release the alpha version of its er established players, some are revisiting technologies the software tools and a performance profiler. The company veterans may have dismissed, such as analog computing. expects to begin volume shipments in 4Q19. Mythic is riding this wave, using embedded flash-memory technology to store neural-network weights as analog pa- Solving a Weighty Problem rameters—an approach that eliminates the power consumed Mythic uses Fujitsu’s 40nm embedded-flash cell, which it in moving data between the processor and DRAM. plans to integrate in an array along with digital-to-analog The company traces its origin to 2012 at the University converters (DACs) and analog-to-digital converters (ADCs), of Michigan, where CTO Dave Fick completed his doctoral as Figure 1 shows. By storing a range of analog voltages in degree and CEO Mike Henry spent two and a half years as the bit cells, the technique uses the cell’s voltage-variable a visiting scholar. The founders worked on a DoD-funded conductance to represent weights with 8-bit resolution. This project to develop machine-learning-powered surveillance drones, eventually leading to the creation of their startup.
    [Show full text]
  • Driving Intelligence at the Edge: Axiomtek's Edge AI Solutions
    Driving Intelligence at the Edge Axiomtek’s Edge AI Solutions Copyright 2019 Axiomtek Co., Ltd. All Rights Reserved Driving Intelligence at the Edge: Axiomtek’s Edge AI Solutions From IoT to AIoT – Smart IoT Powered by AI IoT data overload While IoT allows enterprises to turn device data into actionable insights to optimize business processes and prevent problems, the ability to handle data in a timely, effective manner will determine whether an enterprise can fully enjoy the benefits of IoT. With numerous flows of data streamed from connected sensors and devices that are increasing by billion per year, it is only a matter of time that the enterprise clouds, growing slowly at an annual rate of thousands, will eventually be overwhelmed by enormous volumes of datasets which are beyond their capacity to digest. Also, in applications like autonomous machine operation, security surveillance, and manufacturing process monitoring, local devices need to act instantly in response to time-critical events. Waiting for feedback from the cloud can result in a response delay and make devices less likely to accomplish the tasks in real time. To resolve the issues of data overload and response lag, a growing number of companies are now seeking to incorporate edge computing and AI solutions into their IoT systems. Edge computing: processing data where it is needed Edge computing is a distributed computing technology which brings computation to the edge of an IoT network, where local devices are able to process time-sensitive data as close to its source as possible, rather than having to send the data to a centralized control server for analysis.
    [Show full text]