Pacific Branch Meeting
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Interaction of Drought and the Outbreak of Phoracantha
The interaction of drought and the outbreak of Phoracantha semipunctata (Coleoptera: Cerambycidae) on tree collapse in the Northern Jarrah (Eucalyptus marginata) forest. by Stephen Seaton (BSc Environmental Science) This thesis is presented in partial fulfilment of the requirements for the degree of Bachelor of Science (Honours) School of Biological Sciences and Biotechnology, Murdoch University, Perth, Western Australia November 2012 ii Declaration I declare that that the work contained within this thesis is an account of my own research, except where work by others published or unpublished is noted, while I was enrolled in the Bachelor of Science with Honours degree at Murdoch University, Western Australia. This work has not been previously submitted for a degree at any institution. Stephen Seaton November 2012 iii Conference Presentations Seaton, S.A.H., Matusick, G., Hardy, G. 2012. Drought induced tree collapse and the outbreak of Phoracantha semipunctata poses a risk for forest under climate change. Abstract presented at the Combined Biological Sciences Meeting (CBSM) 2012, 24th of August. University Club, University of Western Australia. Seaton, S.A.H., Matusick, G., Hardy, G. 2012. Occurrence of Eucalyptus longicorn borer (Phoracantha semipunctata) in the Northern Jarrah Forest following severe drought. To be presented at The Australian Entomological Society - 43rd AGM & Scientific Conference and Australasian Arachnological Society - 2012 Conference. 25th – 28th November. The Old Woolstore, Hobart. iv Acknowledgments I greatly appreciate the guidance, enthusiasm and encouragement and tireless support from my supervisors Dr George Matusick and Prof Giles Hardy in the Centre of Excellence for Climate Change Forests and Woodland Health. I particularly appreciate the interaction and productive discussions regarding forest ecology and entomology and proof reading the manuscript. -
Methods and Work Profile
REVIEW OF THE KNOWN AND POTENTIAL BIODIVERSITY IMPACTS OF PHYTOPHTHORA AND THE LIKELY IMPACT ON ECOSYSTEM SERVICES JANUARY 2011 Simon Conyers Kate Somerwill Carmel Ramwell John Hughes Ruth Laybourn Naomi Jones Food and Environment Research Agency Sand Hutton, York, YO41 1LZ 2 CONTENTS Executive Summary .......................................................................................................................... 8 1. Introduction ............................................................................................................ 13 1.1 Background ........................................................................................................................ 13 1.2 Objectives .......................................................................................................................... 15 2. Review of the potential impacts on species of higher trophic groups .................... 16 2.1 Introduction ........................................................................................................................ 16 2.2 Methods ............................................................................................................................. 16 2.3 Results ............................................................................................................................... 17 2.4 Discussion .......................................................................................................................... 44 3. Review of the potential impacts on ecosystem services ....................................... -
Darna Pallivitta (Moore)
Nettle Caterpillar Screening Aid Darna pallivitta (Moore) Hanna R. Royals, Todd M. Gilligan1, Steven C. Passoa2, and Marc E. Epstein3 1) Identification Technology Program (ITP) / Colorado State University, USDA-APHIS-PPQ-Science & Technology (S&T), 2301 Research Boulevard, Suite 108, Fort Collins, Colorado 80526 U.S.A. (Emails: [email protected]; [email protected]) 2) USDA-APHIS-PPQ, USDA-FS Northern Forest Research Station and Ohio State University, 1315 Kinnear Road, Columbus, Ohio 43212 U.S.A. (Email: [email protected]) 3) California Department of Food and Agriculture, Plant Pest Diagnostics Branch, 3294 Meadowview Rd., Sacramento, California 95832 U.S.A. (Email: [email protected]) Version 1 This CAPS (Cooperative Agricultural Pest Survey) screening aid produced for and distributed by: 22 December USDA-APHIS-PPQ National Identification Services (NIS) 2016 This and other identification resources are available at: http://caps.ceris.purdue.edu/taxonomic_services The nettle caterpillar, Darna pallivitta, is well-known as a painful pest throughout much of Asia. It was first discovered in Hawaii in 2001 and, as of 2010, it has been reported from three Hawaiian Islands and intercepted as larvae and pupae in cargo en route to California. Larvae are highly polyphagous feeders, with at least 45 recorded hosts plants, and can cause extensive defoliation. The nettle caterpillar seems to prefer those plants in the palm (Arecaceae) and grasses (Poaceae) families but has been recorded feeding on many different weedy and ornamental plants in nurseries and at residences. In addition to plant damage, these larvae can Fig. -
Dasineura Oleae Angelini (Diptera, Cecidomyiidae): an Emerging Pest on Olive Trees in the Palestinian Territories
Journal of Plant Diseases and Protection (2019) 126:55–66 https://doi.org/10.1007/s41348-018-0196-y (0123456789().,-volV)(0123456789().,-volV) ORIGINAL ARTICLE New findings on infestation and phenology of Dasineura oleae Angelini (Diptera, Cecidomyiidae): an emerging pest on olive trees in the Palestinian Territories Yacoub A. Batta1 Received: 12 September 2018 / Accepted: 22 October 2018 / Published online: 27 October 2018 Ó Deutsche Phytomedizinische Gesellschaft 2018 Abstract Dasineura oleae is a gall midge on leaves and branches of olive trees. Due to the scarcity of information regarding to the infestation and phenology of D. oleae on olive trees, the objectives of this research were: (1) to study the pest status of D. oleae and its damage on olive trees, (2) to describe the life stages: egg, larva, pupa and adult, (3) to determine the life cycle duration and number of generations per year and (4) to describe the egg laying, larval development, pupation and adult emergence. Results indicated that there was an outbreak of D. oleae in the Palestinian Territories where the average rate of infestation on olive trees was 51.46% and the damage caused by the insect on leaves, branches and inflorescence of infested trees reached at an average infestation rate of 35.88, 22.70 and 26.54%, respectively. Eggs of D. oleae were laid on the lower leaf surface, and the hatched larvae penetrated the tissues underneath and induced galls in which they live and develop until the emergence of adults. D. oleae developed one generation per year in the hilly regions of Palestinian Territories and two generations in the coastal regions of these territories. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
A Field Guide to the Early Detection of Invasive Plants and Animals on Kaua‘I, Hawai‘I Acknowledgements
‘‘ A Field Guide to the Early Detection of Invasive Plants and Animals on Kaua‘i, Hawai‘i Acknowledgements Early Detection Field Guide Development Tiffani Keanini Kaua‘i Invasive Species Committee Elizabeth Speith USGS NBII Pacific Basin Information Node Keren Gundersen Kaua‘i Invasive Species Committee Content & Review Forest & Kim Starr United States Geological Survey Hawai‘i Invasive Species Council Kaua‘i Invasive Species Committee Maui Invasive Species Committee USGS NBII Pacific Basin Information Node Illustrations Brooke Mahnken Maui Invasive Species Committee Special thanks to the Hawai‘i Invasive Species Council for providing the funds to print this field guide. April 2010 Table of Contents Quick Reference Guide ...................................................................A The Need for Your Eyes & Ears .....................................................1 How to Use this Field Guide .............................................................2 What are we protecting? .................................................................3 What Makes a Species Invasive in Hawai‘i?. ..............................3 Plant Species. .................................................................................................4-31 Invertebrate Species ..................................................................32-35 Animal Species ..........................................................................36-41 Snakes and other animals.......................................................42-43 What You Can Do to Protect Kauai -
Caterpillar Pest Earns Name with Way It Hurts Humans As Well As Plants
Caterpillar pest earns name with way it hurts humans as well as plants Kia‘i Moku By Joylynn Paman hotel display on Moloka’i. But in June of this year, the Do you nettle caterpillar was found have a at a nursery on O‘ahu and garden? just a few weeks later, was Kids discovered in lower Ha‘ikū who like on Maui. to run barefoot The voracious caterpillars outside? can significantly damage a Ever plant’s leaves and reduce gather ti leaves for a table the aesthetic and economic decoration or for cooking? value of ornamental and Maui’s latest invader may landscape plantings. The cramp your style thanks to caterpillars feed on over 45 the painful punch packed different species of plants, by the stinging nettle cater- including fishtail palms, pillar (Darna pallivitta). raphis palms, coconut, star- This rather small insect, fruit, ti, iris, most lilies, native to Asia, is only an several varieties of grasses, inch long, but if your skin and the endemic mamaki. makes contact with its Detecting the caterpillar is many rows of stinging, hard because it is so small. spiny hairs you might feel Adult moths are only ½ like you’ve been playing inch long. with fiberglass or run into a Portuguese man-of-war. The Hawai‘i Department The stinging nettle caterpillar is only an inch long but its many rows The spines release an irri- of Agriculture (HDOA) is of stinging, spiny hairs release an irritant that causes the skin to burn tant that causes the skin to now using pheromone traps and itch. -
Biological Control of Gonipterus Platensis
BIOLOGICAL CONTROL OF GONIPTERUS PLATENSIS: CURRENT STATUS AND NEW POSSIBILITIES CARLOS MANUEL FERREIRA VALENTE ORIENTADORA: Doutora Manuela Rodrigues Branco Simões TESE ELABORADA PARA OBTENÇÃO DO GRAU DE DOUTOR EM ENGENHARIA FLORESTAL E DOS RECURSOS NATURAIS 2018 BIOLOGICAL CONTROL OF GONIPTERUS PLATENSIS: CURRENT STATUS AND NEW POSSIBILITIES CARLOS MANUEL FERREIRA VALENTE ORIENTADORA: Doutora Manuela Rodrigues Branco Simões TESE ELABORADA PARA OBTENÇÃO DO GRAU DE DOUTOR EM ENGENHARIA FLORESTAL E DOS RECURSOS NATURAIS JÚRI: Presidente: Doutora Maria Teresa Marques Ferreira Professora Catedrática Instituto Superior de Agronomia Universidade de Lisboa Vogais: Doutora Maria Rosa Santos de Paiva Professora Catedrática Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa; Doutora Manuela Rodrigues Branco Simões Professora Auxiliar com Agregação Instituto Superior de Agronomia Universidade de Lisboa; Doutor José Carlos Franco Santos Silva Professor Auxiliar Instituto Superior de Agronomia Universidade de Lisboa; Doutor Edmundo Manuel Rodrigues de Sousa Investigador Auxiliar Instituto Nacional de Investigação Agrária e Veterinária. 2018 À Susana e à Leonor i Em memória da minha Avó, Maria dos Anjos Valente (1927-2017) ii Agradecimentos Agradeço, em primeiro lugar, à Professora Manuela Branco, pelo apoio incansável na orientação desta tese, a total disponibilidade e os inúmeros ensinamentos. Ao RAIZ, pelo financiamento do doutoramento, e à sua Direção, em particular ao Engenheiro Serafim Tavares, ao Engenheiro José Nordeste, ao Professor Carlos Pascoal Neto, à Engenheira Leonor Guedes, ao Gabriel Dehon e ao Nuno Borralho, pelo voto de confiança e incentivo que sempre me transmitiram. Deixo um especial agradecimento à Catarina Gonçalves e à Catarina Afonso, pela amizade, por terem ajudado a manter os projetos do RAIZ e a biofábrica a funcionar, pelas horas infindáveis passadas no laboratório e pelos excelentes contributos científicos que muito melhoraram a qualidade desta tese. -
Gall Midges (Diptera: Cecidomyiidae) New to the Danish Fauna
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/309155026 Gall midges (Diptera: Cecidomyiidae) new to the Danish fauna Article · October 2016 CITATIONS READS 0 779 4 authors: Simon Haarder Hans Henrik Bruun University of Copenhagen University of Copenhagen 31 PUBLICATIONS 74 CITATIONS 120 PUBLICATIONS 2,624 CITATIONS SEE PROFILE SEE PROFILE Keith Harris Marcela Skuhravá 32 PUBLICATIONS 274 CITATIONS 88 PUBLICATIONS 559 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Historical Danish plant biodiversity View project Deep history or current environment? Determinants of landscape-level grassland plant diversity. View project All content following this page was uploaded by Hans Henrik Bruun on 14 October 2016. The user has requested enhancement of the downloaded file. Ent. Tidskr. 137 (2016) New gall midges from Denmark Gall midges (Diptera: Cecidomyiidae) new to the Danish fauna SIMON HAARDER, HANS HENRIK BRUUN, KEITH M. HARRIS & MARCELA SKUHRAVÁ Haarder, S., Bruun, H.H., Harris, K.M. & Skuhravá, M.: Gall midges (Diptera: Cecidomy- iidae) new to the Danish fauna. [Nya gallmyggor (Diptera: Cecidomyiidae) för den danska faunan.] – Entomologisk Tidskrift 137(3): 79-98. Uppsala, Sweden 2016. ISSN 0013-886x. First records of twenty-three gall midge species in Denmark are reported: Asphondylia ervi Rübsaamen, Contarinia acetosellae Rübsaamen, C. viburnorum Kieffer, Dasineura astragalorum (Kieffer), D. fructum (Rübsaamen), D. harrisoni (Bagnall), D. lotharingi- ae (Kieffer), D. papaveris (Winnertz), D. saxifragae (Kieffer), D. traili (Kieffer), Her- bomyia robusta Möhn, Jaapiella chelidonii Fedotova, Lasioptera arundinis Schiner, L. calamagrostidis Rübsaamen, Mayetiola festucae Ertel, M. -
Pest Management Strategic Plan for Coffee Production in Hawai'i
Pest Management Strategic Plan for Coffee Production in Hawai‘i Summary of a workshop held on April 16–17, 2007 Honolulu, Hawai‘i Issued January 2010 Lead Authors: Mike Kawate, Cathy Tarutani, and H.C. Bittenbender Contact Person: Cathy Tarutani, Education Specialist (808) 956-2004 [email protected] This project was sponsored by the Hawai‘i Farm Bureau Federation, co-sponsored with the State of Hawai‘i Department of Agriculture, and the Western Integrated Pest Management Center, which is funded by the United States Department of Agriculture– National Institute of Food and Agriculture. Table of Contents Executive Summary ...........................................................................................................3 Work Group and Contributors ........................................................................................4 Top Pest Management Priorities in Hawai‘i Coffee Production ...................................6 General Production Information ......................................................................................8 Production Regions ................................................................................................9 Cultural Practices ................................................................................................12 Integrated Pest Management ..............................................................................15 Crop Stages ...........................................................................................................16 Pest Pressures -
Annotated Checklist of the Gall Midges from the Netherlands, Belgium and Luxembourg (Diptera: Cecidomyiidae) Hans Roskam & Sébastien Carbonnelle
annotated checklist of the gall midges from the netherlands, belgium and luxembourg (diptera: cecidomyiidae) Hans Roskam & Sébastien Carbonnelle The gall midges are one of the most important groups of gall makers. Emerging larvae produce stimuli and the host plant responds by producing galls, fascinating structures which provide food and shelter for the developing larvae. Most gall inducing midges are host specific: they are only able to induce galls in a few, often related, plant species. A few species have different feeding modes: among them are saprophagous, fungivorous and predaceous species and some are used in biocontrol. We recorded 416 species in the whole area; 366 species are recorded from the Netherlands, 270 species from Belgium and 96 species from Luxembourg. importance, in the 8th volume in the series by introduction Barnes (1946-1969) and published eleven papers Over more than a century M.W. Beijerinck (1851- (1957-1999) on gall midges new for the Dutch 1931), J.C.H. de Meijere (1866-1947) and W.M. fauna, and, last but not least, was responsible for Docters van Leeuwen (1880-1960) wrote impor- the cecidomyiids in the Checklist of the Diptera tant papers about plant galls in the Netherlands. of the Netherlands by Beuk (2002). Nijveldt’s Dutch checklists of Diptera started with Bennet collection of microscope slides, more than 5,600 & van Olivier (1825, with all species placed in specimens, 4,300 of Dutch origin, mainly collected Tipula). Checklists of cecidomyiids were started by, by himself, but also by De Meijere and Van der e.g., Van der Wulp (1859, 18 spp.), Van der Wulp Wulp during the second half of the 19th, and first & De Meijere (1898, 63 spp.) and De Meijere half of the 20th century, and also included in the (1939), with many supplements (e.g., De Meijere Naturalis collection, is a second main reference 1946). -
Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.