A Field Guide to the Early Detection of Invasive Plants and Animals on Kaua‘I, Hawai‘I Acknowledgements
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Darna Pallivitta (Moore)
Nettle Caterpillar Screening Aid Darna pallivitta (Moore) Hanna R. Royals, Todd M. Gilligan1, Steven C. Passoa2, and Marc E. Epstein3 1) Identification Technology Program (ITP) / Colorado State University, USDA-APHIS-PPQ-Science & Technology (S&T), 2301 Research Boulevard, Suite 108, Fort Collins, Colorado 80526 U.S.A. (Emails: [email protected]; [email protected]) 2) USDA-APHIS-PPQ, USDA-FS Northern Forest Research Station and Ohio State University, 1315 Kinnear Road, Columbus, Ohio 43212 U.S.A. (Email: [email protected]) 3) California Department of Food and Agriculture, Plant Pest Diagnostics Branch, 3294 Meadowview Rd., Sacramento, California 95832 U.S.A. (Email: [email protected]) Version 1 This CAPS (Cooperative Agricultural Pest Survey) screening aid produced for and distributed by: 22 December USDA-APHIS-PPQ National Identification Services (NIS) 2016 This and other identification resources are available at: http://caps.ceris.purdue.edu/taxonomic_services The nettle caterpillar, Darna pallivitta, is well-known as a painful pest throughout much of Asia. It was first discovered in Hawaii in 2001 and, as of 2010, it has been reported from three Hawaiian Islands and intercepted as larvae and pupae in cargo en route to California. Larvae are highly polyphagous feeders, with at least 45 recorded hosts plants, and can cause extensive defoliation. The nettle caterpillar seems to prefer those plants in the palm (Arecaceae) and grasses (Poaceae) families but has been recorded feeding on many different weedy and ornamental plants in nurseries and at residences. In addition to plant damage, these larvae can Fig. -
Status, Ecology, and Management of the Invasive Plant, Miconia Calvescens DC (Melastomataceae) in the Hawaiian Islands1
Records of the Hawaii Biological Survey for 1996. Bishop 23 Museum Occasional Papers 48: 23-36. (1997) Status, Ecology, and Management of the Invasive Plant, Miconia calvescens DC (Melastomataceae) in the Hawaiian Islands1 A.C. MEDEIROS2, L.L. LOOPE3 (United States Geological Survey, Biological Resources Division, Haleakala National Park Field Station, P.O. Box 369, Makawao, HI 96768, USA), P. CONANT (Hawaii Department of Agriculture, 1428 South King St., P.O. Box 22159, Honolulu, HI 96823, USA), & S. MCELVANEY (Hawaii Natural Heritage Program/The Nature Conservancy of Hawaii, 1116 Smith St., Suite 201, Honolulu, HI 96817, USA) Abstract Miconia calvescens (Melastomataceae), native to montane forests of the neotropics, has now invaded wet forests of both the Society and Hawaiian Islands. This tree, which grows up to 15 m tall, is potentially the most invasive and damaging weed of rainforests of Pacific islands. In moist conditions, it grows rapidly, tolerates shade, and produces abundant seed that is effectively dispersed by birds and accumulates in a large, persistent soil seed-bank. Introduced to the Hawaiian Islands in 1961, M. calvescens appears to threaten much of the biological diversity in native forests receiving 1800–2000 mm or more annual precipitation. Currently, M. calvescens is found on 4 Hawaiian islands— Hawaii, Maui, Oahu, and Kauai. Widespread awareness of this invader began in the early 1990s. Although biological control is being pursued, conventional control techniques (mechanical and chemical) to contain and eradicate it locally are underway. Introduction The effects of biological invasions are increasingly being recognized for their role in degradation of biological diversity worldwide (Usher et al., 1988; D’Antonio & Vitousek, 1992). -
Heptacodium Miconioides
photograph © Peter Del Tredici, Arnold Arboretum of Harvard University An old multi-stemmed specimen of Heptacodium miconioides growing in woodland on Tian Tai Shan, Zhejiang, September 2004, probably the first wild plant ofHeptacodium to be seen by a Western botanist since its discovery by Ernest Wilson in 1907. Heptacodium miconioides Rehder In his last ‘Tree of the Year’, JOHN GRIMSHAW discusses what distinguishes a shrub from a tree and writes about a large shrub introduced to cultivation first in the early twentieth century and again in the late twentieth century, that is rare in the wild. Introduction When the terms of reference for New Trees were drawn up (see pp. 1-2), having agreed that the book would contain only trees, we had to address the deceptive question ‘what is a tree?’ Most of us ‘can recognise a tree when we see one’ and in many ways this is as good an answer as one needs, but when is a woody plant not a tree? When it’s a shrub, of course – but what is a shrub? In the end we adopted the simple definitions that a tree ‘normally [has] a single stem reaching or exceeding 5 m in height, at least in its native habitat. A shrub would normally have multiple woody stems emerging from the base or close to the ground, and would seldom exceed 5 m in height’ (Grimshaw & Bayton 2009). In most cases this served to make a clear distinction, but one of the casualties that fell between the two stools was the Chinese plant Heptacodium miconioides, a significant recent introduction described by theFlora of China (Yang et al. -
Pollination Ecology Summary
Pollination Ecology Summary Prof. em. Klaus Ammann, Neuchâtel [email protected] June 2013 Ohne den Pollenübertragungs-Service blütenbesuchender Tiere könnten sich viele Blütenpanzen nicht geschlechtlich fortpanzen. Die komplexen und faszinierenden Bestäubungsvorgänge bei Blütenpanzen sind Ausdruck von Jahrmillionen von Selektionsvorgängen, verbunden mit Selbstorganisation der Lebewesen; eine Sicht, die auch Darwin schon unterstützte. Bei vielen zwischenartlichen Beziehungen haben sich zwei oder auch mehrere Arten in ihrer Entwicklung gegenseitig beeinusst. Man spricht hier von sogenannter Coevolution. Deutlich ist die Coevolution auch bei verschiedenen Bestäubungssystemen und -mechanismen, die von symbiontischer bis parasitischer Natur sein können. Die Art-Entstehung, die Vegetationsökologie und die Entstehung von Kulturpanzen sind eng damit verbunden Veranstalter: Naturforschende Gesellschaft Schaffhausen 1. Pollination Ecology Darwin http://en.wikipedia.org/wiki/Pollination_syndrome http://www.cas.vanderbilt.edu/bioimages/pages/pollination.htm Fenster, C.B., Armbruster, W.S., Wilson, P., Dudash, M.R., & Thomson, J.D. (2004) Pollination syndromes and floral specialization. Annual Review of Ecology Evolution and Systematics, 35, pp 375-403 http://www.botanischergarten.ch/Pollination/Fenster-Pollination-Syndromes-2004.pdf invitation to browse in the website of the Friends of Charles Darwin http://darwin.gruts.com/weblog/archive/2008/02/ Working Place of Darwin in Downe Village http://www.focus.de/wissen/wissenschaft/wissenschaft-darwin-genoss-ein-suesses-studentenleben_aid_383172.html Darwin as a human being and as a scientist Darwin, C. (1862), On the various contrivances by which orchids are fertilized by insects and on the good effects of intercrossing The Complete Work of Charles Darwin online, Scanned, OCRed and corrected by John van Wyhe 2003; further corrections 8.2006. -
Taxonomía Y Rangos De Distribución Altitudinal De Miconia Ruiz & Pav
UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA FACULTAD DE CIENCIAS BIOLÓGICAS ESCUELA PROFESIONAL DE BIOLOGÍA Taxonomía y rangos de distribución altitudinal de Miconia Ruiz & Pav. (Melastomataceae) en cuatro sectores del Santuario Histórico de Machupicchu, Cusco. Tesis presentada por la Bachiller SMILSA MONTESINOS ROBLES para optar el título profesional de BIÓLOGA Asesor: Ms. Cs. Blgo. Víctor Quipuscoa Silvestre AREQUIPA- PERÚ 2018 JURADO DICTAMINADOR ____________________________ PRESIDENTE Dr. Benjamín José Dávila Flores ________________________________ _________________________________ SECRETARIO INTEGRANTE Blgo. Luis Norberto Villegas Paredes Ms. Cs. Blgo. Victor Quipuscoa Silvestre ii ____________________________________ Ms. Cs. Blgo. Víctor Quipuscoa Silvestre C.B.P. 2484 ASESOR iii Dedicatoria Dedicado a mí Papá, en cada nueva aventura te llevare siempre conmigo, mil gracias por tu amor, Vinicio. iv AGRADECIMIENTOS Al INSTITUTO CIENTIFICO MICHAEL OWEN DILLON (IMOD), por brindarme las facilidades para ejecutar el presente trabajo de investigación. A mi Asesor de tesis, Ms. Cs. Víctor Quipuscoa, por sus acertados comentarios para la elaboración del presente trabajo de investigación y su gran ejemplo como botánico. Al Sr. Macario Zuñiga Turpa, por su invaluable ayuda en la elaboración del presente trabajo de investigación, su tiempo, su gran amistad desinteresada, por compartir conmigo la palabra de Dios, por sus palabras de apoyo que siempre me alegraron y levantaron el ánimo para continuar el difícil camino de la vida. Al Ing. Julio Cabrera Espíritu, por su gran apoyo en campo, su amistad sincera, y su infaltable animosidad para seguir recolectando, a Daissy Rodriguez Pinto su tiempo y apoyo en campo. A mis amigas Andrea y Raquel por su apoyo fraterno, y a los miembros de la familia IMOD. -
Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 Version Available for Download From
Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 14, 3rd edition). A 4th edition of the Handbook is in preparation and will be available in 2009. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. DD MM YY Beatriz de Aquino Ribeiro - Bióloga - Analista Ambiental / [email protected], (95) Designation date Site Reference Number 99136-0940. Antonio Lisboa - Geógrafo - MSc. Biogeografia - Analista Ambiental / [email protected], (95) 99137-1192. Instituto Chico Mendes de Conservação da Biodiversidade - ICMBio Rua Alfredo Cruz, 283, Centro, Boa Vista -RR. CEP: 69.301-140 2. -
Miconia Miconia Calvescens and All Other Miconia Species
Prohibited invasive plant Restricted invasive plant Miconia Miconia calvescens and all other miconia species Four species of miconia have been found in Australia. Miconia calvescens has become a major pest in the All pose significant threats to our rainforests and are rainforests of Tahiti and Hawaii where it is known as restricted invasive plants in Queensland. All miconia the ‘purple plague’. Overseas authorities have warned species in Australia are targeted for eradication. Australia that ‘no expense should be spared to hunt this Miconia calvescens (pictured above) has the potential plant down and destroy it before you have a hopeless to cause irreversible damage to our rainforests. Like other problem’. An eradication campaign is currently being imported weeds, Miconia calvescens is capable of rampant managed in Queensland and New South Wales by growth and can produce hundreds of small berries every Biosecurity Queensland. year which are attractive to birds and are spread long distances by these animals. Under favourable conditions, Miconia calvescens forms dense thickets in rainforest understoreys, potentially replacing native plants and affecting wildlife populations. Legal requirements All Miconia species other than Miconia calvescens, Miconia racemosa, Miconia nervosa and Miconia cionotricha) are prohibited invasive plants while those listed are restricted invasive pest plants under the Biosecurity Act 2014. This Act requires that all sightings of any miconia species must be reported to Biosecurity Queensland within 24 hours of being found. By law, everyone has a general biosecurity obligation (GBO) to take all reasonable and practical steps to minimise the risk of spread of miconia until they receive advice from an authorised officer. -
Atoll Research Bulletin No. 503 the Vascular Plants Of
ATOLL RESEARCH BULLETIN NO. 503 THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS BY NANCY VANDER VELDE ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. AUGUST 2003 Uliga Figure 1. Majuro Atoll THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS ABSTRACT Majuro Atoll has been a center of activity for the Marshall Islands since 1944 and is now the major population center and port of entry for the country. Previous to the accompanying study, no thorough documentation has been made of the vascular plants of Majuro Atoll. There were only reports that were either part of much larger discussions on the entire Micronesian region or the Marshall Islands as a whole, and were of a very limited scope. Previous reports by Fosberg, Sachet & Oliver (1979, 1982, 1987) presented only 115 vascular plants on Majuro Atoll. In this study, 563 vascular plants have been recorded on Majuro. INTRODUCTION The accompanying report presents a complete flora of Majuro Atoll, which has never been done before. It includes a listing of all species, notation as to origin (i.e. indigenous, aboriginal introduction, recent introduction), as well as the original range of each. The major synonyms are also listed. For almost all, English common names are presented. Marshallese names are given, where these were found, and spelled according to the current spelling system, aside from limitations in diacritic markings. A brief notation of location is given for many of the species. The entire list of 563 plants is provided to give the people a means of gaining a better understanding of the nature of the plants of Majuro Atoll. -
Systematics and Relationships of Tryssophyton (Melastomataceae
A peer-reviewed open-access journal PhytoKeys 136: 1–21 (2019)Systematics and relationships of Tryssophyton (Melastomataceae) 1 doi: 10.3897/phytokeys.136.38558 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Systematics and relationships of Tryssophyton (Melastomataceae), with a second species from the Pakaraima Mountains of Guyana Kenneth J. Wurdack1, Fabián A. Michelangeli2 1 Department of Botany, MRC-166 National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA 2 The New York Botanical Garden, 2900 Southern Blvd., Bronx, NY 10458, USA Corresponding author: Kenneth J. Wurdack ([email protected]) Academic editor: Ricardo Kriebel | Received 25 July 2019 | Accepted 30 October 2019 | Published 10 December 2019 Citation: Wurdack KJ, Michelangeli FA (2019) Systematics and relationships of Tryssophyton (Melastomataceae), with a second species from the Pakaraima Mountains of Guyana. PhytoKeys 136: 1–21. https://doi.org/10.3897/ phytokeys.136.38558 Abstract The systematics of Tryssophyton, herbs endemic to the Pakaraima Mountains of western Guyana, is re- viewed and Tryssophyton quadrifolius K.Wurdack & Michelang., sp. nov. from the summit of Kamakusa Mountain is described as the second species in the genus. The new species is distinguished from its closest relative, Tryssophyton merumense, by striking vegetative differences, including number of leaves per stem and leaf architecture. A phylogenetic analysis of sequence data from three plastid loci and Melastomata- ceae-wide taxon sampling is presented. The two species of Tryssophyton are recovered as monophyletic and associated with mostly Old World tribe Sonerileae. Fruit, seed and leaf morphology are described for the first time, biogeography is discussed and both species are illustrated. -
Caterpillar Pest Earns Name with Way It Hurts Humans As Well As Plants
Caterpillar pest earns name with way it hurts humans as well as plants Kia‘i Moku By Joylynn Paman hotel display on Moloka’i. But in June of this year, the Do you nettle caterpillar was found have a at a nursery on O‘ahu and garden? just a few weeks later, was Kids discovered in lower Ha‘ikū who like on Maui. to run barefoot The voracious caterpillars outside? can significantly damage a Ever plant’s leaves and reduce gather ti leaves for a table the aesthetic and economic decoration or for cooking? value of ornamental and Maui’s latest invader may landscape plantings. The cramp your style thanks to caterpillars feed on over 45 the painful punch packed different species of plants, by the stinging nettle cater- including fishtail palms, pillar (Darna pallivitta). raphis palms, coconut, star- This rather small insect, fruit, ti, iris, most lilies, native to Asia, is only an several varieties of grasses, inch long, but if your skin and the endemic mamaki. makes contact with its Detecting the caterpillar is many rows of stinging, hard because it is so small. spiny hairs you might feel Adult moths are only ½ like you’ve been playing inch long. with fiberglass or run into a Portuguese man-of-war. The Hawai‘i Department The stinging nettle caterpillar is only an inch long but its many rows The spines release an irri- of Agriculture (HDOA) is of stinging, spiny hairs release an irritant that causes the skin to burn tant that causes the skin to now using pheromone traps and itch. -
Host Specificity and Virulence of the Phytopathogenic Bacteria Pseudomonas Savastanoi Eloy Caballo Ponce Caballo Eloy
Host specificity and virulence of the phytopathogenic bacteria Pseudomonas savastanoi Eloy Caballo Ponce Caballo Eloy TESIS DOCTORAL Eloy Caballo Ponce Director: Cayo Ramos Rodríguez Programa de Doctorado: Biotecnología Avanzada TESIS DOCTORAL TESIS Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” Universidad de Málaga – CSIC 2017 Año 2017 Memoria presentada por: Eloy Caballo Ponce para optar al grado de Doctor por la Universidad de Málaga Host specificity and virulence of the phytopathogenic bacteria Pseudomonas savastanoi Director: Cayo J. Ramos Rodríguez Catedrático. Área de Genética. Departamento de Biología Celular, Genética y Fisiología. Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM) Universidad de Málaga – Consejo Superior de Investigaciones Científicas Málaga, 2016 AUTOR: Eloy Caballo Ponce http://orcid.org/0000-0003-0501-3321 EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial- SinObraDerivada 4.0 Internacional: http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode Cualquier parte de esta obra se puede reproducir sin autorización pero con el reconocimiento y atribución de los autores. No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer obras derivadas. Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de Málaga (RIUMA): riuma.uma.es COMITÉ EVALUADOR Presidente Dr. Jesús Murillo Martínez Departamento de Producción Agraria Universidad Pública de Navarra Secretario Dr. Francisco Manuel Cazorla López Departamento de Microbiología Universidad de Málaga Vocal Dra. Chiaraluce Moretti Departamento de Ciencias Agrarias, Alimentarias y Medioambientales Universidad de Perugia Suplentes Dr. Pablo Rodríguez Palenzuela Departamento de Biotecnología – Biología Vegetal Universidad Politécnica de Madrid Dr. -
Pest Management Strategic Plan for Coffee Production in Hawai'i
Pest Management Strategic Plan for Coffee Production in Hawai‘i Summary of a workshop held on April 16–17, 2007 Honolulu, Hawai‘i Issued January 2010 Lead Authors: Mike Kawate, Cathy Tarutani, and H.C. Bittenbender Contact Person: Cathy Tarutani, Education Specialist (808) 956-2004 [email protected] This project was sponsored by the Hawai‘i Farm Bureau Federation, co-sponsored with the State of Hawai‘i Department of Agriculture, and the Western Integrated Pest Management Center, which is funded by the United States Department of Agriculture– National Institute of Food and Agriculture. Table of Contents Executive Summary ...........................................................................................................3 Work Group and Contributors ........................................................................................4 Top Pest Management Priorities in Hawai‘i Coffee Production ...................................6 General Production Information ......................................................................................8 Production Regions ................................................................................................9 Cultural Practices ................................................................................................12 Integrated Pest Management ..............................................................................15 Crop Stages ...........................................................................................................16 Pest Pressures