Your Home Energy Monitor

Total Page:16

File Type:pdf, Size:1020Kb

Your Home Energy Monitor Your home energy monitor Step-by-step user guide Contents Welcome to the future of home energy In this booklet you will find: • Welcome 3 • Quick reference guide 4 • How to use your home energy monitor 5 Your home energy monitor • Readings and costs 6 This home energy monitor will give you Based on how much energy you’re • Current and past greater awareness and influence over the consuming, the monitor gives you an energy use 8 amount of energy you consume in your indication of what this is costing you – • Carbon Dioxde home. It’s directly linked to your Smart both from a financial perspective and an (CO2) emissions 10 Meter and receives information from it environmental one. • Energy consumption based on your usage. This information is With this information at your fingertips, you alarm function 12 displayed clearly on the monitor, so you can can manage your home energy better and get a much more detailed picture of your live in a more sustainable way. • Useful tips and health energy habits. The monitor shows you the and safety 13 This booklet tells you how the monitor following: works and contains important safety and • Current electricity usage & cost in real operating instructions. Please read these If you have any questions time (every 15 seconds)† carefully before using your monitor. about this trial, please call • Historic electricity usage and cost our dedicated customer * For facts and tips look in the green boxes. services team free on • Historic gas usage and cost – where 0800 015 8787* applicable (updated every 30 minutes) • Indication of CO2 emissions • Current tariff information †If you choose to switch to a different EDF Energy tariff, there may be a delay for your Smart meter to reflect the revised rate(s) on your energy monitor *If a Smart gas meter has not been fitted then these screens will show electricity data only 2 3 Quick reference guide How to use your home energy monitor Helpful Information Your electricity usage is measured by your electricity meter, and appears on your 1. Select 5. Electricity demand (load) indicators The home energy monitor uses the light bulb symbol to identify when the information on electricity bill, in kilowatt hour (kWh) units. * The appliances in your home use various This button switches between electricity • Green: current household’s electricity display is relevant to electricity usage and the flame symbol for gas usage . The default * amounts of energy. A typical kettle will be and gas . use is below 1kW screen provides an instant display of your electricity usage. As a quick way to monitor how much power is being used around the home, the home energy monitor has a traffic rated at about 2kW which means while in 2. Readings/Costs • Amber: current household’s electricity use it consumes 2kW of power per hour. light system of visual indicators beneath the display; where green represents lower usage, 1 This button switches through cost for use is between 1kW and 2.2kW If the kettle were to be used for a total whereas red indicates a higher usage. These are described in more detail below: usage now, costs for yesterday, the last • Red: current household’s electricity use time of one hour it would consume 2kWh 7 days and the last 28 days. is over 2.2kW or 2 units of electricity. Through switching 2 Current electricity usage is below 1kW 3. Usage 6. Message waiting (see note 1) the individual appliances on and off, the monitor screen will allow you to start to 3 This button switches through graphs of Current electricity usage is between 1kW and 2.2kW The flashing blue light indicates a see how much individual appliances use as electricity and gas* usage (in kW or kWh) message has been received from Current electricity usage is over 2.2kW well as the cost of running them. 4 for now, today, the last seven days, the EDF Energy, and will remain lit until you 5 last 28 days and the last 12 months. press 6a button to read the message. If Useful tip you’d like to read the message again at Why not start by turning off all appliances 4. CO2 emissions 6 This button switches through totals and a later date, just press button under the you can do without for a few minutes. This could include lights, TV’s and digi boxes graphs of CO kgs emitted due to your blue light. Your monitor can only store 2 but not fridges or boilers. Then check your household’s energy use now, the last one message at a time, which means 1 Time or temperature. home energy monitor to see how many 6a when you receive a new message, the old 1 2 3 2a seven days, the last 28 days and the last 2 Current electricity usage in kW. kilowatt you’re using. This figure is your 12 months ◊. one will be erased. 2a Cost per hour in either £/hr or pence/hr ‘base load’. (see note 1) 7 7. Menu at the current rate of usage. Knowing your base load can help you see 8 Pressing this button will display the 3 Bar graph showing the last hour’s how much energy your appliances use; menu options, including the usage alarm simply deduct it from the total number Please do NOT dispose of this product with your other household or municipal waste. Take it to an electronics electricity usage in kW. Each bar settings. of kilowatts displayed. Overtime, you recycling centre or return it to EDF Energy, 255 Broadway, Bexleyheath, Kent, DA6 8ET. represents one minute. 8. Menu navigation (see note 1) should gain a better understanding of your * If a Smart gas meter has not been fitted then these screens will show electricity data only. day-to-day energy use and can look for Use these buttons to scroll up and down Default screen: current electricity usage ways to reduce this by using energy more ◊ The periods of time this data represents will start from when your new Smart Meter was fitted. and select menu options. Current load information is not available for gas as the home energy monitor only gets readings from the consciously. 1 gas meter every 30 minutes. To press buttons 6 to 8 open the clear cover first. 4 5 CO2 CO2 Emissions Emissions Readings and Costs - electricity display example. Readings and Costs - gas display example Readings/costs Readings/costs (available only if a gas Smart Meter was fitted) The home energy monitor will display energy costs over varying periods, together with meter readings. Press the Readings/Costs button to The light bulb or gas flame at the top of the screen indicates which energy type you’re looking at. You can switch between the two using the viewUsage this information. topUsage Select button. The light bulb or gas flame at the top of the screen show which energy type the information displayed refers to. You can switch between These images are for illustration purposes only. electricity and gas (if applicable) using the top Select button. These images are for illustration purposes only. 1 1 1 1 1 1 2 2 2 2 2 3 3 2 A. First Press – cost now: B. Second Press – Historical Cost: C. Third Press - Rate now: A. First Press: Cost Today B. Second Press – Historical Cost: 1 Current cost displayed in pence/hour^ Historical costs for electricity usage for 1 Cost displayed in pence/kWh at the rate C. Third Press: 1 Cost of gas since start of day Historical costs for gas usage for 2 Bar graph showing the last hour’s yesterday 1 the last seven days 2 and currently active Current gas costs and actual meter yesterday 1 the last seven days 2 and electricity usage in kW. Each bar the last 28 days 3 ◊ 2 Actual meter reading as displayed on the 2 Graph of hourly usage since start of day readings. the last 28 days 3 ◊ represents one minute. meter. 1 Cost displayed in pence/kWh at your current unit rate. 3 ^ This is your current usage.This is in kWh multiplied by your current tariff’s unit rate. ◊ The periods of time this data represents will start from when your new Smart Meter was fitted. 2 Actual meter reading in m shown as it ◊ The periods of time this data represents will start from when your new Smart Meter was fitted. appears on the meter. Changing bulbs – easy way to save Did you know? According to the Energy Saving Trust. Lighting accounts for 7% of a typical household’s electricity bill but it’s also one of the easiest ways Radiator reflector panels reflect heat from the radiator back into the room, instead of letting the heat out through an external wall. They to reduce your energy use and spend. Just by replacing a traditional light bulb with a compact fluorescent bulb of the same brightness you have the most benefit when installed on unisnsulated walls.** could save a significant amount of money over the life of the bulb*. *energysavingtrust.org.uk/Electricity/Lighting **energysavingtrust.org.uk/Insulation/insulating-tanks-pipes-and-radiators 6 7 CO2 Emissions Readings/costs Your current and past energy use You may use this information to help you Usage identify what energy saving behaviours have been effective and also what events The home energy monitor stores historic information on your energy usage that will help you to compare different time periods.‡ This resulted in higher energy use over the additional information is displayed by pressing the usage button.
Recommended publications
  • Guidelines on Energy Conserving Design of Buildings — 2020 Edition
    GUIDELINES ON ENERGY CONSERVING DESIGN OF BUILDINGS — 2020 EDITION Section I. Purpose 1.1 To encourage and promote the energy conserving design of buildings and their services to reduce the use of energy with due regard to the cost effectiveness, building function, and comfort, health, safety, and productivity of the occupants. 1.2 To prescribe guidelines and minimum requirements for the energy conserving design of new buildings and major renovation of existing buildings that fall and are covered under these guidelines and provide methods for determining compliance with the same to make the buildings always energy-efficient. Section Il. Definition of Terms 2. As used in these Guidelines, the following shall mean: Air— refers to any of the following: Ambient Air — air surrounding a building; the source of outdoor air brought into a building. Exhaust Air — air removed from a space and discharged to outside the building by means of mechanical or natural ventilation. Indoor Air— air in an enclosed occupiable space. Outdoor Air— ambient air that enters a building through a ventilation system, through intentional openings for natural ventilation, or by infiltration. Return Air— air removed from a space to be recirculated, or exhaust air. Supply Air — air delivered by mechanical or natural ventilation to a space and composed of any combination of outdoor air, recirculated air, or transfer air. Ventilation Air — supply air that is outdoor air plus any recirculated air that has been treated for the purpose of maintaining acceptable Indoor Air Quality. Air Conditioning — the process of treating air so as to control simultaneously its temperature, humidity, cleanliness, and distribution to meet the requirements of conditioned space.
    [Show full text]
  • Final Report
    Final Report Team 22 - SHARC Sustainable Housing And Responsible Construction Andrew Blunt, Robert LaPlaca, Oscar Lopez, and Julie VanDeRiet Engineering 339/340 Senior Design Project Calvin College May 10, 2018 © 2018, Calvin College and Andrew Blunt, Robert LaPlaca, Oscar Lopez, and Julie VanDeRiet 1 Executive Summary This document outlines the work that Team 22 of Calvin College’s engineering senior design project achieved over the academic year, as well as the goals they achieved. The accomplished work contains research and feasibility analysis for design decisions regarding the design of the a sustainable home. The client family desires a sustainable home near Calvin College. Team 22’s goal was to provide a solution to their problem by designing a home to comply with Passive House Institute US’s certification. This task requires a variety of engineering disciplines with specific objectives that require a parallel design process. This document outlines the research and work that Team 22 has achieved. Table of Contents 1 Executive Summary 2 Introduction 1 2.1 Project Introduction 1 2.1.1 Location 1 2.1.2 Client 1 2.2 Passive House US Requirements 1 2.3 The Team 3 2.3.1 Andrew Blunt 3 2.3.2 Robert LaPlaca 3 2.3.3 Oscar Lopez 4 2.3.4 Julie VanDeRiet 4 2.4 Senior Design Course 4 3 Results 5 3.1 Thermal Results 5 3.2 Home Design 5 3.3 Energy Performance 6 4 Project Management 7 4.1 Team Organization 7 4.2 Schedule 7 4.2.1 First Semester 7 4.2.2 Second Semester 8 4.2.3 Project Management Visualization 8 5 Design Process 9 5.1 Ethical Design
    [Show full text]
  • Assessing Players, Products, and Perceptions of Home Energy Management ET Project Number: ET15PGE8851
    PG&E’s Emerging Technologies Program ET15PGE8851 PG&E’s Emerging Technologies Program Assessing Players, Products, and Perceptions of Home Energy Management ET Project Number: ET15PGE8851 Project Manager(s): Kari Binley and Oriana Tiell Pacific Gas and Electric Company Prepared By: SEE Change Institute Rebecca Ford Beth Karlin Angela Sanguinetti Anna Nersesyan Marco Pritoni Issued: November 19, 2016 Cite as: Ford, R., Karlin, B., Sanguinetti, A., Nersesyan, A., & Pritoni, M. (2016). Assessing Players, Products, and Perceptions of Home Energy Management. San Francisco, CA: Pacific Gas and Electric. © Copyright, 2016, Pacific Gas and Electric Company. All rights reserved. PG&E’s Emerging Technologies Program ET15PGE8851 Acknowledgements Pacific Gas and Electric Company’s Emerging Technologies Program is responsible for this project. It was developed as part of Pacific Gas and Electric Company’s Emerging Technology program under internal project numbers ET15PGE8851. SEE Change Institute conducted this technology evaluation for Pacific Gas and Electric Company with overall guidance and management from Jeff Beresini, Kari Binely and Oriana Tiell. For more information on this project, contact Pacific Gas and Electric Company at [email protected]. Special Thanks This project was truly a team effort and the authors would like to thank all those who contributed to making it a reality. First, we’d like to acknowledge Pacific Gas and Electric (PG&E) for funding this research. Particular thanks go to Susan Norris for having the vision and foresight to make this project a reality and to Oriana Tiell, Kari Binley, and Jeff Beresini for continued support and feedback throughout the project. Several partners also collaborated with our team on the various research streams and deserve acknowledgement.
    [Show full text]
  • Download a Transcript of the Interview with Doug King
    Episode 63 Smart Energy and Data The show notes: www.houseplanninghelp.com/63 Intro: Data is what we're talking about today. When I go to various different talks they will often reflect on data that has been collected, whether it's from moisture sensors or CO2 sensors so I did wonder whether it's something that I should be doing on my project, making sure that there is something useful coming out of it in terms of data. That probably means planning upfront so I just wanted to find out all about that. Recently I saw a talk on smart energy so I thought we'd tie this all together and see how we go with it. Doug King has a lot of experience in construction, particularly high performance buildings - which is what we like - and he's someone that I've been wanting to talk to for a while. I started by asking him for a little bit of background on his work. Doug: I started out as a physicist. I fell into the profession of building services engineering, out of curiosity, and then I spent the last 20 years thinking about how building services systems work together with building fabric, with the technology to control them and finally how human beings relate to all of that as a system in order to try and understand the key issues about optimisation, how to get these things working together properly rather than the building services systems fighting against the building fabric and the users not understanding what the hell is going on.
    [Show full text]
  • Task XIII Guide Book 6
    Version 6.0 IEA DSM Task XIII Project Guidebook November 2006 Copyright 2006 - IEA DRR LLC - Proprietary Information SECTION 6: DR TECHNOLOGIES 2 I. INTRODUCTION We all use tools to simplify our daily lives. Things such as the hammer, coffee maker, and computer are used to reduce the time it takes to complete a life’s daily chores. The demand response industry has also developed technologies that simplify the implementation and utilization of DR resources in the energy marketplace. In order for a DR resource to be useful in the energy market it must have the ability to react when needed and its response must be measurable. Tools and systems have been developed that help activate a DR asset (e.g. direct load control) and manage a DR asset portfolio (e.g. DR software products). These and other DR related technologies help the DR resource react to load reduction request and opportunities and they help provide the business process mechanisms that connect the resource to the energy marketplace. This chapter will explore how technology is being used in the demand response industry today. The objective of this section is to help the DR market participant identify technologies and systems that are used to make DR more effective in the energy marketplace from the perspective of the participating customer, the energy provider and the system operator. Improvement in communication and metering technologies has helped the demand response industry grow in recent years. In fact, some people have suggested that the demand response industry was made possible by the improvement and wide scale deployment of Internet communications in the late 1990s.
    [Show full text]
  • Advancing Smart Energy Homes and Buildings in the Northeast
    SMART ENERGY HOMES AND BUILDINGS Evolving Homes and Buildings to Keep Up with the Evolving Grid August 27, 2020 Building Decarbonization 3 Key Elements Advanced Electric Deep Energy Grid Technologies Efficiency Integration Space/Water Thermal Flexible use of Heating – Heat Pumps Improvements Low-Carbon Electricity Northeast Strategic Electrification Action Plan – NEEP 2018 1 Allies Network State Partners Connecticut New York State Partners: CT DEEP, CT Energy Efficiency Board, Eversource State Partners: NYSERDA Energy, United Illuminating Company, Southern Connecticut Gas and Connecticut Natural Gas Partners in 2017/2018/2019/2020 Partners in 2017/2018/2019/2020 Rhode Island State Partners: RI Office of Energy Resources, National Grid RI, RI District of Columbia Department and Education and RI Energy Efficiency & Resource State Partners: Department of Energy and Environment and DC Management Council Sustainable Energy Utility Partners in 2017/2018/2019/2020 Partners in 2017/2019/2020 Vermont Massachusetts State Partners: Efficiency Vermont State Partners: Massachusetts Department of Energy Resources Partners in 2017/2018/2019/2020 Partners in 2019 West Virginia New Hampshire State Partners: West Virginia Office of Energy State Partners: NH Office of Strategic Initiatives, NH Public Utilities Commission, Eversource Energy, NH Electric Coop, Unitil and Partners in 2020 Liberty Utilities Partners in 2017/2018/2019/2020 3 Agenda at a Glance 4 SESSION 1 The Current State of Smart Energy Homes and Buildings 5 Integrating Smart Energy Homes and Buildings with a Modernized Grid: Grid-interactive Efficient Buildings Overview Monica Neukomm, US DOE Building Technologies Office August 2020 U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY 6 Smart Building…Smart Energy Management…GEB © Navigant Consulting Inc.
    [Show full text]
  • M.Sc in Green Buildings
    M.SC IN GREEN BUILDINGS SEMESTER - 1 Paper No Subject Contents Of Syllabus SITE SELECTION LOCATION GEOGRAPHY ARCHAEOLOGICAL SITE ARCHAEOLOGICAL ETHICS CONSTRUCTION GROTHENDIECK TOPOLOGY BINDING AND ACTIVE SITE DNA AND NTP BINDING SITE Paper - I SITE SELECTION, PRESERVING SOIL AND LANDSCAPE - I SOIL CONSERVATION SOIL SALINITY CONTROL CONSERVATION MOVEMENT HABITAT CONSERVATION SEDIMENT TRANSPORT LAND DEGRADATION LANDSCAPING AQUASCAPING ARBORICULTURE DOUBLE ENVELOPE HOUSE EARTH SHELTERING EARTH HOUSE UNDERGROUND HOME AND LIVING BURDEI DUGOUT SHELTER EARTH LODGE EARTHSHIP KIVA PIT-HOUSE QUIGGLY HOLE Paper - II EXTERNAL DESIGN FEATURES AND OUTDOOR LIGHTING - I ROCK CUT ARCHITECTURE SOD HOUSE YAODONG BASEMENT GROUND-COUPLED HEAT EXCHANGER ENERGY CONSERVATION GREEN ROOF RADIATION PROTECTION FLUORESCENT LAMP COMPACT FLUORESCENT LAMP LED LAMP HISTORY OF PASSIVE SOLAR BUILDING DESIGN Sanitation HISTORY OF WATER SUPPLY AND Sanitation WASTERWATER SEWAGE TREATMENT ACTIVATED SLUDGE TRICKLING FILTER Paper - III Sanitation & Air Pollution during Construction - I ROTATING BIOLOGICAL CONTRACTOR SEWAGE SLUDGE TREATMENT SEWAGE ANAEROBIC DIGESTION COMPOSTING TOILET SEPTIC TANK PIT TOILET WATER PROPERTIES OF WATER WATER MODEL WATER MANAGEMENT AQUATIC TOXICOLOGY ATP TEST CLEAN WATER ACT DIFICIT IRRIGATION WATER SUPPLY AND SANITATION IN THE EUROPEAN UNION Paper -IV Efficient Water Management - I HISTORY OF WATER SUPPLY AND SANITATION WATER CONSERVATION WATER DISTRIBUTION ON EARTH WATER EFFICIENCY WATER LAW WATER POLITICS WATER QUALITY WATER SUPPLY WATER SUPPLY
    [Show full text]
  • MGE Energy 2018 Environment and Sustainability Report
    ENVIRONMENTAL AND SUSTAINABILITY REPORT 2018 Madison Gas and Electric Company 1 OUR ENVIRONMENTAL POLICY As part of Madison Gas and Electric’s (MGE) commitment Table of Contents to environmental stewardship, we will: Corporate strategy 3 • Consider the environmental impacts of all applicable company activities and actively seek cost-effective ways to Governance 5 reduce adverse environmental impacts and risks. Energy 7 • Seek environmentally friendly options when considering sources of supply, material and contractors where Climate change and air quality 11 cost-effective opportunities exist. Energy efficiency and conservation 13 • Educate our employees about MGE’s environmental Community engagement and partnerships 15 responsibilities and policy and encourage them to actively seek ways to mitigate environmental impacts. Community giving 17 • Set environmental goals and objectives and strive to Natural resources 19 continually improve corporate environmental performance. • Strictly comply with all environmental laws, regulations, Supply chain and waste management 21 permit requirements and other corporate environmental Transportation 23 commitments and exceed simple compliance where sound Workforce 25 science and cost-effective technologies permit. • Continue to be an active member of the community and Safety 27 work with other community agencies to promote Falcon restoration 29 environmental education and energy conservation. As a member of the community, MGE will communicate openly This report includes forward-looking statements and and honestly with the public regarding MGE environmental estimates of future performance that may differ from policy and performance. actual results because of uncertainties and risks encountered in day-to-day business. Thank you for your interest in MGE’s 2018 Environmental and Sustainability Report. Our commitment to environmental stewardship goes beyond regulatory compliance.
    [Show full text]
  • Dynamic Ancillary Service Provided by Loads with Inherent Energy Storage
    Dynamic Ancillary Service Provided By Loads With Inherent Energy Storage Katie Bloor(1), Andrew Howe(1), Alessandra Suardi(2), Stefano Frattesi(2) RLtec(1) 75-76 Shoe Lane, London EC4A 3BQ, UK [email protected], [email protected]. Indesit Company(2) Viale A. Merloni 47 - 60044 Fabriano (AN), Italy [email protected], [email protected] Keywords: Dynamic Demand; Demand-side management partner and will provide the refrigerators implementing this (DSM); Frequency regulation; Demand response innovative control technique for the field trial. Abstract Electrical load devices with inherent energy storage can be used to provide a loss-less energy storage service to an electricity grid without any noticeable effect to the load owner. Populations of such loads can autonomously provide distributed response regulation, displacing large generation regulation services. This leads to a significant saving in emissions (including CO2) in the electricity supply industry. The authors have run a laboratory trial of refrigerators, where the refrigerator’s electronic control board has been modified to provide the autonomous “Energy Balancing Controller” (EBC) function. The laboratory test rig allows the grid service response level to be determined, mirroring standard practice in the UK for large generator set response (regulation service) testing. In a field-scale deployment of EBC-enabled refrigerators, examples of grid Smart Appliances, the authors have designed an instrumentation system interfacing smart appliances with an in-line home energy monitor device, and connecting to a central data server. The server provides real- time monitoring of the grid response (ancillary) service by collecting certain physical variables measured in each individual Smart Appliance.
    [Show full text]
  • Learning Energy Literacy Concepts from Energy-Efficient Homes" (2016)
    Clemson University TigerPrints All Dissertations Dissertations 8-2016 Learning Energy Literacy Concepts from Energy- Efficient Homes Frederick Eugene Paige Clemson University Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Paige, Frederick Eugene, "Learning Energy Literacy Concepts from Energy-Efficient Homes" (2016). All Dissertations. 1711. https://tigerprints.clemson.edu/all_dissertations/1711 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. LEARNING ENERGY LITERACY CONCEPTS FROM ENERGY-EFFICIENT HOMES A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy CIVIL ENGINEERING by FREDERICK EUGENE PAIGE August 2016 Leidy Klotz, Co-committee Chair Julie Martin, Co-committee Chair Catherine Mobley James Gibert ABSTRACT The purpose of this study is to understand ways that occupants’ and visitors’ interaction with energy efficient home design affects Energy Literacy. Using a case study approach including interviews, surveys, and observations, I examined the potential for affordable energy efficient homes in the Greenville South Carolina area to "teach" concepts from an Energy Literacy framework developed by dozens of educational partners and federal agencies that comprise the U.S. Global
    [Show full text]
  • Renewable Energy INTRODUCTORY GUIDEBOOK
    Green Building Series Renewable Energy INTRODUCTORY GUIDEBOOK DEVELOPED FOR HOMEOWNERS in the REGIONAL DISTRICT OF NANAIMO British Columbia, Canada Introduction of Residential Renewable Energy Systems MESSAGE FROM THE CHAIR REGIONAL DISTRICT OF NANAIMO On behalf of the Regional District of Nanaimo Board of Directors, I’m pleased to present the RDN’s second Green Building Best Practices Guidebook. This volume focuses on Residential Scale Renewable Energy Systems. Whether residents are passionate about addressing climate change, or motivated by personal responsibility, independence and self-sufficiency, this Guidebook aims to provide useful information on the different types of renewable energy systems suitable for the Regional District of Nanai- mo. Transitioning toward renewable energy systems and putting the power to generate energy into the hands of local residents combines taking re- sponsibility for our own needs with economic development opportuni- ties and environmental benefits. Our hope with this work is to help that transition along, ensuring that the RDN remains a great place to live for generations to come. Joe Stanhope, Chair, Regional District of Nanaimo Board of Directors ALSO IN THE GREEN BUILDING SERIES Rainwater Harvesting Best Practices Guidebook: Residential Rainwater Harvesting Design and Installation. (2012) Disclaimer: The RDN assumes no responsibility for the performance of any renewable energy system designed or installed, wheth- er in reliance on this handbook or otherwise, and makes no warranty or representation regarding the quality, safety or performance of any renewable energy system. SCOPE OF GUIDEBOOK ACKNOWLEDGEMENTS “We are on the verge of a The Residential Renewable Energy Systems Guidebook is part of the Re- profound shift in the way gional District of Nanaimo’s (RDN) Green Building Action Plan and sup- we produce and use energy.
    [Show full text]
  • HVAC Drives · Power Quality · Safety · Tools
    HVACSOLUTIONS Ductless Heat Pumps · Linesets · Capacitors · Ventilation Fans · Whole House Fans · Thermostats · Contactors · HVAC Drives · Power Quality · Safety · Tools From the Brands You Trust Information, Fast & Simple. Online at PLATT.com and on Your Phone with the PLATT APP PHONES OPEN 4am – 12am Pacific Email a 7 DAYS A WEEK 5am – 1am Mountain 1-800-257-5288 Specialist: © 2019 Platt Electric Supply. All Rights Reserved. Platt reserves right to correct errors, terminate offer, and/or change prices without notice. No sales to wholesale suppliers. Expires December 31st, 2019. T#204944 05/19 [email protected] DUCTLESS HEAT PUMPS Single Zone Exterios (XE) · Up to 30.6 SEER · Base Pan Heater Included · Energy Star Rated · Wireless Remote Controller Included TEMPERATURE ITEM# UNIT RATING BTU SEER HSPF 0192024 Wall Mount -15˚F 9,000 30.6 14 0192025 Condenser 0192030 Wall Mount -15˚F 12,000 26.2 12.5 0192031 Condenser 1201264 Wall Mount -5˚F 15,000 22.1 12 1201265 Condenser Wall Mount Exterios (E) · Up to 23.0 SEER · -5˚ F Operation · Wireless Remote Controller Included ITEM# UNIT BTU SEER HSPF 0185276 Wall Mount 9,000 23 0192036 Condenser 11 Condenser 0170409 Wall Mount 12,000 22.5 0177593 Condenser 0174386 Wall Mount 18,000 19.5 0093299 Condenser 10 0183063 Wall Mount – 24,000 19 0131246 Condenser Pro–Series (RE) · 16.0 SEER · -4˚ F Operation ITEM# UNIT BTU SEER HSPF 0230015 Wall Mount 9,000 0230017 Condenser Wired Remote Controller 0230066 Wall Mount · Compatible with Exterios XE & E 12,000 · Optional 0230064 Condenser 16 8.5 0230067 Wall Mount 18,000 0230073 Condenser ITEM# 0230074 Wall Mount 24,000 0143766 0230076 Condenser 2 PHONES OPEN 7 Days a Week 4am – 12am Pacific / 5am – 1am Mountain 1.800.257.5288 © 2019 Platt Electric Supply.
    [Show full text]