Advanced Metering Initiatives and Residential Feedback Programs: a Meta-Review for Household Electricity-Saving Opportunities

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Metering Initiatives and Residential Feedback Programs: a Meta-Review for Household Electricity-Saving Opportunities Advanced Metering Initiatives and Residential Feedback Programs: A Meta-Review for Household Electricity-Saving Opportunities Authors: Karen Ehrhardt-Martinez,1 Kat A. Donnelly,2 & John A. “Skip” Laitner Contributors: Dan York, Jacob Talbot, & Katherine Friedrich June 2010 Report Number E105 © American Council for an Energy-Efficient Economy 529 14th Street, Suite 600, Washington, D.C. 20045 Phone: 202-507-4000, Fax: 202-429-2248, aceee.org 1 Formerly with ACEEE, now with Renewable and Sustainable Energy Institute, University of Colorado 2 EMpower Devices and Associates Energy Savings and Advanced Metering Meta-Analysis, ACEEE CONTENTS Foreword ...........................................................................................................................................ii Executive Summary .........................................................................................................................iii About ACEEE...................................................................................................................................ix Acknowledgments ............................................................................................................................ix I. Introduction ................................................................................................................................... 1 A. The Invisibility of Energy Resources .................................................................................. 1 B. Characteristics of Residential Energy Consumption .......................................................... 2 C. The Proliferation of Advanced Metering Initiatives............................................................. 5 D. Research Methodologies.................................................................................................... 8 II. Characterizing and Describing Residential Sector Feedback Technologies............................. 10 A. The Overarching System: The “Smart Grid”.................................................................... 11 B. Defining the Consumer-Side of the Smart Grid................................................................ 11 C. Indirect Feedback: Utility-Provided Feedback.................................................................. 13 D. Vendor Provided Indirect Feedback of Utility Data .......................................................... 17 E. Direct Feedback Using In-Home Energy Displays ........................................................... 22 F. Direct Feedback and Automation with “Smart” Devices................................................... 25 G. The Core: Direct Feedback and Automation Using Home Networks .............................. 27 H. Conclusions..................................................................................................................... 34 III. The Impact of Feedback on Energy Consumption: The Meta-Review ..................................... 37 A. How Feedback Works ...................................................................................................... 37 B. Review of Primary Research........................................................................................... 42 C. The Intersection of Contextual and Program Variables ................................................... 54 D. Demand Response and Feedback-Induced Energy Savings .......................................... 63 E. New Habits, Lifestyles, and Choices ................................................................................ 69 F. Section Conclusions ......................................................................................................... 74 IV. Potential Feedback-Induced Energy Savings .......................................................................... 76 V. Conclusions ............................................................................................................................... 84 A. Lessons Learned.............................................................................................................. 84 B. Unresolved Questions ...................................................................................................... 88 C. Recommendations to Policymakers and Utilities ............................................................. 90 VI. References ............................................................................................................................... 92 Appendix A: Summary Table of 57 Feedback Studies ................................................................ 107 Appendix B: Summary Table of Persistence Findings from 28 Feedback Studies ..................... 119 Appendix C: Summary Table of Demand Response and Overall Savings from 11 Feedback Studies ..................................................................................................................................... 127 i Energy Savings and Advanced Metering Meta-Analysis, ACEEE FOREWORD Energy efficiency programs and policies in the U.S. have emphasized use of energy-saving technologies and design practices, and have generally paid scant attention to individual behavior. By contrast, a focus on individual behavior is much more prevalent in Europe, and was also more common in the U.S. in the 1970s and 1980s. In recent years, there has been growing interest in the U.S. in using behavioral approaches. Pilot programs are being developed and evaluated, conferences are being held, and new approaches are being discussed. In particular, there is growing interest in using advanced metering and other customer feedback tools to provide customers with information to encourage shifting of loads to off-peak periods and/or to encourage lower levels of overall consumption. Such approaches have the potential for substantial and cost-effective energy savings, but it can be difficult to separate the hype from legitimate claims. To address this problem, the American Council for an Energy-Efficient Economy, with support from The Overbrook Foundation, Kresge Foundation and Sea Change Foundation, decided to conduct a significant meta-review of more than 60 feedback studies we could find. We examined the results of 57 such studies which had sufficient data on the energy savings from various feedback approaches. The studies covered primarily two continents (North America and Europe) and more than three decades of research. The data is sliced and diced in various ways in order to tease out the effects of different treatments, different time periods, and differences between regions. Overall, we find that significant savings can be achieved, and also find that there are some very promising approaches that need further study. We also find many useful lessons on ways to increase energy savings using lessons from behavioral science, since like all program approaches, for feedback to have the intended results, it must be done well. We hope the results here provide a useful foundation for expanded use of feedback, and for continued experimentation. Such efforts will be important tools for achieving further increases in energy savings and cost-effectiveness. Steven Nadel Executive Director American Council for an Energy-Efficient Economy ii Energy Savings and Advanced Metering Meta-Analysis, ACEEE EXECUTIVE SUMMARY A variety of new feedback initiatives are making energy resources visible to residential consumers throughout the United States (and many other developed countries). As summarized in the chart below, these initiatives are opening the door to potential energy savings that, on average, have reduced individual household electricity consumption 4 to 12% across our multi- continent sample.3 In so doing, feedback is proving a critical first step in engaging and empowering consumers to thoughtfully manage their energy resources. On a national scale, our estimates indicate that feedback programs for the residential sector might generate electricity savings that range from as little as 0.4% to more than 6% of total residential electricity consumption. If broadly implemented throughout the United States using well-designed programs, residential sector feedback programs could provide the equivalent of 100 billion kilowatt-hours of electricity savings annually by 2030. Advanced metering is likely to play an important role in meeting the data demands of feedback programs. While feedback can take many forms and need not include utilities or advanced metering initiatives (AMI), the planned proliferation of advanced meters will provide powerful new opportunities for the collection of detailed, household-level energy use data.4 In combination with a variety of enabling-technologies (e.g., appliance measurement and automation sensors), AMI could provide households with an expanded array of mechanisms for reducing energy waste and maximizing energy bill savings. Of critical importance, however, is the way in which the feedback 3 The range of savings reflects the average savings, by program type, for programs implemented between 1995 and 2010. A total of 36 programs is included. When the scope is limited to studies in the U.S., savings range from 2 to 11%. These U.S. studies took place between 1974 and 2010. 4 In addition to potential residential sector energy savings, advanced metering infrastructure can also provide utilities with the means to improve monitoring of energy distribution and transmission-related energy losses, quickly identify power outages, and reduce the need for meter readers. iii Energy Savings and Advanced
Recommended publications
  • Duke Energy Profile
    Duke Energy Duke Energy, based in North Carolina, is the largest electric utility in the United States and the company emits more carbon pollution than any other utility. Duke also ranks first in fossil fuel generation and second in coal-fired generation. The majority of Duke’s business is in regulated, monopoly utilities in six states: North Carolina, South Carolina, Florida, Indiana, Ohio and Kentucky. While Duke also owns a commercial arm that has invested in wind and solar power that it sells electricity to other utilities, Duke’s electricity customers in its regulated territory receive an electricity mix that contains next to zero renewable energy. The company has shown little appetite for change. In fact, regulatory documents show it intends to have only 4% renewable power in North Carolina by 2029. Duke’s fossil and nuclear-dominated strategy have led to a series of scandals in recent years both for its customers and the environment. Duke’s coal ash waste has become a systemic disaster in the Carolinas, culminating in the 2014 coal ash spill on the Dan River. Nuclear construction projects in the Carolinas and particularly Florida have been beset by problems, costing ratepayers billions of dollars. Duke has protected itself from stricter oversight in its regulated operations by contributing heavily to the state and federal politicians that control its destiny, pouring millions of dollars into campaign contributions and lobbying. Despite massive pressures facing the electric power sector to adapt to technological change that is ushering in a new wave of energy efficiency, rooftop solar power, and distributed energy storage, Duke has yet to show much of an appetite for change.
    [Show full text]
  • Guidelines on Energy Conserving Design of Buildings — 2020 Edition
    GUIDELINES ON ENERGY CONSERVING DESIGN OF BUILDINGS — 2020 EDITION Section I. Purpose 1.1 To encourage and promote the energy conserving design of buildings and their services to reduce the use of energy with due regard to the cost effectiveness, building function, and comfort, health, safety, and productivity of the occupants. 1.2 To prescribe guidelines and minimum requirements for the energy conserving design of new buildings and major renovation of existing buildings that fall and are covered under these guidelines and provide methods for determining compliance with the same to make the buildings always energy-efficient. Section Il. Definition of Terms 2. As used in these Guidelines, the following shall mean: Air— refers to any of the following: Ambient Air — air surrounding a building; the source of outdoor air brought into a building. Exhaust Air — air removed from a space and discharged to outside the building by means of mechanical or natural ventilation. Indoor Air— air in an enclosed occupiable space. Outdoor Air— ambient air that enters a building through a ventilation system, through intentional openings for natural ventilation, or by infiltration. Return Air— air removed from a space to be recirculated, or exhaust air. Supply Air — air delivered by mechanical or natural ventilation to a space and composed of any combination of outdoor air, recirculated air, or transfer air. Ventilation Air — supply air that is outdoor air plus any recirculated air that has been treated for the purpose of maintaining acceptable Indoor Air Quality. Air Conditioning — the process of treating air so as to control simultaneously its temperature, humidity, cleanliness, and distribution to meet the requirements of conditioned space.
    [Show full text]
  • Duke Energy Sustainable Solutions
    DukeDuDu DuEnergykkeke eEnergy EnergyEnergy RDuenewablesDuke kR e RenewablesR enewablesEnergyenewables Energy Wind Renewables SustainableCommercial Regulated Third-PartyPower and U.S. Solar SolutionsSolar BatteryCustomer Portfolio Power Power Storage ProjectsProjects Projects Projects Including O&M sites Garden Michigan Fairbanks Pinnebog Echo McKinley Sigel Brookfield Pisgah Mountain Pine River Minden Isabella Gratiot Spruce Mountain Rosiere Wind Shirley Sterling Berkley EastFutureGen Campbell Hill Top of the World Ledyard Block Island Laurel HillBald Eagle Shoreham Bellefonte Silver Sage Happy Jack North Allegheny New Jersey Sunset Reservoir Sunset Reservoir San Jose Kit Carson Beckjord I San Carlos VictoryVictory Palmer PumpjackPumpjack North Carolina Taylorsville Dogwood Garysburg Murfreesboro Rio Bravo I & II Cimarron II North Carolina Halifax Long Farm Seaboard River Road Rio Bravo I & II Ironwood Taylorsville Dogwood Garysburg Murfreesboro Tarboro Gaston Woodland Winton Long Farm Seaboard Wildwood I & II Battleboro Halifax RiverSunbury Road Longboat Tarboro Gaston Woodland WintonShawboro Longboat Sunbury North Rosamond Frontier Battleboro Capital Partners Highlander Shawboro Highlander Bagdad Prescott Valley Martins Creek Hertford Frontier II Holiness Capital Partners Windsor Cooper Hill Bagdad MurphyMartins Farm Creek Hertford Seville I & II Black WingateHoliness WindsorCreswell Cooper Hill CA Hospitals Murphy Farm Everetts Wildcat Mountain Wingate Creswell EverettsWashington Wildcat White Post Shelby Washington Millfield Broad
    [Show full text]
  • Duke Energy Renewables Blows Into Oklahoma with 200-Megawatt Wind Project
    Duke Energy Renewables blows into Oklahoma with 200-megawatt wind project - Company will sell power to City Utilities of Springfield - Project pushes Duke Energy Renewables past 2,000 megawatts of wind power in U.S. New Duke Energy logo CHARLOTTE, N.C., Dec. 3, 2015 /PRNewswire/ -- Duke Energy Renewables today announced it will build a large-scale wind power project in Oklahoma, the company's first renewables project in the state. When built, it will increase Duke Energy Renewables' U.S. wind capacity to more than 2,000 megawatts (MW). Duke Energy Renewables will build, own and operate the Frontier Windpower Project, sited in Kay County, east of Blackwell, Okla. The 200-MW wind farm will produce enough emissions-free electricity to power about 60,000 homes. "We're investing heavily in renewable energy and surpassing 2,000 megawatts of wind power is a significant accomplishment for our company," said Greg Wolf, president of Duke Energy's Commercial Portfolio. "We are excited to be working with the community and local landowners as we get our first project in this wind-rich state underway. The facility will help City Utilities meet its renewable energy goals while creating economic development opportunities for Kay County." The power will be sold to City Utilities of Springfield, Mo., under a 22-year agreement. "City Utilities is pleased to partner with Duke Energy on the Frontier Windpower Project," said Scott Miller, general manager, City Utilities of Springfield. "Providing a long-term renewable source of power generation in this changing market is critical to the future of utilities.
    [Show full text]
  • Final Report
    Final Report Team 22 - SHARC Sustainable Housing And Responsible Construction Andrew Blunt, Robert LaPlaca, Oscar Lopez, and Julie VanDeRiet Engineering 339/340 Senior Design Project Calvin College May 10, 2018 © 2018, Calvin College and Andrew Blunt, Robert LaPlaca, Oscar Lopez, and Julie VanDeRiet 1 Executive Summary This document outlines the work that Team 22 of Calvin College’s engineering senior design project achieved over the academic year, as well as the goals they achieved. The accomplished work contains research and feasibility analysis for design decisions regarding the design of the a sustainable home. The client family desires a sustainable home near Calvin College. Team 22’s goal was to provide a solution to their problem by designing a home to comply with Passive House Institute US’s certification. This task requires a variety of engineering disciplines with specific objectives that require a parallel design process. This document outlines the research and work that Team 22 has achieved. Table of Contents 1 Executive Summary 2 Introduction 1 2.1 Project Introduction 1 2.1.1 Location 1 2.1.2 Client 1 2.2 Passive House US Requirements 1 2.3 The Team 3 2.3.1 Andrew Blunt 3 2.3.2 Robert LaPlaca 3 2.3.3 Oscar Lopez 4 2.3.4 Julie VanDeRiet 4 2.4 Senior Design Course 4 3 Results 5 3.1 Thermal Results 5 3.2 Home Design 5 3.3 Energy Performance 6 4 Project Management 7 4.1 Team Organization 7 4.2 Schedule 7 4.2.1 First Semester 7 4.2.2 Second Semester 8 4.2.3 Project Management Visualization 8 5 Design Process 9 5.1 Ethical Design
    [Show full text]
  • Policy 11.Qxd.Qxd
    1755 Massachusetts Ave., NW Suite 700 Washington, D.C. 20036 – USA T: (+1-202) 332-9312 F: (+1-202) 265-9531 E: [email protected] www.aicgs.org 34 AICGS POLICY REPORT OVERCOMING THE LETHARGY: CLIMATE CHANGE, ENERGY SECURITY, AND THE CASE FOR A THIRD INDUSTRIAL Located in Washington, D.C., the American Institute for Contemporary German Studies is an independent, non-profit public policy organization that works REVOLUTION in Germany and the United States to address current and emerging policy challenges. Founded in 1983, the Institute is affiliated with The Johns Hopkins University. The Institute is governed by its own Board of Trustees, which includes prominent German and American leaders from the business, policy, and academic communities. Alexander Ochs Building Knowledge, Insights, and Networks for German-American Relations AMERICAN INSTITUTE FOR CONTEMPORARY GERMAN STUDIES THE JOHNS HOPKINS UNIVERSITY TABLE OF CONTENTS Foreword 3 About the Author 5 The American Institute for Contemporary German Studies strengthens the German-American relation - Chapter 1: Introduction 7 ship in an evolving Europe and changing world. The Institute produces objective and original analyses of Chapter 2: Climate Change and Energy Security: An Analysis of developments and trends in Germany, Europe, and the United States; creates new transatlantic the Challenge 9 networks; and facilitates dialogue among the busi - ness, political, and academic communities to manage Chapter 3: The Third Industrial Revolution: How It Might Look - differences and define and promote common inter - or Is It Already Happening? 17 ests. Chapter 4: Making the Economic Case for Climate Action 23 ©2008 by the American Institute for Contemporary German Studies Chapter 5: A New Era for Transatlantic Cooperation on Energy ISBN 1-933942-12-6 and Climate Change? 35 ADDITIONAL COPIES: Notes 47 Additional Copies of this Policy Report are available for $5.00 to cover postage and handling from the American Institute for Contemporary German Studies, 1755 Massachusetts Avenue, NW, Suite 700, Washington, DC 20036.
    [Show full text]
  • Assessing Players, Products, and Perceptions of Home Energy Management ET Project Number: ET15PGE8851
    PG&E’s Emerging Technologies Program ET15PGE8851 PG&E’s Emerging Technologies Program Assessing Players, Products, and Perceptions of Home Energy Management ET Project Number: ET15PGE8851 Project Manager(s): Kari Binley and Oriana Tiell Pacific Gas and Electric Company Prepared By: SEE Change Institute Rebecca Ford Beth Karlin Angela Sanguinetti Anna Nersesyan Marco Pritoni Issued: November 19, 2016 Cite as: Ford, R., Karlin, B., Sanguinetti, A., Nersesyan, A., & Pritoni, M. (2016). Assessing Players, Products, and Perceptions of Home Energy Management. San Francisco, CA: Pacific Gas and Electric. © Copyright, 2016, Pacific Gas and Electric Company. All rights reserved. PG&E’s Emerging Technologies Program ET15PGE8851 Acknowledgements Pacific Gas and Electric Company’s Emerging Technologies Program is responsible for this project. It was developed as part of Pacific Gas and Electric Company’s Emerging Technology program under internal project numbers ET15PGE8851. SEE Change Institute conducted this technology evaluation for Pacific Gas and Electric Company with overall guidance and management from Jeff Beresini, Kari Binely and Oriana Tiell. For more information on this project, contact Pacific Gas and Electric Company at [email protected]. Special Thanks This project was truly a team effort and the authors would like to thank all those who contributed to making it a reality. First, we’d like to acknowledge Pacific Gas and Electric (PG&E) for funding this research. Particular thanks go to Susan Norris for having the vision and foresight to make this project a reality and to Oriana Tiell, Kari Binley, and Jeff Beresini for continued support and feedback throughout the project. Several partners also collaborated with our team on the various research streams and deserve acknowledgement.
    [Show full text]
  • Download a Transcript of the Interview with Doug King
    Episode 63 Smart Energy and Data The show notes: www.houseplanninghelp.com/63 Intro: Data is what we're talking about today. When I go to various different talks they will often reflect on data that has been collected, whether it's from moisture sensors or CO2 sensors so I did wonder whether it's something that I should be doing on my project, making sure that there is something useful coming out of it in terms of data. That probably means planning upfront so I just wanted to find out all about that. Recently I saw a talk on smart energy so I thought we'd tie this all together and see how we go with it. Doug King has a lot of experience in construction, particularly high performance buildings - which is what we like - and he's someone that I've been wanting to talk to for a while. I started by asking him for a little bit of background on his work. Doug: I started out as a physicist. I fell into the profession of building services engineering, out of curiosity, and then I spent the last 20 years thinking about how building services systems work together with building fabric, with the technology to control them and finally how human beings relate to all of that as a system in order to try and understand the key issues about optimisation, how to get these things working together properly rather than the building services systems fighting against the building fabric and the users not understanding what the hell is going on.
    [Show full text]
  • Duke Energy at a Glance
    Duke Energy At A Glance Regulated Utilities Commercial Portfolio Generation Diversity (percent owned capacity)1 Generation Diversity (percent owned capacity)1 38% Natural Gas/Fuel Oil 37% Coal 100% Renewable 18% Nuclear 7% Hydro and Solar Commercial Portfolio primarily builds, develops, and operates Generated (net output gigawatt-hours (GWh))2 wind and solar renewable generation and energy transmission 36% Coal projects throughout the continental U.S. The portfolio includes nonregulated renewable energy, electric transmission, natural 34% Nuclear gas infrastructure and energy storage businesses. 29% Natural Gas/Fuel Oil Commercial Portfolio’s renewable energy includes utility-scale 1% Hydro and Solar wind and solar generation assets which total more than 2,500 MW across 12 states from more than 22 wind farms and 38 2 Customer Diversity (in billed GWh sales) commercial solar farms. Revenues are primarily generated by selling the power through long-term contracts to utilities, electric 33% Residential cooperatives, municipalities, and other customers. 31% General Services Duke Energy currently has about 1,950 MW of wind and solar 21% Industrial energy in operation (pie chart excludes 538 MW, which are 15% Wholesale/Other from equity investments) Regulated Utilities consists of Duke Energy’s regulated generation, electric and natural gas transmission and distribution systems. Regulated Utilities generation portfolio is International Energy a balanced mix of energy resources having different operating Generation Diversity (percent owned capacity)1 characteristics and fuel sources designed to provide energy at the lowest possible cost. 70% Hydro Electric Operations 22% Fuel Oil Owns approximately 50,200 megawatts (MW) of 6% Natural Gas generating capacity 2% Coal Service area covers about 95,000 square miles with International Energy principally operates and manages power an estimated population of 24 million generation facilities and engages in sales and marketing of electric power, natural gas, and natural gas liquids outside the U.S.
    [Show full text]
  • Duke Energy Application for FDF Variance
    139 E. Fourth Street, EM740 Cincinnati, Ohio 45202 April 27, 2016 VIA OVERNIGHT DELIVERY Mr. Robert Kaplan, Acting Regional Administrator Region 5 U.S. Environmental Protection Agency 77 W. Jackson Blvd. Chicago, IL 60604 Ms. Carol S. Comer, Commissioner Indiana Department of Environmental Management Indiana Government Center North, 13th Floor 100 N. Senate Avenue Indianapolis, IN 46204 RE: Fundamentalty Different Factors Variance Application for Duke Energy Indiana, LLC - EdWardsport IGCC Station (NPDES Permit IN0002780) Dear Mr. Kaplan and Ms. Comer. Enclosed, please find an application by Duke Energy Indiana, LLC for a fundamentally different factors variance from recently adopted revisions to the Steam Electric EHluenl Limitation Guidelines that are applicable to gasification wastewater generated at the Edwardsport IGCC Station. This Application is being submitted pursuant to the authority granted by Section 301 (n) of the Clean Water Act, 33 U.S.C. § 1311 {n). Please contact me (513-287-2268 or [email protected]) if you have any questions about the enclosed materials. Sincerely, p~~t~ Duke Energy - Environmental Services Enclosure (:li,ek 011t: Apc!26'",,0I~ •...,.,.,....,,bm 0000- HHl*l o , I\lt. Ut INDIAl'IA Cftrck~•m~n •=UICA1l l•~lc:• N• Mrr lnvel« O.reo Vo~•rfD c,1uA•o11n1 DbcCMtnlS T•l:c tt Latt0.11tt PalcJAnH1uu M?-2011 A~r1Wl016 101!6677 lllOO 000 0.00 50.00 fEl:fOR f,O~ VARIAN('£AP1'llC'IITl0H ©@fP'W 'tool TeuJ Ttttl Toto! Clittk N•<ttblN 0•1< Crf.lnAIMWftf 0tft&41•U L.ate- Chara.n P1WAmo•ot IIIOOl~IOC'I o\p,-12&2016 $30.00 so-oo $0.00 s,P.oo ~~DUKE ~ -ENERGY.
    [Show full text]
  • POSGRADO Sistemas De Información Mención Inteligencia De Negocios Sistemas De Soporte a La Toma De Decisiones
    POSGRADO Sistemas de Información Mención Inteligencia de Negocios Sistemas de Soporte a la Toma de Decisiones CASO: ¿Cuál es el rumor sobre las redes eléctricas inteligentes? Google PowerMeter La infraestructura de electricidad existente en Estados Unidos es anticuada e ineficiente. Las compañías eléctricas proveen energía a los consumidores, pero la red eléctrica no ofrece información sobre la forma en que los consumidores utilizan esa energía, lo cual dificulta el proceso de desarrollar metodologías más eficientes para la distribución. Además, la red eléctrica actual ofrece pocas formas de manejar la potencia que proporcionan las fuentes alternativas de energía, que son componentes imprescindibles de la mayoría de los esfuerzos por hacernos “verdes”. Le presentamos la red eléctrica inteligente. Una red eléctrica inteligente lleva la electricidad de los proveedores a los consumidores mediante el uso de tecnología digital para ahorrar energía, reducir costos y aumentar la confiabilidad y transparencia. La red eléctrica inteligente permite que la información fluya de un lado a otro entre los proveedores de energía y cada uno de los hogares, para que tanto los consumidores como las compañías eléctricas puedan tomar decisiones más inteligentes en relación con el consumo y la producción de la energía. La información de las redes eléctricas inteligentes mostraría a las empresas de servicios públicos cuándo es necesario elevar los precios si la demanda es alta, y cuándo reducirlos si disminuye. Las redes eléctricas inteligentes también pueden ayudar a los consumidores a programar los dispositivos eléctricos que se utilizan mucho, como los sistemas de calefacción y aire acondicionado, para que reduzcan el consumo durante los tiempos de uso pico.
    [Show full text]
  • Task XIII Guide Book 6
    Version 6.0 IEA DSM Task XIII Project Guidebook November 2006 Copyright 2006 - IEA DRR LLC - Proprietary Information SECTION 6: DR TECHNOLOGIES 2 I. INTRODUCTION We all use tools to simplify our daily lives. Things such as the hammer, coffee maker, and computer are used to reduce the time it takes to complete a life’s daily chores. The demand response industry has also developed technologies that simplify the implementation and utilization of DR resources in the energy marketplace. In order for a DR resource to be useful in the energy market it must have the ability to react when needed and its response must be measurable. Tools and systems have been developed that help activate a DR asset (e.g. direct load control) and manage a DR asset portfolio (e.g. DR software products). These and other DR related technologies help the DR resource react to load reduction request and opportunities and they help provide the business process mechanisms that connect the resource to the energy marketplace. This chapter will explore how technology is being used in the demand response industry today. The objective of this section is to help the DR market participant identify technologies and systems that are used to make DR more effective in the energy marketplace from the perspective of the participating customer, the energy provider and the system operator. Improvement in communication and metering technologies has helped the demand response industry grow in recent years. In fact, some people have suggested that the demand response industry was made possible by the improvement and wide scale deployment of Internet communications in the late 1990s.
    [Show full text]