Analyses of Extreme Precipitation Associated with the Kinugawa River Flood in September 2015 Using a Large Ensemble Downscaling Experiment

Total Page:16

File Type:pdf, Size:1020Kb

Analyses of Extreme Precipitation Associated with the Kinugawa River Flood in September 2015 Using a Large Ensemble Downscaling Experiment JournalApril 2019 of the Meteorological Society of Japan, 97(2),M. 387−401, FUJITA et2019. al. doi:10.2151/jmsj.2019-022 387 Special Edition on Tropical Cyclones in 2015 − 2016 Analyses of Extreme Precipitation Associated with the Kinugawa River Flood in September 2015 Using a Large Ensemble Downscaling Experiment Mikiko FUJITA Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan Tomonori SATO Faculty of Environmental Earth Science, Hokkaido University, Hokkaido, Japan Tomohito J. YAMADA Faculty of Engineering, Hokkaido University, Hokkaido, Japan Sho KAWAZOE, Masuo NAKANO Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan and Kosuke ITO University of the Ryukyus, Okinawa, Japan (Manuscript received 1 April 2018, in final form 29 November 2018) Abstract We investigated extremely heavy precipitation that occurred around the Kinugawa River, Japan, in September 2015, and the probability of extreme precipitation occurrence, using data from a large ensemble forecast of more than 1,000 members that were dynamically downscaled to 1.6 km horizontal grid spacing. The observed event was statistically rare among simulated cases and the 3-day accumulated precipitation around the target area was equivalent to the 95th percentile among all simulated ensemble members. Our results show that this extreme precipitation event occurred under specific conditions: two coexisting typhoons at close proximity that produced a high atmospheric instability, and water vapor transported from the Pacific Ocean. We also assessed the prob- ability of extreme precipitation in mountainous areas other than the Kinugawa River case. Heavy precipitation also occurred southwest of the Kinugawa River region due to two typhoons, similar to the Kinugawa River case. The tracks of these typhoons shifted marginally; however, there was a difference in the water vapor supplied to the area, causing heavy precipitation. The large-ensemble downscaled data used in this study hence enabled us to evaluate the occurrence probability of a torrential rainfall event that was rarely observed, which may contribute to updating a disaster-mitigating plan for possible similar disasters in future. Corresponding author: Mikiko Fujita, JAMSTEC, 3173-25 Showa-machi Kanazawaku, Yokohama, Kanagawa 236-0001, Japan E-mail: [email protected] J-stage Advance Published Date: 17 December 2018 ©The Author(s) 2019. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license (https://creativecommons.org/licenses/by/4.0). 388 Journal of the Meteorological Society of Japan Vol. 97, No. 2 Keywords extreme precipitation; ensemble forecast; downscaling; disaster prevention Citation Fujita, M., T. Sato, T. J. Yamada, S. Kawazoe, M. Nakano, and K. Ito, 2019: Analyses of extreme precipi- tation associated with the Kinugawa River flood in September 2015 using a large ensemble downscaling experiment. J. Meteor. Soc. Japan, 97, 387–401, doi:10.2151/jmsj.2019-022. uncertainty in large ensemble datasets explains the 1. Introduction probability of even more extreme events and helps From September 7 to 11, 2015, very heavy continu- improve our understanding of the 2015 Kinugawa ous precipitation occurred in central Japan. The Kinu- heavy rainfall event. gawa River, a tributary of the Tone River, which is a 2. Design of the large-ensemble numerical major river in Japan, experienced extensive flooding, experiment resulting in the worst disaster-related damage in this area over the past century (Japan Society of Civil The use of a large amount of data derived from Engineers Committee 2015; Kitabatake et al. 2017; operational ensemble forecast output, which subsumes Ushiyama et al. 2017). This extreme rainfall event uncertainty caused by chaotic atmospheric behavior, was indirectly affected by two typhoons. The remote can be helpful in the investigation of the mechanisms influence of tropical cyclones (TCs) on synoptic-scale causing record-breaking heavy precipitation and its phenomena is a key condition for producing an ex- probability of occurrence under similar conditions treme precipitation event (e.g., Galarneau et al. 2010; elsewhere. In this study, we used the output of a Tsuguti and Kato 2014). Nguyen-Le and Yamada global ensemble forecast to generate members of a (2017) investigated Typhoon Lionrock (TY1610) and large ensemble and performed dynamical downscaling its remote effect on heavy rainfall in Hokkaido, north- using the large ensemble forecast to investigate the ern Japan. Their numerical simulation, which removed 2015 flooding in the Kinugawa region. the vortex associated with the typhoon, showed that The Global Ensemble Forecast System of the remote rainfall in Hokkaido was largely suppressed, National Center for Environmental Prediction (GEFS– thereby highlighting the importance of moisture NCEP, Table 1) consists of 21 ensemble members at a transport toward Hokkaido by the synoptic-scale cir- horizontal resolution of 1° × 1° (Whitaker et al. 2008). culation related to the TC location. The forecast is performed with 21 different initial To better prepare for and mitigate similar hazards conditions at 6 h intervals, and 16 days of forecast of this type, the probability of extreme events and data are available. These data were adopted in view their contributing preconditions must be investigated. of their compatibility with the physics of the regional Although the flooding event in September 2015 im- model (see Section 3) and data accessibility. The target pacted only a limited region, similar events including period during which extreme precipitation occurred heavy precipitation may have occurred in adjacent in the real world (from 0000 UTC on September 8 to areas due to chaotic atmospheric behavior. The fre- 0000 UTC on September 11, 2015) was set for dy- quency of extreme precipitation events has increased namical downscaling by the regional model using the worldwide over the past century (e.g., Frich et al. GEFS–NCEP ensemble forecast as forcing data (see 2002), including in Japan (Fujibe et al. 2005); there- Section 3 for details of the regional model). Note that fore, the risk of disasters due to such events has also the dates and duration of the downscaling experiment increased. In addition, changes in the frequency of by the regional model are the same among all ensem- heavy precipitation events have been projected based ble members. However, the input data for the regional on future climate scenarios (e.g., Endo et al. 2017). model are different in each case due to variation in the In this pilot study, we applied statistical methods initial conditions of the GEFS–NCEP forecast (Fig. to investigate an extreme precipitation event and the 1a). We used lagged initial conditions for the forecast probabilities of such an event in the surrounding area to create the ensemble field, as performed in previous using ensemble forecast data with more than 1,000 studies (e.g., Hoffman and Kalnay 1983; Nakano et al. members. We used the extremely heavy rainfall that 2017). As shown in Figure 1a, 1,029 ensemble mem- occurred around the Kinugawa River as an example. bers were adopted from the GEFS–NCEP forecasts: Our results show that the consideration of chaotic 21 ensemble members × 49 initial conditions corre- April 2019 M. FUJITA et al. 389 Table 1. Data used for the dynamical downscaling experiment. Data name Horizontal resolution Type GEFS-NCEP 16-days forecast, four-times a day (Global Ensemble Forecast System of the National 1° × 1° with forecasts (00, 06, 12, 18 UTC), Center for Environmental Prediction) 21 ensemble members FNL 1° × 1° Operational Analysis (NCEP Final Operational Global Analysis data) Fig. 1. (a) Schematic diagram of the ensemble forecast data for dynamical downscaling. (b) Regional model domains. The color shading in Domain 3 (enlargement) indicates the topography [m] and black lines show the rivers. sponding to 6 h interval data (four times per day). event may depend on the model predictability. We The 49 sets of initial conditions were 12 days from assumed that both the ensemble spread (representing August 27 to September 7, plus 0000 UTC September uncertainty in the initial conditions) and lagged initial 8, resulting in 49 sets of initial conditions in total conditions (representing uncertainty due to prediction (i.e., 4 × 12 + 1). All the data of the 1,029 ensemble error) adequately represented uncertainty in the initial members from GEFS–NCEP were used as input data and boundary conditions for the dynamical downscal- for the regional model. ing experiment. It is likely that the calculated prob- Because the prediction ability of each forecast model ability of heavy rainfall would be different if other generally has limitations in terms of the synoptic fields parent forecast models or initial dates were selected. of the target event, these forecast data may contain However, because this was a pilot study, we used only model bias derived from errors in the particular model forecast data obtained from GEFS–NCEP to evaluate and its physical scheme. Therefore, the uncertainty (or the ability of large ensemble dynamical downscaling ensemble spread) of the synoptic fields at the target to assess a particular event. 390 Journal of the Meteorological Society of Japan Vol. 97, No. 2 Table 2. Names of the dynamical downscaling experiment. 3. Regional model settings and used data Input (initial condition and Experiment Number of To reproduce heavy rainfall events, we performed boundary data) for name experiments dynamical downscaling using the Weather Research the dynamical downscaling and Forecasting (WRF) model V3.5.1 (Skamarock DS-GEFS GEFS-NCEP 1029 et al. 2008). Each ensemble forecast output of GEFS– DS-FNL FNL 1 NCEP was used as initial conditions and boundary data for each of the 1,029 ensemble members during the target period, from 0000 UTC September 8 to of the typhoon center was determined as the grid 0000 UTC September 11, 2015 (hereafter, these cell with the lowest SLP below 1,000 hPa in the sub- ensemble experiments are referred to as DS–GEFS; sequent area.
Recommended publications
  • Cooperation Between Fukushima Prefecture and the IAEA
    Radiation Monitoring and Remediation Following the Fukushima Daiichi Nuclear Power Plant Accident Cooperation between Fukushima Prefecture and the IAEA INTERIM REPORT (2013 to 2020) 【Fukushima Prefecture Initiative Projects】 【Detailed version】 (Temporary translation) March 2021 Fukushima Prefecture Index Introduction 1 1. FIP1 Survey, and evaluation of the effect, of radiocaesium dynamics in the aquatic systems based on the continuous monitoring 1.1. Abstract 5 1.2. Purpose 5 1.3. Content of implementation 6 1.4. Results 8 1.5. Conclusions 15 2. FIP2 Survey of radionuclide movement with wildlife 2.1. Abstract 17 2.2. Purpose 17 2.3. Content of implementation 18 2.4. Results 19 2.5. Conclusions 26 3. FIP3 Sustainable countermeasures to radioactive materials in fresh wat er system 3.1. Abstract 27 3.2. Purpose 27 3.3. Content of implementation 27 3.4. Results 31 3.5. Conclusions 35 4. FIP4 Development of environmental mapping technology using GPS walking surveys( Ended in FY2015) 4.1. Abstract 37 4.2. Purpose 37 4.3. Content of implementation 39 4.4. Results 41 4.5. Conclusions 48 5. FIP5 Study of proper treatment of waste containing radioactive material 5.1. Abstract 49 5.2. Purpose 49 5.3. Content of implementation 51 5.4. Results 55 5.5. Conclusions 69 Report summary 70 Introduction The Great East Japan Earthquake occurred on 11 March 2011. It was followed by the accident of Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Plant1 , and radioactive materials have been released into the environment which contaminated the land. Due to the contamination of the land and other relevant reasons, more than 160,000 prefectural residents were forced to evacuate.
    [Show full text]
  • Colonization, Statemaking, and Development: a Political Ecology of the Saru River Development Project, Hokkaido, Japan
    AN ABSTRACT OF THE THESIS OF Michael J. Ioannides for the degree of Master of Arts in Applied Anthropology presented on December 7, 2017. Title: Colonization, Statemaking, and Development: A Political Ecology of the Saru River Development Project, Hokkaido, Japan. Abstract approved: ______________________________________________________ Bryan D. Tilt Although dam construction has been an integral tool in development initiatives for nearly a century, dams can have significant negative impacts on local residents, particularly those who are permanently displaced from their homes and must be resettled elsewhere. Dams have unique impacts on indigenous peoples. As a result, many dam construction projects become flashpoints for organized resistance among indigenous peoples. This thesis examines a case that exemplifies indigenous resistance to dam construction: the Saru River Development Project in Hokkaido, Japan, involving the Nibutani Dam (completed 1997) and the Biratori Dam (under construction). This project has been famously opposed by indigenous Ainu landholders. Although much has been written about the legal and political significance of the Ainu’s resistance to the Saru River Development Project, information on the project’s impacts on local Ainu residents is scattered across many disparate sources, and no comprehensive English-language account has yet been produced. This thesis seeks to fill this gap in the literature by cataloging the impacts of the Saru River Development Project as comprehensively as possible and synthesizing available facts into a holistic account. This thesis organizes these impacts according to the newly-published Matrix Framework (Kirchherr and Charles 2016), enabling it to be more easily compared with other case studies of dam construction around the world.
    [Show full text]
  • Country Report
    COUNTRY REPORT ESCAP/WMO Typhoon Committee 42nd Session 25 - 29 January 2010 Singapore JAPAN CONTENTS I. OVERVIEW OF TROPICAL CYCLONES WHICH HAVE AFFECTED/IMPACTED MEMBER’S AREA SINCE THE LAST TYPHOON COMMITTEE SESSION................................................................................................ 5 1. METEOROLOGICAL ASSESSMENT (HIGHLIGHTING FORECASTING ISSUES/IMPACTS)........................ 5 2. HYDROLOGICAL ASSESSMENT (HIGHLIGHTING WATER-RELATED ISSUES/IMPACT).......................... 8 3. SOCIO-ECONOMIC ASSESSMENT (HIGHLIGHTING SOCIO-ECONOMIC AND DPP ISSUES/IMPACTS) ... 9 4. REGIONAL COOPERATION ASSESSMENT (HIGHLIGHTING REGIONAL COOPERATION SUCCESSES AND CHALLENGES) .............................................................................................................................. 9 II. SUMMARY OF PROGRESS IN KEY RESULT AREAS........................................... 10 1. PROGRESS ON KEY RESULT AREA 1: REDUCED LOSS OF LIFE FROM TYPHOON-RELATED DISASTERS. ................................................................................................................................ 10 a. Meteorological Achievements/Results ............................................................................................. 10 b. Hydrological Achievements/Results ................................................................................................ 10 c. Disaster Prevention and Preparedness Achievements/Results............................................................ 10 c-1. Major Disaster and Response
    [Show full text]
  • The Global Climate System Review 2003
    The Global Climate System Review 2003 SI m* mmmnrm World Meteorological Organization Weather • Climate • Water WMO-No. 984 socio-economic development - environmental protection - water resources management The Global Climate System Review 2003 Bfâ World Meteorological Organization Weather • Climate • Water WMO-No. 984 Front cover: Europe experienced a historic heat wave during the summer of 2003. Compared to the long-term climatological mean, temperatures in July 2003 were sizzling. The image shows the differences in daytime land surface temperatures of 2003 to the ones collected in 2000. 2001. 2002 and 2004 by the moderate imaging spectroradiomeier (MODISj on NASA's Terra satellite. (NASA image courtesy of Reto Stôckli and Robert Simmon, NASA Earth Observatory) Reference: Thus publication was adapted, with permission, from the "State of the Climate for 2003 "• published in the Bulletin of the American Meteorological Society. Volume 85. Number 6. J'une 2004, S1-S72. WMO-No. 984 © 2005, World Meteorological Organization ISBN 92-63-10984-2 NOTE The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Meteorological Organization concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Contents Page Authors 5 Foreword Chapter 1: Executive Summary 1.1 Major climate anomalies and episodic events 1.2 Chapter 2: Global climate 9 1.3 Chapter 3: Trends in trace gases 9 1.4 Chapter 4: The tropics 10 1.5 Chapter 5: Polar climate 10 1.6 Chapter 6: Regional climate 11 Chapter 2: Global climate 12 2.1 Global surface temperatures ...
    [Show full text]
  • World Climate News, No. 25, June 2004
    World Meteorological Organization No. 25 • June 2004 Weather • Climate • Water Dramatic visualization of ocean dynamic topography highlights the importance of satellite observations in ocean/climate studies. Units are centimetres. Climate and the marine Courtesy NASA/Jet Propulsion Laboratory-Caltech environment— see page 3 CONTENTS 3 6 10 Climate and the marine environment Guidelines for the Climate Watch Rescuing marine data 4 7 10 Global aerosol watch IPCC’s Fourth Assessment From COP-9 to COP-10 5 8 11 Changes in Arctic Ocean salinity Surface-based ocean observations Progress in hydrological 6 for climate: an update data rescue Towards a United Nations global 9 12 marine assessment Climate in 2003 Dust,carbon and the oceans Issued by the World Meteorological Organization Printed entirely on environmentally friendly paper Geneva • Switzerland CALENDAR 1-8 June Foreword Kos, Greece International Quadrennial This issue of World Cl i m ate Ne ws focuses on climate and the oceans. As noted in Ozone Symposium “QOS the lead article, mankind depends on the ocean in many ways. Thanks to recent 2004” increases in our ability to observe marine systems, we know that the oceans are con- stantly changing. The changes result from interactions between the ocean and 3-5 June atmosphere as well as from inputs from the land. In recent decades, several recurring Barcelona, Spain patterns of climate variability in the oceans have been identified, such as the now First World Conference on well-known El Niño Southern Oscillation, that involve ocean basin-wide changes in Broadcast Meteorology temperature, currents and sea-level. There is also longer-term variability, as yet incompletely determined, that includes trends resulting from human activities.
    [Show full text]
  • Member Report
    MEMBER REPORT ESCAP/WMO Typhoon Committee 10th Integrated Workshop Japan Kuala Lumpur, Malaysia 26 – 29 October 2015 CONTENTS I. Overview of tropical cyclones that have affected Members’ areas in 2015 1. Meteorological assessment 2. Hydrological assessment I. Report on the collapse of a dyke along the Kinu River on 10 September 2015 II. Sediment-related incidents in Japan in 2015 II. Summary of progress in Key Result Areas Asian Conference on Disaster Reduction (ACDR) 2015 Urban Search-and-rescue Training in Singapore as an ADRC activity for disaster reduction Visiting Researchers from ADRC Member Countries Activities of TC, Korea and ICHARM at the 7th World Water Forum in Korea, April 2015 Introduction of SAPHIR/Megha-Tropiques radiance data to JMA’s operational global NWP system, June 2015 Initiation of Himawari-8 operation on 7 July 2015 TCC products and publications related to tropical cyclones Evaluation of the accuracy of tropical cyclone intensity estimation using single ground-based Doppler radar observation Overview of tropical cyclones that have affected Members’ areas in 2015 1. Meteorological assessment In 2015, 13 tropical cyclones (TCs) of tropical storm (TS) intensity or higher had come within 300 km of the Japanese islands as of 5 October. Japan was affected by 7 of these, with 4 making landfall. These 7 TCs are described below, and their tracks are shown in Figure 1. (1) TY Noul (1506) Noul was upgraded to TS intensity east of Yap Island at 18 UTC on 3 May. NOUL gradually turned northwestward and reached its peak intensity with maximum sustained winds of 110 kt and a central pressure of 920 hPa east of Luzon Island at 00 UTC on 10 May.
    [Show full text]
  • Typhoon Hagibis Strikes the Japanese Archipelago: What Happened Behind the Scenes As Japan’S Capital Narrowly Escaped Becoming Submerged
    SOCIETY Typhoon Hagibis strikes the Japanese Archipelago: What happened behind the scenes as Japan’s capital narrowly escaped becoming submerged The Arakawa River went above the dangerous water level at multiple points. Although Typhoon Hagibis (Typhoon 19) caused enormous damage to many parts of Japan in 2019, Tokyo saw no dikes collapse and escaped serious flood damage. We investigated the truth of what occurred behind the scenes during the Japanese capital’s escape from submersion, based on the reports of local government officials and flood control facilities. Asano Yuki and Sakurai Shun, Wedge editorial department In October 2019, Typhoon Hagibis brought record rainfall, mainly to Shizuoka Prefecture, the Kanto and Koshinetsu regions and the Tohoku region. Special heavy rain warnings were issued for a total of 13 prefectures, including Tokyo, with dikes breaking at 140 locations along 71 rivers (as of 6:00 AM on November 8), and many parts of the country were seriously damaged, including flooding. Even in this situation, although the levels of many rivers in Tokyo rose higher than usual, the dikes escaped damage. We investigated the truth of what happened behind the scenes to enable the capital to escape submersion. Discuss Japan—Japan Foreign Policy Forum No. 56 30% of the rainfall in the river basin was discharged through the discharge channel Looking back on the desperate situation he experienced when Typhoon Hagibis struck Japan on October 12, Hasegawa Yutaka, director of the Crisis-Management Division at the Katsushika City Office in Tokyo, said, “The water rose above the dangerous water level in the upper reaches of the Nakagawa River and the Ayase River, which run through Katsushika City, and we were in a very bad situation.
    [Show full text]
  • WMO/CAS/WWW SIXTH INTERNATIONAL WORKSHOP on TROPICAL CYCLONES Topic 3.3 : Targeted Observation and Data Assimilation in Track P
    WMO/CAS/WWW SIXTH INTERNATIONAL WORKSHOP on TROPICAL CYCLONES Topic 3.3 : Targeted observation and data assimilation in track prediction Rapporteur: Chun-Chieh Wu PSA Email : [email protected] Fax: 886-2-23632303 Working Group: Sim Aberson, Brian Etherton, Sharan J. Majumdar, Melinda S. Peng, Michael Morgan, Steve Tracton, Zhaoxia Pu, Samuel Westrelin, and Munehiko Yamaguchi 3.3.1. Introduction The objective of this report is to document recent progress since IWTC-5 on the topic related to the Targeted observation and data assimilation in track prediction. The report begins by reviewing the background of targeted observations, followed by an introduction to the techniques specifically used for targeted observations and data assimilation to improve tropical cyclone track prediction. These findings are discussed along with some tentative recommendations on these important scientific issues to the workshop. To optimize limited aircraft and satellite resources, making targeted observations only in the critical areas that will have the maximum influence on numerical weather forecasts of tropical cyclones (TC) is important. Therefore, targeted observing strategies for aircraft missions and satellite products must be developed. The prerequisite for devising the observing strategy is to identify the sensitive areas that will have the greatest influence in improving the numerical forecast, or minimizing the forecast error. In aircraft missions in the early 1990s, sensitive areas were subjectively decided through synoptic analysis or some limited numerical model sensitivity tests. For example, the areas around the surface low centers or the upper-level jet streams were considered to be the sensitive areas that needed to be observed to affect the atmospheric characteristics around the weather systems.
    [Show full text]
  • Recent Advances in Research and Forecasting of Tropical Cyclone Rainfall
    Recent Advances in Research and Forecasting of Tropical Cyclone Rainfall Kevin Cheung1, Zifeng Yu2, Russell L. Elsberry3, Michael Bell4, Haiyan Jiang5, Tsz Cheung Lee6, Kuo-Chen Lu7, Yoshinori Oikawa8, Liangbo Qi9, Robert F. Rogers10, Kazuhisa Tsuboki11 1Macquarie University, Australia 2Shanghai Typhoon Institute, China 3University of Colorado-Colorado Springs, USA 4Colorado State University, USA 5Florida International University, USA 6Hong Kong Observatory, Hong Kong 7Pacific Science Association 8RSMC Tokyo/Japan Meteorological Agency, Japan 9Shanghai Meteorological Service, China 10NOAA/AOML/Hurricane Research Division, USA 11Nagoya University, Japan February 2018 Tropical Cyclone Research and Review Special Issue Corresponding Author: Kevin Cheung, Department of Environmental Sciences Macquarie University, North Ryde, NSW 2109, Australia Email: [email protected] Abstract In preparation for the Fourth International Workshop on Tropical Cyclone Landfall Processes (IWTCLP-IV), a summary of recent research studies and the forecasting challenges of tropical cyclone (TC) rainfall has been prepared. The extreme rainfall accumulations in Hurricane Harvey (2017) near Houston, Texas and Typhoon Damrey (2017) in southern Vietnam are examples of the TC rainfall forecasting challenges. Some progress is being made in understanding the internal rainfall dynamics via case studies. Environmental effects such as vertical wind shear and terrain-induced rainfall have been studied, as well as the rainfall relationships with TC intensity and structure. Numerical model predictions of TC-related rainfall have been improved via data assimilation, microphysics representation, improved resolution, and ensemble quantitative precipitation forecast techniques. Some attempts have been made to improve the verification techniques as well. A basic forecast challenge for TC-related rainfall is monitoring the existing rainfall distribution via satellite or coastal radars, or from over- land rain gauges.
    [Show full text]
  • Evaluating the Impacts of Extratropical Transitioning on Typhoon Losses Via
    P1.35 EVALUATING THE IMPAC TS OF EXTRATROPICAL TRA NSITIONING ON TYPHOON LOSSES VIA SYNOPTIC CASE STUDIES Peter J. Sousounis* and Mélicie Desflots AIR Worldwide Corporation, Boston, MA 1. MOTIVATION FOR THE STUDY The significance of this high frequency is illustrated in Fig. 3, which is adapted from Klein The frequency of Extratropical Transitioning (2000) who noted that extratropical transitioning (XTT) in the Northwest Pacific Basin is well is characterized by a growth in the asymmetry known. Extratropical Transitioning frequency or and the size of the circulation and associated its significance near Japan however is less well- cloud and precipitation shields. The asymmetry documented but likely significant. For example, results from the presence of baroclinicity, which according to the General Insurance Association is typically found at higher latitudes and / or at of Japan (GIAJ), 9 of the top 10 greatest later times of the year. meteorological insured losses in Japan’s history have occurred from typhoons that have The economic impacts of XTT in Japan can undergone XTT within 500 km of Japan’s Coast be dramatic. Buildings and owners in middle and (cf. Fig. 1). While the storm track information in high latitudes and well inland may be less well Fig. 1 by itself is not conclusive, it is possible that prepared for storm-force winds and heavy the XTT process contributed to enhanced precipitation. Whether due to building codes that damage - especially since the process typically are less strict, a lack of evacuation strategies and begins 24-48 hours before the Japanese emergency preparedness, or poor forecasting, a Meteorological Agency (JMA) indicates transitioned storm can have serious impacts.
    [Show full text]
  • Appendix (PDF:4.3MB)
    APPENDIX TABLE OF CONTENTS: APPENDIX 1. Overview of Japan’s National Land Fig. A-1 Worldwide Hypocenter Distribution (for Magnitude 6 and Higher Earthquakes) and Plate Boundaries ..................................................................................................... 1 Fig. A-2 Distribution of Volcanoes Worldwide ............................................................................ 1 Fig. A-3 Subduction Zone Earthquake Areas and Major Active Faults in Japan .......................... 2 Fig. A-4 Distribution of Active Volcanoes in Japan ...................................................................... 4 2. Disasters in Japan Fig. A-5 Major Earthquake Damage in Japan (Since the Meiji Period) ....................................... 5 Fig. A-6 Major Natural Disasters in Japan Since 1945 ................................................................. 6 Fig. A-7 Number of Fatalities and Missing Persons Due to Natural Disasters ............................. 8 Fig. A-8 Breakdown of the Number of Fatalities and Missing Persons Due to Natural Disasters ......................................................................................................................... 9 Fig. A-9 Recent Major Natural Disasters (Since the Great Hanshin-Awaji Earthquake) ............ 10 Fig. A-10 Establishment of Extreme Disaster Management Headquarters and Major Disaster Management Headquarters ........................................................................... 21 Fig. A-11 Dispatchment of Government Investigation Teams (Since
    [Show full text]
  • Title Regional Disaster Events and Environment
    Regional Disaster Events and Environment Simulations by Title Atmosphere-Ocean Coupled Model( Dissertation_全文 ) Author(s) LEE, Han Soo Citation Kyoto University (京都大学) Issue Date 2007-09-25 URL http://dx.doi.org/10.14989/doctor.k13373 Right 許諾条件により本文は2008-04-01に公開 Type Thesis or Dissertation Textversion author Kyoto University Regional Disaster Events and Environment Simulations by Atmosphere-Ocean Coupled Model (大気•海洋結合モデルによる地域環境•災害事象シミュレーション) Han Soo LEE September, 2007 1 Regional Disaster Events and Environment Simulations by Atmosphere-Ocean Coupled Model (大気•海洋結合モデルによる地域環境•災害事象シミュレーション) Han Soo LEE September, 2007 2 Abstract An atmosphere-ocean coupled model was developed based on a preexisting non-hydrostatic mesoscale atmosphere model (MM5) and non-hydrostatic ocean circulation model (MITgcm). This model together with a pre-established wind-wave-currents coupled model was applied to a number of regional environmental issue and disaster events to reproduce the present status and past situations and to help our understanding of the physical processes of such problems in terms of atmosphere-ocean interactions including the sea surface waves in the interface between air and sea. The disaster events and environmental issue studied in this thesis are follows. 1) Storm surge induced by Hurricane Katrina in the Gulf coast of USA in 2005. 2) Extreme high waves at Hara coast, Suruga Bay in Japan caused by the super-Typhoon TIP in 1979. 3) Positive and negative feedbacks in typhoon-ocean interaction in case of Typhoon ETAU in 2003. 4) Thermal water circulation in a dam-made lake (Yachiyo Lake) in Hiroshima, Japan concerning on the hydrodynamics in the lake. 5) Reanalysis of the past 47 storms that caused disasters in West Kyushu, Japan.
    [Show full text]