World Climate News, No. 25, June 2004

Total Page:16

File Type:pdf, Size:1020Kb

World Climate News, No. 25, June 2004 World Meteorological Organization No. 25 • June 2004 Weather • Climate • Water Dramatic visualization of ocean dynamic topography highlights the importance of satellite observations in ocean/climate studies. Units are centimetres. Climate and the marine Courtesy NASA/Jet Propulsion Laboratory-Caltech environment— see page 3 CONTENTS 3 6 10 Climate and the marine environment Guidelines for the Climate Watch Rescuing marine data 4 7 10 Global aerosol watch IPCC’s Fourth Assessment From COP-9 to COP-10 5 8 11 Changes in Arctic Ocean salinity Surface-based ocean observations Progress in hydrological 6 for climate: an update data rescue Towards a United Nations global 9 12 marine assessment Climate in 2003 Dust,carbon and the oceans Issued by the World Meteorological Organization Printed entirely on environmentally friendly paper Geneva • Switzerland CALENDAR 1-8 June Foreword Kos, Greece International Quadrennial This issue of World Cl i m ate Ne ws focuses on climate and the oceans. As noted in Ozone Symposium “QOS the lead article, mankind depends on the ocean in many ways. Thanks to recent 2004” increases in our ability to observe marine systems, we know that the oceans are con- stantly changing. The changes result from interactions between the ocean and 3-5 June atmosphere as well as from inputs from the land. In recent decades, several recurring Barcelona, Spain patterns of climate variability in the oceans have been identified, such as the now First World Conference on well-known El Niño Southern Oscillation, that involve ocean basin-wide changes in Broadcast Meteorology temperature, currents and sea-level. There is also longer-term variability, as yet incompletely determined, that includes trends resulting from human activities. At the 14-17 June same time, weather, ecosystem and human health changes are associated with the Helsinki, Finland Seventh International Winds recurring climate patterns, and with changes in the oceans. Climate variability in Workshop the global marine environment affects most of mankind in one way or another. These recurring climate patterns and some of their impacts on society have been 21-25 June identified on the basis of many decades of ocean and terrestrial observations that Baltimore, USA have been collected and archived in databases around the world. Unfortunately, First International CLIVAR many regions of the global ocean are insufficiently observed to provide a confident Science Conference basis for climate-variability and climate-impact studies. Increasing the amount of information available on the global ocean and coastal waters is essential for many 5-9 July reasons that have been described, for example, in the Global Climate Observing Brisbane, Australia System (GCOS) Adequacy Report and the Assessment Reports of the Inter- International Conference on governmental Panel on Climate Change (IPCC), and priority actions to improve Storms global ocean observing systems have been identified. 26-30 July In addition to the lead article, which reviews the two-way interactions between cli- Exeter, United Kingdom mate and the marine environment, focusing on the importance of enhanced ocean Eighth session of the Baseline monitoring, other articles in this issue address topics such as the present status of Surface Radiation Network ocean observing systems, both in situ and space-based; assessing climate change and Workshop and Scientific its impacts in the marine environment; and current and planned activities of the Review IPCC and the United Nations Framework Convention on Climate Change. 4-9 September Christchurch, New Zealand Eighth IGAC Conference on Atmospheric Chemistry (M. Jarraud) 12-16 September Secretary-General Beijing, China International Symposium and WWRP Research Planning Workshop on Sand and Dust Storms For more information about WMO, contact: Residents of Canada and the USA should order through: The World Meteorological Organization The American Meteorological Society, 27 September-1 October 7 bis, avenue de la Paix WMO Publications Center, Berchtesgaden, P.O. Box 2300 45 Beacon Street, Boston, MA 02108, USA CH-1211 Geneva 2, Switzerland Germany Tel.: (1) 617 227 2425 International Conference on Internet: http://www.wmo.int Tel: (41) (0)22 730 8314/8315 Fax: (1) 617 742 8718 Hydrology of Mountain Fax: (41) (0)22 730 2829 E-mail: [email protected] Environments E-mail: [email protected] The designations employed and the presentation of Orders for publications may be sent to this material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat address or: of the World Meteorological Organization concerning Tel.: (41) (0)22 730 83 07 the legal status of any country, territory, city or area, or Fax: (41) (0)22 730 80 22 of its authorities, or concerning the delimitations of its E-mail: [email protected] frontiers or boundaries. 2 WORLD CLIMATE NEWS • June 2004 No. 25 CLIMATE AND THE MARINE ENVIRONMENT Mankind depends on the ocean in many ocean and ways. Thanks to recent increases in our coastal ability to observe marine systems, we waters is know that the oceans are constantly essential for changing. The changes result from inter- many rea- actions of the ocean and atmosphere, as sons that well as from inputs from the land. In recent have been decades, several recurring patterns of cli- described mate variability have been identified that elsewhere. involve basin-wide changes in tempera- Among the ture, currents and sea level. These patterns interna- have been shown to be linked to changes tional that affect our nations. There is also agreements longer-term variability, as yet incompletely that require determined, that includes trends resulting sustained from human activities. and routine Weather, ecosystem and human-health observa- changes are associated with the recurring tions of climate patterns. These range from inter- oceanic annual variations in the frequency, intensity and coastal and track locations of tropical cyclones, to systems to the increased chance of unusual patterns of achieve regional temperatures and rainfall, to major their goals species distribution changes in regional are the UN fisheries (see figure), to changes in the dis- Convention tribution of disease-carrying species. on the Law Coastal zone impacts can be particularly of the Sea intense, ranging from flooding and erosion (UNCLOS, of the shoreline to increases in the trans- including port of nutrients and pollutants from land the agreement on Straddling Fish Stocks Pacific sardine and anchovy to sea, habitat loss, harmful algal blooms, and Highly Migratory Fish Stocks), the catches vary greatly from oxygen depletion and reductions in fish- Jakarta Mandate (on biodiversity), the decade to decade but correlate strongly with long- eries’ recruitment. Climate variability in Ramsar Convention on Wetlands, the term records of marine the global marine environment affects Global Plan ofAction on Land-Based climate indices. most of mankind in one way or another. Sources of Pollution, the Safety of Life at We have discovered these recurring cli- Sea Convention (SOLAS—see page 12), mate patterns and some of their impacts and the UN Conference on Environment Sources Figure courtesy of Francisco Chavez on society thanks to many decades of and Development (Rio de Janeiro, 1992). (MBARI) ocean and terrestrial observations that Priority actions to improve our Text based on a contribution from: have been collected by nations and global ocean observing systems have archived in databases around the world. been identified to meet the needs of Dr D.E. Harrison Chairman, Ocean Observations Panel Data collection and sharing between the United Nations Framework for Climate nations provides the foundation of what Convention on Climate Change, the Pacific Marine Environmental Labora- we now know. More could be known if all Intergovernmental Panel on Climate tory, NOAA/PMEL/OCRD, Seattle, USA nations shared the data that have been Change and the international climate Dr Anthony Knap Co-chairman, Coastal Ocean Observa- agreed to be essential climate information. research and forecasting communities. tions Panel It is unfortunate that, even with complete The Global Climate Observing System, The Bermuda Biological Station for data sharing, many regions of the global the Global Ocean Observing System Research, Inc, Bermuda ocean are insufficiently observed to pro- (GOOS) and the World Climate Professor Thomas C. Malone Co-chairman, Coastal Ocean vide a confident basis for climate variabil- Research Programme have helped Observations Panel ity and climate impact studies. In these develop recommendations in this area. Horn Point Laboratory University of Maryland Center for regions, it is typical to find insufficient A widely supported, internationally Environmental Science, USA numbers of observations even to charac- coordinated and sustained effort simi- terize climate variability, much less to dif- lar to that of the World Weather Watch ferentiate between variability and trends. will be needed. Although the global Increasing the amount of information ocean is not in any nation’s backyard, it available to our societies from our global is important to every nation. WORLD CLIMATE NEWS • June 2004 No. 25 3 Improvement of coastal observing sys- of plans as we learn more about ocean cli- Observing the tems will be directed to address national and mate, as we have technology that permits ocean surface regional priorities that will be different in us to observe more variables of interest, different
Recommended publications
  • Cooperation Between Fukushima Prefecture and the IAEA
    Radiation Monitoring and Remediation Following the Fukushima Daiichi Nuclear Power Plant Accident Cooperation between Fukushima Prefecture and the IAEA INTERIM REPORT (2013 to 2020) 【Fukushima Prefecture Initiative Projects】 【Detailed version】 (Temporary translation) March 2021 Fukushima Prefecture Index Introduction 1 1. FIP1 Survey, and evaluation of the effect, of radiocaesium dynamics in the aquatic systems based on the continuous monitoring 1.1. Abstract 5 1.2. Purpose 5 1.3. Content of implementation 6 1.4. Results 8 1.5. Conclusions 15 2. FIP2 Survey of radionuclide movement with wildlife 2.1. Abstract 17 2.2. Purpose 17 2.3. Content of implementation 18 2.4. Results 19 2.5. Conclusions 26 3. FIP3 Sustainable countermeasures to radioactive materials in fresh wat er system 3.1. Abstract 27 3.2. Purpose 27 3.3. Content of implementation 27 3.4. Results 31 3.5. Conclusions 35 4. FIP4 Development of environmental mapping technology using GPS walking surveys( Ended in FY2015) 4.1. Abstract 37 4.2. Purpose 37 4.3. Content of implementation 39 4.4. Results 41 4.5. Conclusions 48 5. FIP5 Study of proper treatment of waste containing radioactive material 5.1. Abstract 49 5.2. Purpose 49 5.3. Content of implementation 51 5.4. Results 55 5.5. Conclusions 69 Report summary 70 Introduction The Great East Japan Earthquake occurred on 11 March 2011. It was followed by the accident of Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Plant1 , and radioactive materials have been released into the environment which contaminated the land. Due to the contamination of the land and other relevant reasons, more than 160,000 prefectural residents were forced to evacuate.
    [Show full text]
  • Typhoon Neoguri Disaster Risk Reduction Situation Report1 DRR Sitrep 2014‐001 ‐ Updated July 8, 2014, 10:00 CET
    Typhoon Neoguri Disaster Risk Reduction Situation Report1 DRR sitrep 2014‐001 ‐ updated July 8, 2014, 10:00 CET Summary Report Ongoing typhoon situation The storm had lost strength early Tuesday July 8, going from the equivalent of a Category 5 hurricane to a Category 3 on the Saffir‐Simpson Hurricane Wind Scale, which means devastating damage is expected to occur, with major damage to well‐built framed homes, snapped or uprooted trees and power outages. It is approaching Okinawa, Japan, and is moving northwest towards South Korea and the Philippines, bringing strong winds, flooding rainfall and inundating storm surge. Typhoon Neoguri is a once‐in‐a‐decade storm and Japanese authorities have extended their highest storm alert to Okinawa's main island. The Global Assessment Report (GAR) 2013 ranked Japan as first among countries in the world for both annual and maximum potential losses due to cyclones. It is calculated that Japan loses on average up to $45.9 Billion due to cyclonic winds every year and that it can lose a probable maximum loss of $547 Billion.2 What are the most devastating cyclones to hit Okinawa in recent memory? There have been 12 damaging cyclones to hit Okinawa since 1945. Sustaining winds of 81.6 knots (151 kph), Typhoon “Winnie” caused damages of $5.8 million in August 1997. Typhoon "Bart", which hit Okinawa in October 1999 caused damages of $5.7 million. It sustained winds of 126 knots (233 kph). The most damaging cyclone to hit Japan was Super Typhoon Nida (reaching a peak intensity of 260 kph), which struck Japan in 2004 killing 287 affecting 329,556 people injuring 1,483, and causing damages amounting to $15 Billion.
    [Show full text]
  • Annual Progress Report July 1, 2003 – June 30, 2004 Cooperative Institute for Climate Science at Princeton University
    Annual Progress Report July 1, 2003 – June 30, 2004 Cooperative Institute for Climate Science at Princeton University CICS Jorge L. Sarmiento, Professor of Geosciences and Director Cooperative Institute for Climate Science Princeton University Forrestal Campus 300 Forrestal Road, Box CN 710 Princeton, New Jersey 08544-0710 Table of Contents Introduction 1 Research Themes Overview 2-4 Structure of the Joint Institute 5-6 Research Highlights Earth System Studies 7-10 Land Dynamics Ocean Dynamics Chemistry-Radiation-Climate Interactions Large-scale Atmospheric Dynamics Clouds and Convection Biogeochemistry 10-13 Ocean Biogeochemistry Land Processes Atmospheric Chemistry Earth System Model Coastal Processes 13 Paleoclimate 13-15 NOAA Funding Table 16 Project Reports 17-155 Publications 156-158 CICS Fellows 159 Personnel Information 160-163 CICS Projects 164-165 Cooperative Institute for Climate Science Princeton University Annual Report of Research Progress under Cooperative Agreement NA17RJ2612 During July 1, 2003 – June 30, 2004 Jorge L. Sarmiento, Director Introduction The Cooperative Institute for Climate Sciences (CICS) was founded in 2003 to foster research collaboration between Princeton University and the Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanographic and Atmospheric Administration (NOAA). Its vision is to be a world leader in understanding and predicting climate and the co- evolution of society and the environment – integrating physical, chemical, biological, technological, economical, social, and ethical dimensions, and in educating the next generations to deal with the increasing complexity of these issues. CICS is built upon the strengths of Princeton University in biogeochemistry, physical oceanography, paleoclimate, hydrology, ecosystem ecology, climate change mitigation technology, economics, and policy; and GFDL in modeling the atmosphere, oceans, weather and climate.
    [Show full text]
  • Field Investigations of Coastal Sea Surface Temperature Drop
    1 Field Investigations of Coastal Sea Surface Temperature Drop 2 after Typhoon Passages 3 Dong-Jiing Doong [1]* Jen-Ping Peng [2] Alexander V. Babanin [3] 4 [1] Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan, 5 Taiwan 6 [2] Leibniz Institute for Baltic Sea Research Warnemuende (IOW), Rostock, Germany 7 [3] Department of Infrastructure Engineering, Melbourne School of Engineering, University of 8 Melbourne, Australia 9 ---- 10 *Corresponding author: 11 Dong-Jiing Doong 12 Email: [email protected] 13 Tel: +886 6 2757575 ext 63253 14 Add: 1, University Rd., Tainan 70101, Taiwan 15 Department of Hydraulic and Ocean Engineering, National Cheng Kung University 16 -1- 1 Abstract 2 Sea surface temperature (SST) variability affects marine ecosystems, fisheries, ocean primary 3 productivity, and human activities and is the primary influence on typhoon intensity. SST drops 4 of a few degrees in the open ocean after typhoon passages have been widely documented; 5 however, few studies have focused on coastal SST variability. The purpose of this study is to 6 determine typhoon-induced SST drops in the near-coastal area (within 1 km of the coast) and 7 understand the possible mechanism. The results of this study were based on extensive field data 8 analysis. Significant SST drop phenomena were observed at the Longdong buoy in northeastern 9 Taiwan during 43 typhoons over the past 20 years (1998~2017). The mean SST drop (∆SST) 10 after a typhoon passage was 6.1 °C, and the maximum drop was 12.5 °C (Typhoon Fungwong 11 in 2008).
    [Show full text]
  • Global Catastrophe Review – 2015
    GC BRIEFING An Update from GC Analytics© March 2016 GLOBAL CATASTROPHE REVIEW – 2015 The year 2015 was a quiet one in terms of global significant insured losses, which totaled around USD 30.5 billion. Insured losses were below the 10-year and 5-year moving averages of around USD 49.7 billion and USD 62.6 billion, respectively (see Figures 1 and 2). Last year marked the lowest total insured catastrophe losses since 2009 and well below the USD 126 billion seen in 2011. 1 The most impactful event of 2015 was the Port of Tianjin, China explosions in August, rendering estimated insured losses between USD 1.6 and USD 3.3 billion, according to the Guy Carpenter report following the event, with a December estimate from Swiss Re of at least USD 2 billion. The series of winter storms and record cold of the eastern United States resulted in an estimated USD 2.1 billion of insured losses, whereas in Europe, storms Desmond, Eva and Frank in December 2015 are expected to render losses exceeding USD 1.6 billion. Other impactful events were the damaging wildfires in the western United States, severe flood events in the Southern Plains and Carolinas and Typhoon Goni affecting Japan, the Philippines and the Korea Peninsula, all with estimated insured losses exceeding USD 1 billion. The year 2015 marked one of the strongest El Niño periods on record, characterized by warm waters in the east Pacific tropics. This was associated with record-setting tropical cyclone activity in the North Pacific basin, but relative quiet in the North Atlantic.
    [Show full text]
  • Development of GMDH-Based Storm Surge Forecast Models for Sakaiminato, Tottori, Japan
    Journal of Marine Science and Engineering Article Development of GMDH-Based Storm Surge Forecast Models for Sakaiminato, Tottori, Japan Sooyoul Kim 1 , Hajime Mase 2,3,4,5, Nguyen Ba Thuy 6,* , Masahide Takeda 7, Cao Truong Tran 8 and Vu Hai Dang 9 1 Center for Water Cycle Marine Environment and Disaster Management, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan; [email protected] 2 Professor Emeritus, Kyoto University, Kyoto 611-0011, Japan; [email protected] 3 Toa Corporation, Tokyo 163-1031, Japan 4 Hydro Technology Inst., Co., Ltd., Osaka 530-6126, Japan 5 Nikken Kogaku Co., Ltd., Tokyo 160-0023, Japan 6 Vietnam National Hydrometerological Forecasting Center Hanoi, No 8, Phao Dai Lang, Dong Da, Hanoi, Vietnam 7 Research and Development Center, Toa Corporation, Kanagawa 230-0035, Japan; [email protected] 8 Le Quy Don Technical University, 236 Hoang Quoc Viet St, Hanoi, Vietnam; [email protected] 9 Institute of Marine Geology and Geophysics, VAST, 18 Hoang Quoc Viet St, Hanoi, Vietnam; [email protected] * Correspondence: [email protected] Received: 31 July 2020; Accepted: 4 October 2020; Published: 14 October 2020 Abstract: The current study developed storm surge hindcast/forecast models with lead times of 5, 12, and 24 h at the Sakaiminato port, Tottori, Japan, using the group method of data handling (GMDH) algorithm. For training, local meteorological and hydrodynamic data observed in Sakaiminato during Typhoons Maemi (2003), Songda (2004), and Megi (2004) were collected at six stations. In the forecast experiments, the two typhoons, Maemi and Megi, as well as the typhoon Songda, were used for training and testing, respectively.
    [Show full text]
  • Science Discussion Started: 22 October 2018 C Author(S) 2018
    Discussions Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-127 Earth System Manuscript under review for journal Earth Syst. Sci. Data Science Discussion started: 22 October 2018 c Author(s) 2018. CC BY 4.0 License. Open Access Open Data 1 Field Investigations of Coastal Sea Surface Temperature Drop 2 after Typhoon Passages 3 Dong-Jiing Doong [1]* Jen-Ping Peng [2] Alexander V. Babanin [3] 4 [1] Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan, 5 Taiwan 6 [2] Leibniz Institute for Baltic Sea Research Warnemuende (IOW), Rostock, Germany 7 [3] Department of Infrastructure Engineering, Melbourne School of Engineering, University of 8 Melbourne, Australia 9 ---- 10 *Corresponding author: 11 Dong-Jiing Doong 12 Email: [email protected] 13 Tel: +886 6 2757575 ext 63253 14 Add: 1, University Rd., Tainan 70101, Taiwan 15 Department of Hydraulic and Ocean Engineering, National Cheng Kung University 16 -1 Discussions Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-127 Earth System Manuscript under review for journal Earth Syst. Sci. Data Science Discussion started: 22 October 2018 c Author(s) 2018. CC BY 4.0 License. Open Access Open Data 1 Abstract 2 Sea surface temperature (SST) variability affects marine ecosystems, fisheries, ocean primary 3 productivity, and human activities and is the primary influence on typhoon intensity. SST drops 4 of a few degrees in the open ocean after typhoon passages have been widely documented; 5 however, few studies have focused on coastal SST variability. The purpose of this study is to 6 determine typhoon-induced SST drops in the near-coastal area (within 1 km of the coast) and 7 understand the possible mechanism.
    [Show full text]
  • Quantification of Typhoon-Induced Phytoplankton Blooms Using
    remote sensing Article Quantification of Typhoon-Induced Phytoplankton Blooms Using Satellite Multi-Sensor Data Jiayi Pan 1,2,3,* ID , Lei Huang 2, Adam T. Devlin 2 and Hui Lin 2 1 School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China 2 Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, China; [email protected] (L.H.); [email protected] (A.T.D.); [email protected] (H.L.) 3 Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China * Correspondence: [email protected]; Tel.: +852-3943-1308 Received: 19 December 2017; Accepted: 16 February 2018; Published: 20 February 2018 Abstract: Using satellite-based multi-sensor observations, this study investigates Chl-a blooms induced by typhoons in the Northwest Pacific (NWP) and the South China Sea (SCS), and quantifies the blooms via wind-induced mixing and Ekman pumping parameters, as well as pre-typhoon mixed-layer depth (MLD). In the NWP, the Chl-a bloom is more correlated with the Ekman pumping than with the other two parameters, with an R2 value of 0.56. In the SCS, the wind-induced mixing and Ekman pumping have comparable correlations with the Chl-a increase, showing R2 values of 0.4~0.6. However, the MLD exhibits a negative correlation with the Chl-a increase. A multi-parameter quantification model of the Chl-a bloom strength achieves better results than the single-parameter regressions, yielding a more significant R2 value of 0.80, and a lower regression rms of 0.18 mg·m−3 in the SCS, and the R2 value in the NWP is also improved compared with the single-parameter regressions.
    [Show full text]
  • Tropical Cyclones Avoidance in Ocean Navigation – Safety of Navigation and Some Economical Aspects
    the International Journal Volume 12 on Marine Navigation Number 1 http://www.transnav.eu and Safety of Sea Transportation March 2018 DOI: 10.12716/1001.12.01.06 Tropical Cyclones Avoidance in Ocean Navigation – Safety of Navigation and Some Economical Aspects M. Szymański & B. Wiśniewski Maritime University of Szczecin, Szczecin, Poland ABSTRACT: Based upon the true voyages various methods of avoidance maneuver determination in ship – cyclone encounter situations were presented. The goal was to find the economically optimal solution (minimum fuel consumption, maintaining the voyage schedule) while at the same time not to exceed an acceptable weather risk level. 1 INTRODUCTION 1 Opposite courses – courses of the ship and the cyclone differ by 150° to 210°. Tropical cyclone avoidance in shipping by merchant 2 Crossing situation– courses of the ship and the ships is a constant element of both ocean and coastal cyclone cross at an angle of 30° ‐ 90°. navigation. It has a significant influence upon the 3 Overtaking of the cyclone by the ship. economical and safety aspects of the voyage.The key In each of them a certain type of action (course decision in tropical cyclone avoidance is the alteration, slowing down or speeding up) is regarded determining of the moment of the beginning of as the most effective one. avoidance manoeuvre and the determining of the correct course and speed with maintaining the Determination of the avoidance maneuver in commercial and economic viability of the voyage. coastal and restricted waters is a separate issue.Within the area of the tropical storm the wind is By commercial and economic viability of the very violent and the seas are high and confused.
    [Show full text]
  • Fast Storm Surge Ensemble Prediction Using Searching Optimization of a Numerical Scenario Database
    OCTOBER 2021 X I E E T A L . 1629 Fast Storm Surge Ensemble Prediction Using Searching Optimization of a Numerical Scenario Database a,b,c a,b,c a a a,b,c a,b,c YANSHUANG XIE, SHAOPING SHANG, JINQUAN CHEN, FENG ZHANG, ZHIGAN HE, GUOMEI WEI, a,b,c d d JINGYU WU, BENLU ZHU, AND YINDONG ZENG a College of Ocean and Earth Sciences, Xiamen University, Xiamen, China b Research and Development Center for Ocean Observation Technologies, Xiamen University, Xiamen, China c Laboratory of Underwater Acoustic Communication and Marine Information Technology, Ministry of Education, Xiamen University, Xiamen, China d Fujian Marine Forecasts, Fuzhou, China (Manuscript received 6 December 2020, in final form 10 June 2021) ABSTRACT: Accurate storm surge forecasts provided rapidly could support timely decision-making with consideration of tropical cyclone (TC) forecasting error. This study developed a fast storm surge ensemble prediction method based on TC track probability forecasting and searching optimization of a numerical scenario database (SONSD). In a case study of the Fujian Province coast (China), a storm surge scenario database was established using numerical simulations generated by 93 150 hypothetical TCs. In a GIS-based visualization system, a single surge forecast representing 2562 distinct typhoon tracks and the occurrence probability of overflow of seawalls along the coast could be achieved in 1–2 min. Application to the cases of Typhoon Soudelor (2015) and Typhoon Maria (2018) demonstrated that the proposed method is feasible and effective. Storm surge calculated by SONSD had excellent agreement with numerical model results (i.e., mean MAE and RMSE: 7.1 and 10.7 cm, respectively, correlation coefficient: .0.9).
    [Show full text]
  • Numerical Simulations of Storm-Surge Inundation Along Innermost Coast of Ariake Sea Based on Past Violent Typhoons
    Numerical Simulations of Storm-Surge Inundation Along Innermost Coast of Ariake Sea Based on Past Violent Typhoons Paper: Numerical Simulations of Storm-Surge Inundation Along Innermost Coast of Ariake Sea Based on Past Violent Typhoons Noriaki Hashimoto∗, Masaki Yokota∗∗,†, Masaru Yamashiro∗, Yukihiro Kinashi∗∗∗, Yoshihiko Ide∗, and Mitsuyoshi Kodama∗ ∗Kyushu University 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan ∗∗Kyushu Sangyo University, Fukuoka, Japan †Corresponding author, E-mail: [email protected] ∗∗∗CTI Engineering Co.,Ltd, Fukuoka, Japan [Received April 25, 2016; accepted September 2, 2016] The Ariake Sea has Japan’s largest tidal range – up Haiyan, which hit the Philippines in 2013. These events to six meters. Given previous Ariake Sea disasters caused large-scale disasters costing many lives and forc- caused by storm surges and high waves, it is con- ing large-scale evacuations. Storm-surge disasters in Ko- sidered highly likely that the bay’s innermost coast rea, such as Typhoon Maemi in 2003 and Typhoon Sanba will be damaged by typhoon-triggered storm surges. in 2012, also caused considerable damage. Concern with increased storm-surge-related disasters After Typhoon Vera – known as the Ise Bay Typhoon is associated with rising sea levels and increasing ty- in Japan – struck Japan in 1959, coastal and river lev- phoon intensity due to global warming. As increas- ees and other appropriate defensive structures were devel- ingly more potentially disastrous typhoons cross the oped. Since then, no human casualties related to storm- area, preventing coastal disasters has become increas- surge disasters have been reported in Japan, except during ingly important.
    [Show full text]
  • Colonization, Statemaking, and Development: a Political Ecology of the Saru River Development Project, Hokkaido, Japan
    AN ABSTRACT OF THE THESIS OF Michael J. Ioannides for the degree of Master of Arts in Applied Anthropology presented on December 7, 2017. Title: Colonization, Statemaking, and Development: A Political Ecology of the Saru River Development Project, Hokkaido, Japan. Abstract approved: ______________________________________________________ Bryan D. Tilt Although dam construction has been an integral tool in development initiatives for nearly a century, dams can have significant negative impacts on local residents, particularly those who are permanently displaced from their homes and must be resettled elsewhere. Dams have unique impacts on indigenous peoples. As a result, many dam construction projects become flashpoints for organized resistance among indigenous peoples. This thesis examines a case that exemplifies indigenous resistance to dam construction: the Saru River Development Project in Hokkaido, Japan, involving the Nibutani Dam (completed 1997) and the Biratori Dam (under construction). This project has been famously opposed by indigenous Ainu landholders. Although much has been written about the legal and political significance of the Ainu’s resistance to the Saru River Development Project, information on the project’s impacts on local Ainu residents is scattered across many disparate sources, and no comprehensive English-language account has yet been produced. This thesis seeks to fill this gap in the literature by cataloging the impacts of the Saru River Development Project as comprehensively as possible and synthesizing available facts into a holistic account. This thesis organizes these impacts according to the newly-published Matrix Framework (Kirchherr and Charles 2016), enabling it to be more easily compared with other case studies of dam construction around the world.
    [Show full text]