The Origin of Massive Ground Ice in Raised Marine Sediments Along the Eureka Sound Lowlands, Nunavut, Canada

Total Page:16

File Type:pdf, Size:1020Kb

The Origin of Massive Ground Ice in Raised Marine Sediments Along the Eureka Sound Lowlands, Nunavut, Canada The origin of massive ground ice in raised marine sediments along the Eureka Sound Lowlands, Nunavut, Canada A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science © Cameron Roy, August 2018 Department of Geography Acknowledgements This project was largely funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), as part of Professor Wayne H. Pollard’s research program to investigate processes related to the formation and stability of permafrost and periglacial landforms in polar environments. Additional student support was supplied by a NSERC Canada Graduate Scholarship (Master’s) and by the Northern Scientific Training Program (NSTP). Logistical support in the field was provided by the Polar Continental Shelf Program (PCSP). This thesis was supervised by Prof. Pollard (Department of Geography, McGill University) and Prof. Denis Lacelle (Department of Geography, University of Ottawa). Thank you to Prof. Pollard for conceiving the project and organizing the field campaign. I appreciate the unparalleled guidance, knowledge and opportunities that I have gained as a direct result of your supervision. Thank you to Prof. Lacelle for outstanding supervision both in the field and in the laboratory. This work would not have been possible without your support. Thank you to Jean Bjornson at the University of Ottawa for indispensable direction and assistance in the laboratory. Thank you to Nimal de Silva and Smitarani Mohanty of the Geochemistry Laboratory at the Advanced Research Complex (Ottawa) for running the cation and anion samples on the ICP-AES. Thank you to Sarah Murseli and Christabel Jean at the A.E. Lalonde AMS Laboratory for running the radiocarbon samples. Thank you also to Mike Dalva and Paula Kesterman for laboratory and equipment support at McGill. Prof. Tim Moore (Department of Geography, McGill University) was the internal committee member for this thesis. Thank you for introducing me to the world of academic research and providing sage advice along the way. Thank you also to Melissa Ward Jones for ‘showing me the ropes’ – your mentorship in matters academic, bureaucratic and logistic has been much appreciated. Thank you to Fanny Amyot for comradeship and acting as my agent in Burnside. Special thanks to Beth Ann Clarke for providing me with accommodation during my extended visits to Ottawa. Finally, thank you to my parents, Doug and Diane, for unwavering support and encouragement. 2 Abstract/Resumé Massive ground ice is a feature of periglacial environments throughout Siberia, Alaska, northern Canada, Antarctica and Mars. The occurrence of massive ground ice raises questions about: i) its origin, ii) its extent across the landscape and iii) its response to climatic change. In the Canadian High Arctic Archipelago, tabular massive ground ice is found extensively throughout the Eureka Sound Lowlands (ESL) on Ellesmere and Axel Heiberg islands. Previous research by W.H. Pollard interpreted the ice as having a segregated origin related to deglaciation and Holocene marine regression. This study used a geochemical approach (stable water isotopes, major ions) to further explain the water source and freezing history of massive ground ice exposures in the ESL. Active layer sediments and permafrost cores from massive ice bodies were collected along an elevation gradient, from modern sea level to Holocene marine limit (~143 m a.s.l.). Results show that ESL ground ice formed during the Holocene in an open-system as raised marine sediments slowly froze from the ground surface downwards. Massive ice formed where the input rate of isotopically-depleted groundwater (from an underlying aquifer fed by the disintegration of the Innuitian Ice Sheet) was much greater than the downwards freezing rate. The extent of geochemical mixing and of the ice segregation process are reflections of the freezing rate – thus we can reconstruct permafrost aggradation along an elevation gradient of 143 m, which represents a span of ~8,000 years since deglaciation. La glace massive au sol est une caractéristique des environnements périglaciaires à travers Sibérie, Alaska, le nord du Canada, l’Antarctique et Mars. L’occurrence de la glace massive au sol produit des questions par rapport à : i) son origine, ii) son importance à travers le paysage et iii) sa réaction aux changements climatiques. Dans l’archipel de la haute arctique canadienne, on se trouve de la glace au tabulaire massive partout dans les basses terres des îles Ellesmere et Axel Heiberg. Des recherches précédentes par W.H. Pollard ont interprété la glace à avoir une origine intra-sédimentaire reliée à la déglaciation et régression marin pendant l’Holocène. Cette étude a utilisé une approche géochimique (isotopes stables d’eau, ions majeurs) pour expliquer la source d’eau et l’histoire de congélation des exposés de glace massive au sol dans les basses terres du Eureka Sound. Sédiments de la couche active et carottes de pergélisol ont été pris des masses de glace au sol à travers un gradient d’élévation – de le niveau de mer moderne jusqu’à la limite marine de l’Holocene (143 m a.s.l.). Nos résultats démontrent que la glace massive au sol de Eureka Sound est provenue d’un système ouvert durant l’Holocene, pendant que des sédiments marins élevés gelaient lentement de la surface vers le bas. La glace massive a formé quand la contribution de eaux souterraines appauvries en isotopes était beaucoup plus grand que la vitesse de congélation en direction vers le bas. L’ampleur du mixage géochimique et du processus de ségrégation de glace sont des résultats de la vitesse de congélation – donc on peut reconstruire la rapidité d’aggradation du pergélisol à travers un gradient de 143 m, ce qui représente un espace d’environ 8,000 ans après déglaciation. 3 TABLE OF CONTENTS 1. INTRODUCTION .................................................................................................................................... 8 1.1) AN UNUSUAL MINERAL......................................................................................................................... 8 1.2) TYPES OF GROUND ICE ........................................................................................................................ 10 1.3) MASSIVE GROUND ICE ........................................................................................................................ 13 1.3.1) Buried surface ice ....................................................................................................................... 14 1.3.2) Ice segregation in soils ............................................................................................................... 15 1.3.3) Wedge ice ................................................................................................................................... 19 2. STUDY AREA ........................................................................................................................................ 20 2.1) PHYSIOGRAPHY AND GENERAL SETTING ............................................................................................. 20 2.2) CLIMATE AND VEGETATION ................................................................................................................ 23 2.3) QUATERNARY HISTORY ...................................................................................................................... 23 2.4) PERMAFROST AND GROUND ICE .......................................................................................................... 26 3. RESEARCH OBJECTIVES .................................................................................................................. 29 4. METHODS .............................................................................................................................................. 30 4.1) INTRODUCTION ................................................................................................................................... 30 4.2) GEOCHEMICAL THEORY – AS APPLIED TO GEOCRYOLOGY .................................................................. 31 4.2.1) Stable water isotopes .................................................................................................................. 31 4.2.2) Major ion geochemistry .............................................................................................................. 34 4.2.3) Occluded gases ........................................................................................................................... 35 4.3) FIELD METHODS ................................................................................................................................. 36 4.3.1) Site selection ............................................................................................................................... 36 4.3.2) Field sampling ............................................................................................................................ 39 4.4) LABORATORY METHODS ..................................................................................................................... 41 4.4.1) Active layer (AL) samples ........................................................................................................... 41 4.4.2) Permafrost cores ........................................................................................................................ 41 4.4.3) Ice wedge (IW) samples .............................................................................................................
Recommended publications
  • Glacial Morphology of the Cary Age Deposits in a Portion of Central Iowa John David Foster Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-1969 Glacial morphology of the Cary age deposits in a portion of central Iowa John David Foster Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Foster, John David, "Glacial morphology of the Cary age deposits in a portion of central Iowa" (1969). Retrospective Theses and Dissertations. 17570. https://lib.dr.iastate.edu/rtd/17570 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. GLACIAL MORPHOLOGY OF THE CARY AGE DEPOSITS IN A PORTION OF CENTRAL IOWA by John David Foster A Thesis Submitted to the . • Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of MASTER OF SCIENCE Major Subject: Geology Approved: Signatures have been redacted for privacy rs ity Ames, Iowa 1969 !/Y-J ii &EW TABLE OF CONTENTS Page ABSTRACT vii INTRODUCTION Location 2 Drainage 3 Geologic Description 3 Preglacial Topography 6 Pleistocene Stratigraphy 12 Acknowledgments . 16 GLACIAL GEOLOGY 18 General Description 18 Glacial Geology of the Study Area 18 Till Petrofabric Investigation 72 DISCUSSION 82 Introduction 82 Hypothetical Regime of the Cary Glacier 82 Review
    [Show full text]
  • Holocene Glacier Fluctuations
    Quaternary Science Reviews 111 (2015) 9e34 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Invited review Holocene glacier fluctuations * Olga N. Solomina a, b, , Raymond S. Bradley c, Dominic A. Hodgson d, Susan Ivy-Ochs e, f, Vincent Jomelli g, Andrew N. Mackintosh h, Atle Nesje i, j, Lewis A. Owen k, Heinz Wanner l, Gregory C. Wiles m, Nicolas E. Young n a Institute of Geography RAS, Staromonetny-29, 119017, Staromonetny, Moscow, Russia b Tomsk State University, Tomsk, Russia c Department of Geosciences, University of Massachusetts, Amherst, MA 012003, USA d British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK e Institute of Particle Physics, ETH Zurich, 8093 Zurich, Switzerland f Institute of Geography, University of Zurich, 8057 Zurich, Switzerland g Universite Paris 1 Pantheon-Sorbonne, CNRS Laboratoire de Geographie Physique, 92195 Meudon, France h Antarctic Research Centre, Victoria University Wellington, New Zealand i Department of Earth Science, University of Bergen, N-5020 Bergen, Norway j Uni Research Klima, Bjerknes Centre for Climate Research, N-5020 Bergen Norway k Department of Geology, University of Cincinnati, Cincinnati, OH 45225, USA l Institute of Geography and Oeschger Centre for Climate Change Research, University of Bern, Switzerland m Department of Geology, The College of Wooster, Wooster, OH 44691, USA n Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA article info abstract Article history: A global overview of glacier advances and retreats (grouped by regions and by millennia) for the Received 15 July 2014 Holocene is compiled from previous studies. The reconstructions of glacier fluctuations are based on Received in revised form 1) mapping and dating moraines defined by 14C, TCN, OSL, lichenometry and tree rings (discontinuous 22 November 2014 records/time series), and 2) sediments from proglacial lakes and speleothems (continuous records/ Accepted 27 November 2014 time series).
    [Show full text]
  • Concepts & Synthesis
    CONCEPTS & SYNTHESIS EMPHASIZING NEW IDEAS TO STIMULATE RESEARCH IN ECOLOGY Ecological Monographs, 78(1), 2008, pp. 41–67 Ó 2008 by the Ecological Society of America GLACIAL ECOSYSTEMS 1,9 2 3 4 5 ANDY HODSON, ALEXANDRE M. ANESIO, MARTYN TRANTER, ANDREW FOUNTAIN, MARK OSBORN, 6 7 8 JOHN PRISCU, JOHANNA LAYBOURN-PARRY, AND BIRGIT SATTLER 1Department of Geography, University of Sheffield, Sheffield S10 2TN United Kingdom 2Institute of Biological Sciences, University of Wales, Aberystwyth SY23 3DA United Kingdom 3School of Geographical Sciences, University of Bristol, Bristol BS8 1SS United Kingdom 4Departments of Geology, Portland State University, Portland, Oregon 97207-0751 USA 5Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN United Kingdom 6Department of Biological Sciences, Montana State University, Bozeman, Montana 59717 USA 7Office of the PVC Research, University of Tasmania, Hobart Tas 7001 Australia 8Institute of Ecology, University of Innsbruk, Technikerstrabe 25 A-0620 Austria Abstract. There is now compelling evidence that microbially mediated reactions impart a significant effect upon the dynamics, composition, and abundance of nutrients in glacial melt water. Consequently, we must now consider ice masses as ecosystem habitats in their own right and address their diversity, functional potential, and activity as part of alpine and polar environments. Although such research is already underway, its fragmentary nature provides little basis for developing modern concepts of glacier ecology. This paper therefore provides a much-needed framework for development by reviewing the physical, biogeochemical, and microbiological characteristics of microbial habitats that have been identified within glaciers and ice sheets. Two key glacial ecosystems emerge, one inhabiting the glacier surface (the supraglacial ecosystem) and one at the ice-bed interface (the subglacial ecosystem).
    [Show full text]
  • Proquest Dissertations
    NOTE TO USERS This reproduction is the best copy available. UMI' nm u Ottawa L'Universit6 canadienne Canada's university ITTTT FACULTE DES ETUDES SUPERIEURES l^s FACULTY OF GRADUATE AND ET POSTDOCTORALES u Ottawa POSTDOCTORAL STUDIES i.'UniveisiU; emwidk'nne Canada's university Melanie St-Jean AUTEUR DE LA THESE / AUTHOR OF THESIS M.Sc. (Geography) GRADE'/DEGREE Department of Geography TACULTOOTLTDEP^RTEIW^ Nature and Origin of Massive Ground Ice Bodies, Yukon Territory and Alaska TITRE DE LA THESE / TITLE OF THESIS B. Lauriol DIRECTEUR (DIRECTRICE) DE LA THESE / THESIS SUPERVISOR I. Clark CO-DIRECTEUR (CO-DIRECTRICE) DE LA THESE / THESIS CO-SUPERVISOR EXAMINATEURS (EXAMINATRICES) DE LA THESE/THESIS EXAMINERS A. Lewkowicz C Zdanowicz Gary W. Slater Le Doyen de la Faculte des etudes superieures et postdoctorales / Dean of the Faculty of Graduate and Postdoctoral Studies NATURE AND ORIGIN OF MASSIVE GROUND ICE BODIES, YUKON TERRITORY AND ALASKA A thesis submitted to The school of Graduate Studies and Research In partial fulfillment of the requirements For the degree Master of Science Melanie St-Jean Department of Geography University of Ottawa Ottawa, Canada May 2009 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-59454-4 Our file Notre reference ISBN: 978-0-494-59454-4 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde
    [Show full text]
  • The Mcmurdo Dry Valleys: a Landscape on the Threshold of Change
    Geomorphology 225 (2014) 25–35 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph The McMurdo Dry Valleys: A landscape on the threshold of change Andrew G. Fountain a,⁎, Joseph S. Levy b, Michael N. Gooseff c,DavidVanHornd a Department of Geology, Portland State University, Portland, OR 97201, USA b Institute for Geophysics, University of Texas, Austin, TX 78758, USA c Dept. of Civil & Environmental Engineering, Pennsylvania State University, University Park, PA 16802, USA d Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA article info abstract Article history: Field observations of coastal and lowland regions in the McMurdo Dry Valleys suggest they are on the threshold Received 26 March 2013 of rapid topographic change, in contrast to the high elevation upland landscape that represents some of the low- Received in revised form 19 March 2014 est rates of surface change on Earth. A number of landscapes have undergone dramatic and unprecedented land- Accepted 27 March 2014 scape changes over the past decade including, the Wright Lower Glacier (Wright Valley) — ablated several tens of Available online 18 April 2014 meters, the Garwood River (Garwood Valley) has incised N3 m into massive ice permafrost, smaller streams in Taylor Valley (Crescent, Lawson, and Lost Seal Streams) have experienced extensive down-cutting and/or bank Keywords: N Permafrost undercutting, and Canada Glacier (Taylor Valley) has formed sheer, 4 meter deep canyons. The commonality Glaciers between all these landscape changes appears to be sediment on ice acting as a catalyst for melting, including Climate change ice-cement permafrost thaw.
    [Show full text]
  • Glacial Geology of the Shingobee River Headwaters Area, North-Central Minnesota
    Glacial Geology of the Shingobee River Headwaters Area, North-Central Minnesota Scientific Investigations Report 2013–5165 Picture Number one U.S. Department of the Interior U.S. Geological Survey COVER. The Shingobee valley, looking upstream toward Shingobee Lake, about a mile and a quarter (2 kilometers) to the south. This part of the Shingobee River valley has a V-shaped cross section that was initiated during the draining of glacial Lake Willobee at the end of Wadena glaciation. The grassy fen on the left (eastern) bank is classified as “poor” because it lacks woody vegetation. The shrubby fen on the right (western) bank, in contrast, is called “rich” because plant nutrients are available in amounts sufficient to support woody vegetation and, commonly, the substrate is somewhat drier. The shrubby fen is developed on a local, relatively small apron of sediment consisting mostly of fine sand and silt derived from downslope movement along the steep western valley side. The asymmetrical occurrence of shrubs on one bank and nonwoody vegetation on the other suggests preferential groundwater input into the sediment wedge along the western valley side. Glacial Geology of the Shingobee River Headwaters Area, North-Central Minnesota By Robert C. Melchior Scientific Investigations Report 2013–5165 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS.
    [Show full text]
  • Analysis of Coastal Erosion on Martha's Vineyard, Massachusetts: a Paraglacial Island Denise M
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 January 2008 Analysis of Coastal Erosion on Martha's Vineyard, Massachusetts: a Paraglacial Island Denise M. Brouillette-jacobson University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Brouillette-jacobson, Denise M., "Analysis of Coastal Erosion on Martha's Vineyard, Massachusetts: a aP raglacial Island" (2008). Masters Theses 1911 - February 2014. 176. Retrieved from https://scholarworks.umass.edu/theses/176 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. ANALYSIS OF COASTAL EROSION ON MARTHA’S VINEYARD, MASSACHUSETTS: A PARAGLACIAL ISLAND A Thesis Presented by DENISE BROUILLETTE-JACOBSON Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE September 2008 Natural Resources Conservation © Copyright by Denise Brouillette-Jacobson 2008 All Rights Reserved ANALYSIS OF COASTAL EROSION ON MARTHA’S VINEYARD, MASSACHUSETTS: A PARAGLACIAL ISLAND A Thesis Presented by DENISE BROUILLETTE-JACOBSON Approved as to style and content by: ____________________________________ John T. Finn, Chair ____________________________________ Robin Harrington, Member ____________________________________ John Gerber, Member __________________________________________ Paul Fisette, Department Head, Department of Natural Resources Conservation DEDICATION All I can think about as I write this dedication to my loved ones is the song by The Shirelles called “Dedicated to the One I Love.” Only in this case there is more than one love.
    [Show full text]
  • Cosmogenic Evidence for Limited Local LGM Glacial Expansion, Denton Hills, Antarctica
    Quaternary Science Reviews 178 (2017) 89e101 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Cosmogenic evidence for limited local LGM glacial expansion, Denton Hills, Antarctica * Kurt Joy a, b, , David Fink c, Bryan Storey b, Gregory P. De Pascale d, Mark Quigley e, Toshiyuki Fujioka c a University of Waikato, Private Bag 3105, Hamilton, New Zealand b Gateway Antarctica, University of Canterbury, Private Bag 4800, Christchurch, New Zealand c Institute for Environmental Research, ANSTO, PMB1, Menai 2234, Australia d Department of Geology, University of Chile, Plaza Ercilla 803, Santiago, Chile e School of Earth Sciences, The University of Melbourne. Parkville, Victoria 3010, Australia article info abstract Article history: The geomorphology of the Denton Hills provides insight into the timing and magnitude of glacial retreats Received 10 April 2017 in a region of Antarctica isolated from the influence of the East Antarctic ice sheet. We present 26 Received in revised form Beryllium-10 surface exposure ages from a variety of glacial and lacustrine features in the Garwood and 19 October 2017 Miers valleys to document the glacial history of the area from 10 to 286 ka. Our data show that the cold- Accepted 1 November 2017 based Miers, Joyce and Garwood glaciers retreated little since their maximum positions at 37.2 ± 6.9 (1s Available online 14 November 2017 n ¼ 4), 35.1 ± 1.5 (1s,n¼ 3) and 35.6 ± 10.1 (1s,n¼ 6) ka respectively. The similar timing of advance of all three glaciers and the lack of a significant glacial expansion during the global LGM suggests a local Keywords: ± s ¼ Pleistocene LGM for the Denton Hills between ca.
    [Show full text]
  • Origin and Characteristics of Massive Ground Ice on Herschel Island (Western Canadian Arctic) As Revealed by Stable Water Isotope and Hydrochemical Signatures
    PERMAFROST AND PERIGLACIAL PROCESSES Permafrost and Periglac. Process. (2011) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/ppp.714 Origin and Characteristics of Massive Ground Ice on Herschel Island (Western Canadian Arctic) as revealed by Stable Water Isotope and Hydrochemical Signatures Michael Fritz ,1* Sebastian Wetterich ,1 Hanno Meyer,1 Lutz Schirrmeister,1 Hugues Lantuit 1 and Wayne H. Pollard 2 1 Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany 2 Department of Geography and Global Environmental and Climate Change Centre, McGill University, Montreal, Canada ABSTRACT Herschel Island in the southern Beaufort Sea is a push moraine at the northwestern-most limit of the Laurentide Ice Sheet. Stable water isotope (d18O, dD) and hydrochemical studies were applied to two tabular massive ground ice bodies to unravel their genetic origin. Buried glacier ice or basal regelation ice was encountered beneath an ice-rich diamicton with strong glaciotectonic deformation structures. The massive ice isotopic composition was highly depleted in heavy isotopes (mean d18O: À33%; mean dD: À258%), suggesting full-glacial conditions during ice formation. Other massive ice of unknown origin with a very large d18O range (from À39 to À21%) was found adjacent to large, striated boulders. A clear freezing slope was present with progressive depletion in heavy isotopes towards the centre of the ice body. Fractionation must have taken place during closed-system freezing, possibly of a glacial meltwater pond. Both massive ground ice bodies exhibited a mixed ion composition suggestive of terrestrial waters with a marine influence. Hydrochemical signatures resemble the Herschel Island sediments that are derived from near- shore marine deposits upthrust by the Laurentide ice.
    [Show full text]
  • Lower Taylor Glacier and Blood Falls, Mcmurdo Dry Valleys, Victoria Land
    Measure 9 (2012) Annex Management Plan for Antarctic Specially Protected Area No 172 Lower Taylor Glacier and Blood Falls, McMurdo Dry Valleys, Victoria Land Introduction Blood Falls is an iron-rich saline discharge located at the terminus of the Taylor Glacier, Taylor Valley, McMurdo Dry Valleys. The source of the discharge is believed to be a subglacial marine salt deposit and brine reservoir located beneath the ablation zone of the Taylor Glacier, estimated to be located between one to six kilometres above Blood Falls. Approximate area and coordinates: sub-surface area 436km2 (centered at 161°40.230'E, 77°50.220'S); sub-aerial area 0.11km2 (centered at the Blood Falls discharge at 162°15.809'E, 77°43.365'). The primary reasons for designation of the Area are its unique physical properties, and the unusual microbial ecology and geochemistry. The Area is an important site for exobiological studies and provides a unique opportunity to sample the subglacial environment without direct contact. The influence of Blood Falls on adjacent Lake Bonney is also of significant scientific interest. Furthermore, the ablation zone of the Taylor Glacier is an important site for paleoclimatic and glaciological research. The lower Taylor Glacier subglacial brine reservoir and Blood Falls are globally unique and a site of outstanding scientific importance. Based on the Environmental Domains Analysis for Antarctica (Resolution 3 (2008)) the Area lies within Environment S – McMurdo – South Victoria Land geologic. Designation of the Area allows for scientific access to ice deep within Taylor Glacier, provided measures are in place to ensure this does not compromise the Blood Falls reservoir and hydrological system.
    [Show full text]
  • 1 Geochemistry of Soils from the Shackleton Glacier Region
    Geochemistry of soils from the Shackleton Glacier region, Antarctica, and implications for glacial history, salt dynamics, and biogeography Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Melisa A. Diaz Graduate Program in Earth Sciences The Ohio State University 2020 Dissertation Committee W. Berry Lyons, Advisor Thomas Darrah Elizabeth Griffith Bryan Mark 1 Copyrighted by Melisa A. Diaz 2020 2 Abstract Though the majority of the Antarctic continent is covered by ice, portions of Antarctica, mainly in the McMurdo Dry Valleys and the Transantarctic Mountains (TAM), are currently ice-free. The soils which have developed on these surfaces have been re-worked by the advance and retreat of glaciers since at least the Miocene. They are generally characterized by high salt concentrations, low amounts of organic carbon, and low soil moisture in a polar desert regime. Ecosystems that have developed in these soils have few taxa and simplistic dynamics, and can therefore help us understand how ecosystems structure and function following large-scale changes in climate, such as glacial advance and retreat. During the 2017-2018 austral summer, 220 surface soil samples and 25 depth profile samples were collected from eleven ice-free areas along the Shackleton Glacier, a major outlet glacier of the East Antarctic Ice Sheet. A subset of 27 samples were leached at a 1:5 soil to deionized (DI) water ratio and analyzed for stable - 15 17 2- 34 18 isotopes of water-soluble NO3 (δ N and Δ O) and SO4 (δ S and δ O), and seven 13 18 soils were analyzed for δ C and δ O of HCO3 + CO3 to understand the sources and cycling of salts in TAM soils.
    [Show full text]
  • Former Dynamic Behaviour of a Cold-Based Valley Glacier on Svalbard Revealed by Basal Ice and Structural Glaciology Investigations
    Journal of Glaciology, Vol. 61, No. 226, 2015 doi: 10.3189/2015JoG14J120 309 Former dynamic behaviour of a cold-based valley glacier on Svalbard revealed by basal ice and structural glaciology investigations Harold LOVELL,1,3* Edward J. FLEMING,2,3 Douglas I. BENN,3,4 Bryn HUBBARD,5 Sven LUKAS,1 Kathrin NAEGELI3,6 1School of Geography, Queen Mary University of London, London, UK 2School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK 3Department of Geology, University Centre in Svalbard (UNIS), Longyearbyen, Norway 4School of Geography and Geosciences, University of St Andrews, St Andrews, UK 5Institute of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK 6Department of Geosciences, University of Fribourg, Fribourg, Switzerland Correspondence: Harold Lovell <[email protected]> ABSTRACT. Large numbers of small valley glaciers on Svalbard were thicker and more extensive during the Little Ice Age (LIA), demonstrated by prominent ice-cored moraines up to several kilometres beyond present-day margins. The majority of these glaciers have since experienced a long period of strongly negative mass balance during the 20th century and are now largely frozen to their beds, indicating they are likely to have undergone a thermal transition from a polythermal to a cold-based regime. We present evidence for such a switch by reconstructing the former flow dynamics and thermal regime of Tellbreen, a small cold-based valley glacier in central Spitsbergen, based on its basal sequence and glaciological structures. Within the basal sequence, the underlying matrix-supported diamict is interpreted as saturated subglacial traction till which has frozen at the bed, indicating that the thermal switch has resulted in a cessation of subglacial sediment deformation due to freezing of the former deforming layer.
    [Show full text]