Earth Surf. Dynam., 6, 1139–1153, 2018 https://doi.org/10.5194/esurf-6-1139-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Directional dependency and coastal framework geology: implications for barrier island resilience Phillipe A. Wernette1,2,a, Chris Houser1, Bradley A. Weymer3, Mark E. Everett4, Michael P. Bishop2, and Bobby Reece4 1Department of Earth and Environmental Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada 2Department of Geography, Texas A&M University, College Station, Texas, 77843, USA 3GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany 4Department of Geology and Geophysics, Texas A&M University, College Station, Texas, 77843, USA anow at: Department of Earth and Environmental Sciences, University of Windsor, 401 Sunset Ave., Windsor, Ontario, N9B 3P4, Canada Correspondence: Phillipe A. Wernette (
[email protected]) Received: 9 May 2018 – Discussion started: 15 June 2018 Revised: 18 October 2018 – Accepted: 6 November 2018 – Published: 27 November 2018 Abstract. Barrier island transgression is influenced by the alongshore variation in beach and dune morphol- ogy, which determines the amount of sediment moved landward through wash-over. While several studies have demonstrated how variations in dune morphology affect island response to storms, the reasons for that vari- ation and the implications for island management remain unclear. This paper builds on previous research by demonstrating that paleo-channels in the irregular framework geology can have a directional influence on along- shore beach and dune morphology. The influence of relict paleo-channels on beach and dune morphology on Padre Island National Seashore, Texas, was quantified by isolating the long-range dependence (LRD) parame- ter in autoregressive fractionally integrated moving average (ARFIMA) models, originally developed for stock market economic forecasting.