Former Dynamic Behaviour of a Cold-Based Valley Glacier on Svalbard Revealed by Basal Ice and Structural Glaciology Investigations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Master Document Template
Copyright by Mary Harding Polk 2016 The Dissertation Committee for Mary Harding Polk Certifies that this is the approved version of the following dissertation: “They Are Drying Out”: Social-Ecological Consequences of Glacier Recession on Mountain Peatlands in Huascarán National Park, Peru Committee: Kenneth R. Young, Supervisor Kelley A. Crews Gregory W. Knapp Daene C. McKinney Francisco L. Pérez “They Are Drying Out”: Social-Ecological Consequences of Glacier Recession on Mountain Peatlands in Huascarán National Park, Peru by Mary Harding Polk, B.A., M.A. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May 2016 Acknowledgements The journey to the Cordillera Blanca and Huascarán National Park started with a whiff of tear gas during the Arequipazo of 2002. During a field season in Arequipa, the city erupted into civil unrest. In a stroke of neoliberalism, newly elected President Alejandro Toledo privatized Egesur and Egasa, regional power generation companies, by selling them to a Belgian entity. Arequipeños violently protested President Toledo’s reversal on his campaign pledge not to privatize industries. Overnight, the streets filled with angry protesters demonstrating against “los Yanquis.” The President declared a state of emergency that kept Agnes Wommack and me trapped in our hotel because the streets were unsafe for a couple of Yanquis. After 10 days of being confined, we decided to venture out to the local bakery. Not long after our first sips of coffee, tear gas floated onto the patio and the lovely owner rushed out with wet towels to cover our faces. -
Glacial Morphology of the Cary Age Deposits in a Portion of Central Iowa John David Foster Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-1969 Glacial morphology of the Cary age deposits in a portion of central Iowa John David Foster Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Foster, John David, "Glacial morphology of the Cary age deposits in a portion of central Iowa" (1969). Retrospective Theses and Dissertations. 17570. https://lib.dr.iastate.edu/rtd/17570 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. GLACIAL MORPHOLOGY OF THE CARY AGE DEPOSITS IN A PORTION OF CENTRAL IOWA by John David Foster A Thesis Submitted to the . • Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of MASTER OF SCIENCE Major Subject: Geology Approved: Signatures have been redacted for privacy rs ity Ames, Iowa 1969 !/Y-J ii &EW TABLE OF CONTENTS Page ABSTRACT vii INTRODUCTION Location 2 Drainage 3 Geologic Description 3 Preglacial Topography 6 Pleistocene Stratigraphy 12 Acknowledgments . 16 GLACIAL GEOLOGY 18 General Description 18 Glacial Geology of the Study Area 18 Till Petrofabric Investigation 72 DISCUSSION 82 Introduction 82 Hypothetical Regime of the Cary Glacier 82 Review -
Lichens and Associated Fungi from Glacier Bay National Park, Alaska
The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O. -
1 Interannual Snow Accumulation Variability on Glaciers Derived From
1 Interannual snow accumulation variability on glaciers derived from repeat, spatially 2 extensive ground-penetrating radar surveys 3 4 Daniel McGrath1, Louis Sass2, Shad O’Neel2 Chris McNeil2, Salvatore G. Candela3, 5 Emily H. Baker2, and Hans-Peter Marshall4 6 1Department of Geosciences, Colorado State University, Fort Collins, CO 7 2U.S. Geological Survey Alaska Science Center, Anchorage, AK 8 3School of Earth Sciences and Byrd Polar Research Center, Ohio State University, 9 Columbus, OH 10 4Department of Geosciences, Boise State University, Boise, ID 11 Abstract 12 There is significant uncertainty regarding the spatiotemporal distribution of seasonal 13 snow on glaciers, despite being a fundamental component of glacier mass balance. To 14 address this knowledge gap, we collected repeat, spatially extensive high-frequency 15 ground-penetrating radar (GPR) observations on two glaciers in Alaska during the spring 16 of five consecutive years. GPR measurements showed steep snow water equivalent 17 (SWE) elevation gradients at both sites; continental Gulkana Glacier’s SWE gradient 18 averaged 115 mm 100 m–1 and maritime Wolverine Glacier’s gradient averaged 440 mm 19 100 m–1 (over >1000 m). We extrapolated GPR point observations across the glacier 20 surface using terrain parameters derived from digital elevation models as predictor 21 variables in two statistical models (stepwise multivariable linear regression and 22 regression trees). Elevation and proxies for wind redistribution had the greatest 23 explanatory power, and exhibited relatively time-constant coefficients over the study 24 period. Both statistical models yielded comparable estimates of glacier-wide average 25 SWE (1 % average difference at Gulkana, 4 % average difference at Wolverine), 26 although the spatial distributions produced by the models diverged in unsampled regions 27 of the glacier, particularly at Wolverine. -
Holocene Glacier Fluctuations
Quaternary Science Reviews 111 (2015) 9e34 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Invited review Holocene glacier fluctuations * Olga N. Solomina a, b, , Raymond S. Bradley c, Dominic A. Hodgson d, Susan Ivy-Ochs e, f, Vincent Jomelli g, Andrew N. Mackintosh h, Atle Nesje i, j, Lewis A. Owen k, Heinz Wanner l, Gregory C. Wiles m, Nicolas E. Young n a Institute of Geography RAS, Staromonetny-29, 119017, Staromonetny, Moscow, Russia b Tomsk State University, Tomsk, Russia c Department of Geosciences, University of Massachusetts, Amherst, MA 012003, USA d British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK e Institute of Particle Physics, ETH Zurich, 8093 Zurich, Switzerland f Institute of Geography, University of Zurich, 8057 Zurich, Switzerland g Universite Paris 1 Pantheon-Sorbonne, CNRS Laboratoire de Geographie Physique, 92195 Meudon, France h Antarctic Research Centre, Victoria University Wellington, New Zealand i Department of Earth Science, University of Bergen, N-5020 Bergen, Norway j Uni Research Klima, Bjerknes Centre for Climate Research, N-5020 Bergen Norway k Department of Geology, University of Cincinnati, Cincinnati, OH 45225, USA l Institute of Geography and Oeschger Centre for Climate Change Research, University of Bern, Switzerland m Department of Geology, The College of Wooster, Wooster, OH 44691, USA n Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA article info abstract Article history: A global overview of glacier advances and retreats (grouped by regions and by millennia) for the Received 15 July 2014 Holocene is compiled from previous studies. The reconstructions of glacier fluctuations are based on Received in revised form 1) mapping and dating moraines defined by 14C, TCN, OSL, lichenometry and tree rings (discontinuous 22 November 2014 records/time series), and 2) sediments from proglacial lakes and speleothems (continuous records/ Accepted 27 November 2014 time series). -
1 Interannual Snow Accumulation Variability on Glaciers Derived
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-126 Manuscript under review for journal The Cryosphere Discussion started: 2 July 2018 c Author(s) 2018. CC BY 4.0 License. 1 Interannual snow accumulation variability on glaciers derived from repeat, spatially 2 extensive ground-penetrating radar surveys 3 4 Daniel McGrath1, Louis Sass2, Shad O’Neel2 Chris McNeil2, Salvatore G. Candela3, 5 Emily H. Baker2, and Hans-Peter Marshall4 6 1Department of Geosciences, Colorado State University, Fort Collins, CO 7 2U.S. Geological Survey Alaska Science Center, Anchorage, AK 8 3School of Earth Sciences and Byrd Polar Research Center, Ohio State University, 9 Columbus, OH 10 4Department of Geosciences, Boise State University, Boise, ID 11 Abstract 12 There is significant uncertainty regarding the spatiotemporal distribution of seasonal 13 snow on glaciers, despite being a fundamental component of glacier mass balance. To 14 address this knowledge gap, we collected repeat, spatially extensive high-frequency 15 ground-penetrating radar (GPR) observations on two glaciers in Alaska for five 16 consecutive years. GPR measurements showed steep snow water equivalent (SWE) 17 elevation gradients at both sites; continental Gulkana Glacier’s SWE gradient averaged 18 115 mm 100 m–1 and maritime Wolverine Glacier’s gradient averaged 440 mm 100 m–1 19 (over >1000 m). We extrapolated GPR point observations across the glacier surface using 20 terrain parameters derived from digital elevation models as predictor variables in two 21 statistical models (stepwise multivariable linear regression and regression trees). 22 Elevation and proxies for wind redistribution had the greatest explanatory power, and 23 exhibited relatively time-constant coefficients over the study period. -
Concepts & Synthesis
CONCEPTS & SYNTHESIS EMPHASIZING NEW IDEAS TO STIMULATE RESEARCH IN ECOLOGY Ecological Monographs, 78(1), 2008, pp. 41–67 Ó 2008 by the Ecological Society of America GLACIAL ECOSYSTEMS 1,9 2 3 4 5 ANDY HODSON, ALEXANDRE M. ANESIO, MARTYN TRANTER, ANDREW FOUNTAIN, MARK OSBORN, 6 7 8 JOHN PRISCU, JOHANNA LAYBOURN-PARRY, AND BIRGIT SATTLER 1Department of Geography, University of Sheffield, Sheffield S10 2TN United Kingdom 2Institute of Biological Sciences, University of Wales, Aberystwyth SY23 3DA United Kingdom 3School of Geographical Sciences, University of Bristol, Bristol BS8 1SS United Kingdom 4Departments of Geology, Portland State University, Portland, Oregon 97207-0751 USA 5Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN United Kingdom 6Department of Biological Sciences, Montana State University, Bozeman, Montana 59717 USA 7Office of the PVC Research, University of Tasmania, Hobart Tas 7001 Australia 8Institute of Ecology, University of Innsbruk, Technikerstrabe 25 A-0620 Austria Abstract. There is now compelling evidence that microbially mediated reactions impart a significant effect upon the dynamics, composition, and abundance of nutrients in glacial melt water. Consequently, we must now consider ice masses as ecosystem habitats in their own right and address their diversity, functional potential, and activity as part of alpine and polar environments. Although such research is already underway, its fragmentary nature provides little basis for developing modern concepts of glacier ecology. This paper therefore provides a much-needed framework for development by reviewing the physical, biogeochemical, and microbiological characteristics of microbial habitats that have been identified within glaciers and ice sheets. Two key glacial ecosystems emerge, one inhabiting the glacier surface (the supraglacial ecosystem) and one at the ice-bed interface (the subglacial ecosystem). -
Proquest Dissertations
NOTE TO USERS This reproduction is the best copy available. UMI' nm u Ottawa L'Universit6 canadienne Canada's university ITTTT FACULTE DES ETUDES SUPERIEURES l^s FACULTY OF GRADUATE AND ET POSTDOCTORALES u Ottawa POSTDOCTORAL STUDIES i.'UniveisiU; emwidk'nne Canada's university Melanie St-Jean AUTEUR DE LA THESE / AUTHOR OF THESIS M.Sc. (Geography) GRADE'/DEGREE Department of Geography TACULTOOTLTDEP^RTEIW^ Nature and Origin of Massive Ground Ice Bodies, Yukon Territory and Alaska TITRE DE LA THESE / TITLE OF THESIS B. Lauriol DIRECTEUR (DIRECTRICE) DE LA THESE / THESIS SUPERVISOR I. Clark CO-DIRECTEUR (CO-DIRECTRICE) DE LA THESE / THESIS CO-SUPERVISOR EXAMINATEURS (EXAMINATRICES) DE LA THESE/THESIS EXAMINERS A. Lewkowicz C Zdanowicz Gary W. Slater Le Doyen de la Faculte des etudes superieures et postdoctorales / Dean of the Faculty of Graduate and Postdoctoral Studies NATURE AND ORIGIN OF MASSIVE GROUND ICE BODIES, YUKON TERRITORY AND ALASKA A thesis submitted to The school of Graduate Studies and Research In partial fulfillment of the requirements For the degree Master of Science Melanie St-Jean Department of Geography University of Ottawa Ottawa, Canada May 2009 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-59454-4 Our file Notre reference ISBN: 978-0-494-59454-4 NOTICE: AVIS: The author has granted a non L'auteur a accorde -
The Mcmurdo Dry Valleys: a Landscape on the Threshold of Change
Geomorphology 225 (2014) 25–35 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph The McMurdo Dry Valleys: A landscape on the threshold of change Andrew G. Fountain a,⁎, Joseph S. Levy b, Michael N. Gooseff c,DavidVanHornd a Department of Geology, Portland State University, Portland, OR 97201, USA b Institute for Geophysics, University of Texas, Austin, TX 78758, USA c Dept. of Civil & Environmental Engineering, Pennsylvania State University, University Park, PA 16802, USA d Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA article info abstract Article history: Field observations of coastal and lowland regions in the McMurdo Dry Valleys suggest they are on the threshold Received 26 March 2013 of rapid topographic change, in contrast to the high elevation upland landscape that represents some of the low- Received in revised form 19 March 2014 est rates of surface change on Earth. A number of landscapes have undergone dramatic and unprecedented land- Accepted 27 March 2014 scape changes over the past decade including, the Wright Lower Glacier (Wright Valley) — ablated several tens of Available online 18 April 2014 meters, the Garwood River (Garwood Valley) has incised N3 m into massive ice permafrost, smaller streams in Taylor Valley (Crescent, Lawson, and Lost Seal Streams) have experienced extensive down-cutting and/or bank Keywords: N Permafrost undercutting, and Canada Glacier (Taylor Valley) has formed sheer, 4 meter deep canyons. The commonality Glaciers between all these landscape changes appears to be sediment on ice acting as a catalyst for melting, including Climate change ice-cement permafrost thaw. -
Sampling and Analysis of Proglacial and Supraglacial Vegetation
ISSN 2047-0371 3.4.10. Biogeomorphology: sampling and analysis of proglacial and supraglacial vegetation Laura Camilla Vezzola1 1 Department of Earth Sciences "A. Desio", University of Milan ([email protected]) ABSTRACT: Herbaceous and arboreal vegetation are useful tools in the study of the landscape transformations affecting glacial areas. In glacier forelands, the study of vegetation succession enables the identification of the age of the deglaciated terrain and contributes to investigation of the distribution of the main geomorphological processes occurring in the area, such as gravitative and glaciofluvial processes. On the surface of debris-covered glaciers, the analysis of the distribution and characteristics of vegetation provides information on the glacier dynamics, such as glacier velocity and the stability of the supraglacial debris. In this chapter, two methodologies for the study of the distribution and characteristics of vegetation in glacial environments are proposed. The first enables a rapid and preliminary investigation of the study area (both in the glacier foreland and at the surface of a debris-covered glacier) through remote sensing analysis, by performing a supervised classification on colour orthophotos. The second method involves detailed field surveys to describe species composition and, when applied to recently deglaciated areas, enables the estimation of terrain age. On the other hand, on debris-covered glaciers the analysis of vegetation, in particular arboreal species, allows the investigation of the -
Glacial Geology of the Shingobee River Headwaters Area, North-Central Minnesota
Glacial Geology of the Shingobee River Headwaters Area, North-Central Minnesota Scientific Investigations Report 2013–5165 Picture Number one U.S. Department of the Interior U.S. Geological Survey COVER. The Shingobee valley, looking upstream toward Shingobee Lake, about a mile and a quarter (2 kilometers) to the south. This part of the Shingobee River valley has a V-shaped cross section that was initiated during the draining of glacial Lake Willobee at the end of Wadena glaciation. The grassy fen on the left (eastern) bank is classified as “poor” because it lacks woody vegetation. The shrubby fen on the right (western) bank, in contrast, is called “rich” because plant nutrients are available in amounts sufficient to support woody vegetation and, commonly, the substrate is somewhat drier. The shrubby fen is developed on a local, relatively small apron of sediment consisting mostly of fine sand and silt derived from downslope movement along the steep western valley side. The asymmetrical occurrence of shrubs on one bank and nonwoody vegetation on the other suggests preferential groundwater input into the sediment wedge along the western valley side. Glacial Geology of the Shingobee River Headwaters Area, North-Central Minnesota By Robert C. Melchior Scientific Investigations Report 2013–5165 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. -
Analysis of Coastal Erosion on Martha's Vineyard, Massachusetts: a Paraglacial Island Denise M
University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 January 2008 Analysis of Coastal Erosion on Martha's Vineyard, Massachusetts: a Paraglacial Island Denise M. Brouillette-jacobson University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Brouillette-jacobson, Denise M., "Analysis of Coastal Erosion on Martha's Vineyard, Massachusetts: a aP raglacial Island" (2008). Masters Theses 1911 - February 2014. 176. Retrieved from https://scholarworks.umass.edu/theses/176 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. ANALYSIS OF COASTAL EROSION ON MARTHA’S VINEYARD, MASSACHUSETTS: A PARAGLACIAL ISLAND A Thesis Presented by DENISE BROUILLETTE-JACOBSON Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE September 2008 Natural Resources Conservation © Copyright by Denise Brouillette-Jacobson 2008 All Rights Reserved ANALYSIS OF COASTAL EROSION ON MARTHA’S VINEYARD, MASSACHUSETTS: A PARAGLACIAL ISLAND A Thesis Presented by DENISE BROUILLETTE-JACOBSON Approved as to style and content by: ____________________________________ John T. Finn, Chair ____________________________________ Robin Harrington, Member ____________________________________ John Gerber, Member __________________________________________ Paul Fisette, Department Head, Department of Natural Resources Conservation DEDICATION All I can think about as I write this dedication to my loved ones is the song by The Shirelles called “Dedicated to the One I Love.” Only in this case there is more than one love.