Production and Purification of Lactic Acid and Lactide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Liquid-Phase Dehydration of Lactic Acid for the Production of Bio-Acrylic Acid Development of a Multi-Step Process
Liquid-phase dehydration of lactic acid for the production of bio-acrylic acid Development of a multi-step process Flüssigphasen-Dehydratisierung von Milchsäure zur Produktion von biobasierter Acrylsäure Entwicklung eines mehrstufigen Prozesses Der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Grades DOKTOR-INGENIEUR vorgelegt von Matthias Kehrer, M. Sc. aus Nürnberg Als Dissertation genehmigt von der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg. Tag der mündlichen Prüfung: 17. Dezember 2018 Vorsitzende/r des Promotionsorgans: Prof. Dr.-Ing. Reinhard Lerch Gutachter/in: Prof. Dr. Peter Wasserscheid Prof. Dr. Nicolas Vogel To my family “Obstacles don’t have to stop you. If you run into a wall, don’t turn around and give up. Figure out how to climb it, go through it, or walk around it.” Michael Jordan Preface i Preface The present work was carried out in the period from May 2014 to December 2017 at the Institute of Chemical Reaction Engineering of the Friedrich-Alexander-University Er- langen-Nürnberg, headed by Prof. Dr. Peter Wasserscheid. The results presented herein where achieved within the scope of the research project “Liquid-phase dehydration of lactic acid obtained via fermentation for the production of bio-acrylic acid”, which was carried out in close collaboration with the industrial partner Procter & Gamble. At this point, I would like to dedicate personal thanks to a large number of people and their various contributions, involved in the development of this work: First and foremost, I would like to thank my supervisor, Prof. Dr. Peter Wasserscheid, for giving me the opportunity to be part of this interesting and exciting project and for the excellent mentoring during the entire period of this thesis. -
Recovery and Purification of Lactic Acid from Fermentation Broth by Adsorption Roque Lagman Evangelista Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1994 Recovery and purification of lactic acid from fermentation broth by adsorption Roque Lagman Evangelista Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, Chemical Engineering Commons, and the Food Science Commons Recommended Citation Evangelista, Roque Lagman, "Recovery and purification of lactic acid from fermentation broth by adsorption " (1994). Retrospective Theses and Dissertations. 11252. https://lib.dr.iastate.edu/rtd/11252 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMl films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photogr^hs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. -
L (+) Lactic Acid Fermentation and Its Product Polymerization
Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.7 No.2, Issue of August 15, 2004 © 2004 by Pontificia Universidad Católica de Valparaíso -- Chile Received May 09, 2004 / Accepted June 10, 2004 REVIEW ARTICLE L (+) lactic acid fermentation and its product polymerization Niju Narayanan Department of Biochemical Engineering and Biotechnology Indian Institute of Technology Delhi Hauz Khas, New Delhi – 110016, India Tel: 91-11-26591001 Fax: 91-11-26582282 E-mail: [email protected] Pradip K. Roychoudhury Department of Biochemical Engineering and Biotechnology Indian Institute of Technology Delhi Hauz Khas, New Delhi – 110016, India Tel: 91-11-26591011 Fax: 91-11-26582282 E-mail: [email protected] Aradhana Srivastava* Department of Biochemical Engineering and Biotechnology Indian Institute of Technology Delhi Hauz Khas, New Delhi – 110016, India Tel: 91-11-26596192 Fax: 91-11-26582282 E-mail: [email protected] Keywords: bioprocesses, fermentation, L (+) lactic acid, Lactobacillus sp., polymerization. Lactic acid has been first introduced to us as early as Massachusetts, USA in 1881. Lactic acid can be 1780 as a sour component of milk. Ever since we have manufactured by (a) Chemical synthesis or (b) found its applications in food, pharmaceutical, cosmetic Carbohydrate fermentation. industries etc. Now there are emerging uses as a potential feedstock for the biodegradable polymer CHEMICAL SYNTHESIS industry. The microorganisms being used for lactic acid fermentation, the raw materials reported, the various The commercial process for chemical synthesis is based on novel fermentation processes and its processing methods lactonitrile. Hydrogen cyanide is added to acetaldehyde in have been reviewed. The properties and applications of the presence of a base to produce lactonitrile. -
Chemicals from Biomass: a Market Assessment of Bioproducts with Near-Term Potential Mary J
Chemicals from Biomass: A Market Assessment of Bioproducts with Near-Term Potential Mary J. Biddy, Christopher Scarlata, and Christopher Kinchin National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-5100-65509 March 2016 Contract No. DE-AC36-08GO28308 Chemicals from Biomass: A Market Assessment of Bioproducts with Near-Term Potential Mary J. Biddy, Christopher Scarlata, and Christopher Kinchin National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5100-65509 Golden, CO 80401 March 2016 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. -
Influence of Storage Conditions on the Stability of Lactide
Available online at www.sciencedirect.com ScienceDirect Procedia Chemistry 10 ( 2014 ) 252 – 257 XV International Scientific Conference “Chemistry and Chemical Engineering in XXI century” dedicated to Professor L.P. Kulyov Influence of storage conditions on the stability of lactide V.N. Glotova*, M.K. Zamanova, A.V.Yarkova, D.S. Krutas, T.N. Izhenbina, V.T. Novikov Department of Technology of Organic Substances and Polymer Materials Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, Russia Abstract The objective following of the present study was to investigate the effect of different storage time and conditions on the stability of lactide. In this study the samples of lactide with different purities were stored under three various storage conditions and the compound integration was monitored for a period of 2 weeks. The storage conditions selected were (1) in the desiccator, (2) in the glove box under argon and (3) under ambient atmosphere. The purity of samples was performed on HPLC and Karl Fischer titration during all period of storage. It was shown that the initial purity of the lactide has a significant bearing on the lactide degradation. ©© 20142014 The The Authors. Authors. Published Published by byElsevier Elsevier B.V. B.V. This is an open access article under the CC BY-NC-ND license (Peerhttp://creativecommons.org/licenses/by-nc-nd/3.0/-review under responsibility of Tomsk Polytechnic). University. Peer-review under responsibility of Tomsk Polytechnic University Keywords: lactide, lactic acid, polylactic acid (PLA), biodegradable polymers 1. Introduction Lactide is a cyclic dimer of lactic acid. It is the main raw material for producing polylactide (PLA) and other biodegradable polymers based on lactic acid. -
Integrated Master in Chemical Engineering Study of Lactic Acid
Integrated Master in Chemical Engineering Study of lactic acid polycondensation and lactide production Master Thesis of Ana Marta Moniz Xavier Developed for the Dissertation Project realized in Eidgenössische Technische Hochschule Zürich Supervisor in ETH: Prof. Dr. Massimo Morbidelli Prof. Dr. Giuseppe Storti Fabio Codari Chemical Engineering Department July 2010 Abstract Poly(lactic acid) is a biodegradable polyester which, due to its physical and chemical properties is the best candidate to replace on the market petroleum-based polymers. The most interesting route to produce PLA involves three steps, the polycondensation of lactic acid until low molecular weight, depolymerisation of the prepolymer into the cyclic dimer of lactic acid, lactide, and ring opening polymerization of lactide to achieve high molecular weight. In the literature there are several papers concerning the polycondensation of lactic acid and the ring opening polymerization of lactide but the same does not happens with the production of lactide. Moreover, discrepancies exist in the published literature. In order to fully characterize the two first steps of this process, reactions at different temperatures, pressures, with or without catalyst were carried out in a semi-batch reactor. Special efforts have been devoted to achieve full characterization of both polymer melt and gas phases. Different analytical techniques have been adopted, and comparatively used, in order to evaluate polymer average properties. On the base of these detailed experimental data, which were not accessible so far in the literature, a more comprehensive description of the system has been obtained. At the same time, a comprehensive model accounting for both PC reaction and LT formation is developed. -
Newly Developed Techniques on Polycondensation, Ring-Opening Polymerization and Polymer Modification: Focus on Poly(Lactic Acid)
materials Review Newly Developed Techniques on Polycondensation, Ring-Opening Polymerization and Polymer Modification: Focus on Poly(Lactic Acid) Yunzi Hu 1, Walid A. Daoud 1, Kevin Ka Leung Cheuk 2 and Carol Sze Ki Lin 1,* 1 School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; [email protected] (Y.H.); [email protected] (W.A.D.) 2 The Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; [email protected] * Correspondence: [email protected], Tel.: +852-3442-7497; Fax: +852-3442-0688 Academic Editor: Marek Kowalczuk Received: 21 December 2015; Accepted: 18 February 2016; Published: 26 February 2016 Abstract: Polycondensation and ring-opening polymerization are two important polymer synthesis methods. Poly(lactic acid), the most typical biodegradable polymer, has been researched extensively from 1900s. It is of significant importance to have an up-to-date review on the recent improvement in techniques for biodegradable polymers. This review takes poly(lactic acid) as the example to present newly developed polymer synthesis techniques on polycondensation and ring-opening polymerization reported in the recent decade (2005–2015) on the basis of industrial technique modifications and advanced laboratory research. Different polymerization methods, including various solvents, heating programs, reaction apparatus and catalyst systems, are summarized and compared with the current industrial production situation. Newly developed modification techniques for polymer properties improvement are also discussed based on the case of poly(lactic acid). Keywords: polymer synthesis; polycondensation; ring-opening polymerization; modification technique; poly(lactic acid) 1. -
Synthesis of Polylactic Acid
SYNTHESIS OF POLYLACTIC ACID Master’s Thesis Chemical Engineering AAU ESBJERG 30-06-2017 Pranas Vitkevicius SYNTHESIS OF POLYLACTIC ACID Master’s Thesis in Chemical Engineering Period: 09-2016 – 30-06-2017 Supervisors: Erik G. Søgaard and Sergey V. Kucheryavskiy Group: K10K-6-F17 Vitkevicius, Pranas 1 ABSTRACT The goal of this project is to investigate the possibility of using alternative methods, like Ultrasonic Sonochemistry and Microwave Induced Polymerization to synthesize polylactic acid and discuss the possibility of applying mentioned techniques for industrial production. Polylactic acid (PLA) is biodegradable, highly versatile, aliphatic polyester which can be produced from 100 % renewable resources, like corn and beets. PLA proved to be a promising alternative to petroleum-based polymers as its properties are on a par with currently widely used polymers like PET, PVC etc. Current industrial production methods of PLA require high temperatures and high pressures in order to achieve the required final product. Alternative methods, like Sonochemistry and Microwave Induced reaction are growing in popularity and could be considered as faster and more energy- efficient methods to synthesize PLA. Experimental set-up was created according to the information provided in the literature and attempt was made to successfully synthesize PLA with properties comparable to PLA produced by the industrial methods. Analyses of the products were performed using Raman Spectroscopy and then analyzed using Principal Component Analysis (PCA), in order to understand progression of the reaction. None of the produced PLA could be compared to industrial products as resulting polymer showed subpar properties. Analysis with PCA suggested that reaction was happening in the right direction. -
Lactic Acid) by Ring-Opening Polymerization for Biomedical Applications Milena S
331 A publication of CHEMICAL ENGINEERING TRANSACTIONS The Italian Association VOL. 38, 2014 of Chemical Engineering www.aidic.it/cet Guest Editors: Enrico Bardone, Marco Bravi, Taj Keshavarz Copyright © 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-29-7; ISSN 2283-9216 DOI: 10.3303/CET1438056 Synthesis and Characterizations of Poly (Lactic Acid) by Ring-Opening Polymerization for Biomedical Applications Milena S. Lopes*, André L. Jardini and Rubens M. Filho. School of Chemical Engineering – State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970, Campinas-SP – Brazil. [email protected] The development of biomaterials for application in medicine is one of the great challenges of research in material science. The poly (a-hydroxy acids) are the principal biodegradable and bioresorbable polymers used in tissue engineering. Among the biomaterials (biopolymers) used in the medical field, the poly (lactic acid) (PLA) has received significant attention. It is produced from lactic acid, a naturally occurring organic acid that can be produced by fermentation. The attractive price and commercial availability of lactic acid are important reasons for PLA development. PLA and its copolymers are being used in biomedical area in the form of implants or devices due to its excellent biocompatibility and biodegradability. In this study, lactide was synthesized and Poly lactic acid produced. The objective of this study was to investigate the PLA production in laboratory scale. Characterization by FTIR of the lactide and PLA production was made to confirm the polymerization and a possible use as biomaterial. 1. Introduction Tissue engineering is one of the most important areas of material science, in which multidisciplinary scientists are contributing to human health care, combining knowledge in medicine, biology and engineering integrated technology of cells, engineering materials, and suitable biochemical factors to create artificial organs and tissues, or to regenerate damaged tissues. -
Rev. 27 Table 1
Table 1: Chemicals of Concern and Associated Chemical Information. PACs Rev 27, February 2012 Table 1 is an alphabetical list of the chemical substances, their Chemical Abstracts Service Registry Numbers (CASRNs)1, and pertinent physical constants. Future reviews will result in continuous updates to these data. There are also columns that provide the date of the original derivation of the PAC values, the date of the last technical review of the data used for deriving the PAC values, and the date of the last revision of the data used to derive the PAC values. The information presented in this table is derived from various sources including: . The Handbook of Chemistry and Physics Lide, D. R. (Ed.) (2009). CRC Handbook of Chemistry and Physics, CD Rom (90th Edition-2010 Version). Boca Raton, FL: Taylor and Francis. Hazardous Substances Data Bank (HSDB) The HSDB is “comprehensive, peer-reviewed toxicology data for about 5,000 chemicals” and it is accessible online at: http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB. The Merck Index O’Neil, M. J. (Ed.) (2006). Encyclopedia of Chemicals, Drugs, and Biologicals (14th edition). Merck Research Laboratories. Whitehouse Station, NJ. SAX Lewis, R. J., Sr. (2005). Sax's Dangerous Properties of Industrial Materials (11th Edition). New York: John Wiley & Sons. Sometimes data on physicochemical properties vary among sources. As the physical constants presented in this table are obtained from published sources, users are advised to consult trusted references to verify the accuracy of the information. Information on PAC values and Temporary Emergency Exposure Limits (TEELs) and links to other sources of information are provided on the Subcommittee on Consequence Assessment and Protective Actions (SCAPA) webpage at: http://orise.orau.gov/emi/scapa/teels.htm. -
Provisional Peer-Reviewed Toxicity Values for Lactonitrile (Casrn 78-97-7)
EPA/690/R-17/008 FINAL 09-26-2017 Provisional Peer-Reviewed Toxicity Values for Lactonitrile (CASRN 78-97-7) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 AUTHORS, CONTRIBUTORS, AND REVIEWERS CHEMICAL MANAGER Chris Cubbison, PhD National Center for Environmental Assessment, Cincinnati, OH DRAFT DOCUMENT PREPARED BY SRC, Inc. 7502 Round Pond Road North Syracuse, NY 13212 PRIMARY INTERNAL REVIEWERS Elizabeth Owens, PhD National Center for Environmental Assessment, Cincinnati, OH Jeff Swartout National Center for Environmental Assessment, Cincinnati, OH This document was externally peer reviewed under contract to: Eastern Research Group, Inc. 110 Hartwell Avenue Lexington, MA 02421-3136 Questions regarding the content of this PPRTV assessment should be directed to the EPA Office of Research and Development’s National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (513-569-7300). ii Lactonitrile TABLE OF CONTENTS COMMONLY USED ABBREVIATIONS AND ACRONYMS .................................................. iv BACKGROUND .............................................................................................................................1 DISCLAIMERS ...............................................................................................................................1 QUESTIONS REGARDING PPRTVs ............................................................................................1 -
Redalyc.L (+) Lactic Acid Fermentation and Its Product Polymerization
Electronic Journal of Biotechnology E-ISSN: 0717-3458 [email protected] Pontificia Universidad Católica de Valparaíso Chile Narayanan, Niju; Roychoudhury, Pradip K.; Srivastava, Aradhana L (+) lactic acid fermentation and its product polymerization Electronic Journal of Biotechnology, vol. 7, núm. 2, agosto, 2004, pp. 167-179 Pontificia Universidad Católica de Valparaíso Valparaíso, Chile Available in: http://www.redalyc.org/articulo.oa?id=173314713008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.7 No.2, Issue of August 15, 2004 © 2004 by Pontificia Universidad Católica de Valparaíso -- Chile Received May 09, 2004 / Accepted June 10, 2004 REVIEW ARTICLE L (+) lactic acid fermentation and its product polymerization Niju Narayanan Department of Biochemical Engineering and Biotechnology Indian Institute of Technology Delhi Hauz Khas, New Delhi – 110016, India Tel: 91-11-26591001 Fax: 91-11-26582282 E-mail: [email protected] Pradip K. Roychoudhury Department of Biochemical Engineering and Biotechnology Indian Institute of Technology Delhi Hauz Khas, New Delhi – 110016, India Tel: 91-11-26591011 Fax: 91-11-26582282 E-mail: [email protected] Aradhana Srivastava* Department of Biochemical Engineering and Biotechnology Indian Institute of Technology Delhi Hauz Khas, New Delhi – 110016, India Tel: 91-11-26596192 Fax: 91-11-26582282 E-mail: [email protected] Keywords: bioprocesses, fermentation, L (+) lactic acid, Lactobacillus sp., polymerization. Lactic acid has been first introduced to us as early as Massachusetts, USA in 1881.