Plastic Debris in the Laurentian Great Lakes System, North America: Analysis of Types, Abundances, and Sources

Total Page:16

File Type:pdf, Size:1020Kb

Plastic Debris in the Laurentian Great Lakes System, North America: Analysis of Types, Abundances, and Sources Western University Scholarship@Western Electronic Thesis and Dissertation Repository 2-2-2021 2:00 PM Plastic debris in the Laurentian Great Lakes System, North America: Analysis of types, abundances, and sources Ian A. Arturo, The University of Western Ontario Supervisor: Corcoran, Patricia L., The University of Western Ontario A thesis submitted in partial fulfillment of the equirr ements for the Master of Science degree in Geology © Ian A. Arturo 2021 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Environmental Health and Protection Commons, Environmental Monitoring Commons, and the Geology Commons Recommended Citation Arturo, Ian A., "Plastic debris in the Laurentian Great Lakes System, North America: Analysis of types, abundances, and sources" (2021). Electronic Thesis and Dissertation Repository. 7758. https://ir.lib.uwo.ca/etd/7758 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. ii Abstract Understanding plastic pollution in the Laurentian Great Lakes system requires investigation of all plastic debris sizes and categories. Visible polymeric debris (VPD) mainly characterize shorelines, and microplastics (MPs; <5 mm) are found in benthic and beach sediment. Field sampling of VPD from all five Great Lakes, visual and chemical identification of VPD types, and implementation of a matrix scoring technique (MST) indicate that plastic industries, urban areas, and shoreline recreation are major sources of VPD. Sampling for MPs in the St. Clair system, followed by preliminary density separation, and microscopy, suggest that wastewater treatment plants are a major source. This work is the first freshwater study to use an MST and the largest published lacustrine VPD study. The results should encourage industry, policy makers, and the general public to work towards a circular economy. Keywords Laurentian Great Lakes, plastic pollution, visible polymeric debris, anthropogenic debris, beaches, matrix scoring technique, microplastics, polymer identification, FTIR. iii Summary for Lay Audience The Laurentian Great Lakes and their tributaries are major sinks for plastic debris. Visible polymeric debris (VPD) were sampled from 66 beaches across all five Great Lakes. All VPD were categorized, and multiple determinations and analyses were made based on the characterizations. In total, 21,595 VPD items were collected. Plastic pre-production pellets, attributed to the plastics industry, were characterized as a part of a separate, published study. These pellets were the most abundant VPD, accounting for 12,595 items or 58.3% of the total count. Detailed, multi-step characterizations of all VPD items were performed by morphology (e.g. film, fragment, textile, pellet), colour, size fraction (micro: 1-5 mm; meso: 5-25 mm; and macro: >25 mm), and whether the item was intact. When appliable, VPD were described by item use (e.g. pen), polymer (e.g. polystyrene), and other materials present (e.g. aluminum). Polymers were identified through a variety of methods including physical identification and known usage in conjunction with a spectrometer. This study represents the first to use multiple identification methods supplemented with spectroscopy for polymer determination. Branded items were assigned to parent companies, and country of origin (US or Canada) was determined when possible, whereas multiple categorization schemes were applied based on item use. The top 50 ranked items, excluding pellets, were scored with a matrix scoring technique (MST) to determine the probable origin of VPD from three general sources – shoreline recreation, sewage related debris (urban sources), and agriculture. It was determined that VPD in the MST mostly originated from shoreline and urban sources, whereas pellets originated from the plastics industry. Additional evidence, including the presence of shotgun wads/gas seals and intact cigarette butts on beaches, points to a strong influence of local sources. Additionally, microplastics were sampled from St. Clair system benthic sediment and beach sediment. Although this research is ongoing, potential microplastic concentrations from benthic sediment samples are within the range reported from other Great Lakes samples. The results from this study should encourage a move towards a more circular economy and provide a basis for future methodology for VPD characterization and sourcing. iv Co-Authorship Statement The following conference presentations and public regulatory comments contain text and data that have been used in this manuscript. Although text in this thesis has generally been revised and modified, some text has been included verbatim from the sources below. All of these works were written and/or presented by the first author, I. Arturo, who conducted the majority of the St. Clair system field work and laboratory work. Arturo was also a part of a group of 13 people who sampled 66 Great Lakes beaches for pellets and other visible polymeric debris (VPD) in October 2018 and processed the pellet samples (Corcoran et al., 2020a; https://doi.org/10.1016/j.scitotenv.2020.141227). For the present thesis, Arturo performed the majority of non-pellet VPD laboratory work, and all data analysis, mapping, figure and table creation, and writing. P. Corcoran supervised this study, planned the Great Lakes sampling, and provided guidance, revisions, reformatting, and final approval of this thesis. Arturo, I.A. 2020. Comments on ‘Draft science assessment of plastic pollution’. Environment and Climate Change Canada & Health Canada. Submitted on May 1, 2020. Arturo, I.A. Plastic debris on St. Clair River and Lake St. Clair beaches: Implications for Canadian and US environmental policies. EnviroCon 2020, The University of Western Ontario, London, ON, Mar. 13, 2020. *Conference cancelled due to COVID-19* Arturo, I.A., & Corcoran, P.L. Microplastic pathways to Lake St. Clair as evidenced in sediment and stormwater outfall samples. IAGLR 2019, SUNY Brockport, Brockport, NY, Jun. 11, 2019. Oral presentation. v Acknowledgments In memory of Grandma GG and Uncle Michael, both of whom passed away during my thesis work and who shaped who I am today. I would like to thank my supervisor, Dr. Patricia Corcoran, for providing guidance and encouragement and for allowing me to modify my thesis at the start of the COVID-19 pandemic. Thank you to the Department of Earth Sciences administrative staff – Amy Wickham, Miyako Maekawa, Kristen Harris, Erika Gongora, and Vesna Jarvis. Thank you to Ephie Tsiapalis for housing me during my time in London, providing wonderful homecooked Greek meals, and for keeping me in line and also to Catherine and Johann Wong for making London feel like home when I first arrived. Thank you to my best friend and fiancée, Carolina, my parents Lawrence and Zeena, brothers Dakota and Dylan, and other family, relatives, and friends both in London and around the world. Thank you to Jasmine Nieva, Nina Kozikowski, and Tim Howe, who helped with St. Clair system field sampling. Thank you also to Jasmine, Nina, and Tegan Moore, who helped initially look over the visible polymeric debris (VPD) samples. Sara Belontz, thank you for training me in the lab and for help with lab work questions throughout the microplastics portion of my thesis. Thank you to all the people who sampled VPD in October 2018 for this study. Thank you, Becky Sarazen at Surface Science Western, for performing FTIR analysis on my samples. Debbie Burniston from ECCC (retired) provided the St. Clair River sediment split samples. Additional technical assistance, including help identifying certain items, was performed by Natty Boom, Sean Kenny, Sam Mason, Niels Kanstrup, and Cass Marion. Finally, thank you to Dr. Rob Schincariol, Dr. Fred Longstaffe, and Dr. Paul Mensink who served on the examination committee and provided helpful critiques, and to Guy Plint for chairing the examination committee. This thesis was funded through P. Corcoran’s NSERC Discovery Grant, Kelly Jazvac’s SSHRC Insight Grant, and the Western Graduate Research Scholarship, Arcangelo Rea Family Foundation Graduate Scholarship, and the Collaborative Specialization in Environment and Sustainability Travel Award. vi Table of Contents Abstract ............................................................................................................................... ii Keywords ............................................................................................................................ ii Summary for Lay Audience ............................................................................................... iii Co-Authorship Statement................................................................................................... iv Acknowledgments............................................................................................................... v Table of Contents ............................................................................................................... vi List of Tables ...................................................................................................................... x List of Figures ................................................................................................................... xii List of Appendices .........................................................................................................
Recommended publications
  • Designing Out-Of-Box Experiences for Older Adults: Exploring the Boundaries of Inclusive Design
    Designing Out-of-Box Experiences for Older Adults: Exploring the boundaries of Inclusive Design by Alison B. Burrows A Doctoral Thesis Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University (March 2013) © by A. B. Burrows, 2013 Certificate of Originality Thesis Access Conditions and Deposit Agreement Students should consult the guidance notes on the electronic thesis deposit and the access conditions in the University’s Code of Practice on Research Degree Programmes Author…………...……………………………………………………………………………………… Title……………………………………………………………………………………………………… I [Please insert name and address], “the Depositor”, would like to deposit [Please insert title of dissertation], hereafter referred to as the “Work”, once it has successfully been examined in Loughborough University Institutional Repository Status of access OPEN / RESTRICTED / CONFIDENTIAL Moratorium Period…………………………………years, ending…………../…………20………………………. Status of access approved by (CAPITALS):…………………………………………………………………… Supervisor (Signature)………………………………………………...………………………………… School of……………………………………………………………………...………………………………… Author's Declaration I confirm the following: CERTIFICATE OF ORIGINALITY This is to certify that I am responsible for the work submitted in this thesis, that the original work is my own except as specified in acknowledgements or in footnotes, and that neither the thesis nor the original work therein has been submitted to this or any other institution for a degree NON-EXCLUSIVE RIGHTS The licence rights granted to Loughborough University Institutional Repository through this agreement are entirely non-exclusive and royalty free. I am free to publish the Work in its present version or future versions elsewhere. I agree that Loughborough University Institutional Repository administrators or any third party with whom Loughborough University Institutional Repository has an agreement to do so may, without changing content, convert the Work to any medium or format for the purpose of future preservation and accessibility.
    [Show full text]
  • Measuring the Value of Information in Nuval Shelf Nutrition Label Feifei Liang, North Carolina State University Chen Zhen, Unive
    Measuring the Value of Information in NuVal Shelf Nutrition Label Feifei Liang, North Carolina State University Chen Zhen, University of Georgia Xiaoyong Zheng, North Carolina State University July 2017 Abstract The objective of this study is to estimate the value of information provided by the NuVal shelf nutrition label ―a prominent example of a new interpretive approach to front-of-package nutrition labeling that provides a multiple-level nutrition symbol. The rollout of NuVal at a supermarket in a Midwest town allowed us to estimate a mixed logit demand model for yogurt using household and barcode-level scanner data. We found the NuVal label promoted purchases of healthier yogurts. The average value of NuVal information in the yogurt category is estimated to be about 3% of total expenditures on yogurt. There is evidence suggesting that households who made less use of conventional nutrition labels prior to NuVal rollout may stand to benefit more from NuVal labels. Overall, our results indicate that there is a significant willingness to pay, on the part of consumers, for a universal adoption of an interpretive multiple-level shelf or front-of-package nutrition symbol. Acknowledgment: This research was supported by USDA-NIFA Hatch Grants 02375 and 02598 and a grant from Healthy Eating Research, a national program of the Robert Wood Johnson Foundation. The diet for the majority of the U.S. population does not meet the Dietary Guidelines for Americans (DGA) (USDA and DHHS, 2010). Per capita caloric intake from solid fats and added sugars exceeds the recommended limit by 180%, the highest percentage of foods and food components consumed excessively by Americans, followed by refined grains (100%) and sodium (49%) (USDA and DHHS, 2010).
    [Show full text]
  • Extrusion Foaming of Bioplastics for Lightweight Structure in Food Packaging
    EXTRUSION FOAMING OF BIOPLASTICS FOR LIGHTWEIGHT STRUCTURE IN FOOD PACKAGING A thesis submitted for the degree of Doctor of Philosophy by Sitthi Duangphet School of Engineering and Design Brunel University December 2012 i Abstract This thesis reports the systematic approaches to overcome the key drawbacks of the pure PHBV, namely low crystallisation rate, tensile strength, ductility, melt viscosity, thermal stability and high materials cost. The physical, mechanical, thermal, and rheological properties of the pure PHBV were studied systematically first to lay a solid foundation for formulation development. The influence of blending with other biopolymers, inclusion of filler, and chain extender additives in terms of mechanical properties, rheology, thermal decomposition and crystallization kinetics were then followed. Creating lightweight structures by foaming is considered to be one of the effective ways to reduce material consumption, hence the reduction of density and morphology of PHBV-based foams using extrusion foaming technique were studied comprehensively in terms of extrusion conditions (temperature profiles, screw speed and material feeding rate) and the blowing agent content. The material cost reduction was achieved by adding low-cost filler (e.g. CaCO3) and reduction of density by foaming. The thermal instability was enhanced by incorporation of chain extender (e.g. Joncryl) and blending with a high thermal stability biopolymer (e.g. PBAT). The polymer blend also improved the ductility. Adding nucleation agent enhanced the crystallization rate to reduce stickiness of extruded sheet. The final formulation (PHBV/PBAT/CaCO3 composite) was successfully extruded into high quality sheet and thermoformed to produce prototype trays in an industrial scale trial. The effect of the extrusion conditions (temperature profiles, screw speed and material feeding rate) and the blowing agent content are correlated to the density reduction of the foams.
    [Show full text]
  • Doc Thesis Revisited 2.Pages
    A’’ Aalto University Aalto University, P.O. Box 11000, 00076 AALTO School of Arts, Design www.aalto.fi and Architecture Master of Art Thesis Abstract Author: Julia Ganotis Title of Thesis:Ocean Plastic Waste as Art Material Department: Art, Design and Architecture Degree Program: ViCCA Year: 2017 Number of pages: 65 Language: English Abstract Through the inventive use of the waste of industrial production and the personal vision of a responsible society, some artists believe that it is possible to influence consumers’ attitudes and adopt a more responsible environmental behavior. Many artists do not only work with plastic waste but their ideals and methodologies are intimately related with a strong personal commitment in the environmental field. How can they produce new ways to acknowledge phenomena like the plastic pollution of oceans and the hazards it produces to our environment ? This Master of Arts thesis will endeavor to highlight the critical rethinking that contemporary artists are calling for, for this specific aspect of our consumer’s society and the consequences it entails on our future life. It will deal with the ocean plastic waste and pollution problem and artists’ role in mediating with the public through their practice and aesthetic vision. The thesis consists of three parts: a research, interviews with international artists and a production part. The first part of the thesis targets the significance of waste as material in contemporary art, familiarises the reader with a short history of the origins of plastic and examines the specific problem of ocean plastic waste. The second part focuses on interviews with artists who use ocean plastic waste as materials in their art practice.
    [Show full text]
  • The Recycled Plastics Market: Global Analysis and Trends
    MANUFACTURING www.csiro.au The Recycled Plastics Market: Global Analysis and Trends Katherine ES Locock, Jessica Deane, Edward Kosior, Hishani Prabaharan, Melissa Skidmore, Oliver E Hutt Citation Locock, KES (2017) The Recycled Plastics Market: Global Analysis and Trends. CSIRO, Australia. Copyright and disclaimer © 2017 CSIRO To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO. Important disclaimer CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. Contents Executive summary ....................................................................................................................................... v 1.1 Goal of study .........................................................................................................................
    [Show full text]
  • Packaging and Labelling Guide for Cannabis Products
    Packaging and labelling guide for cannabis products Requirements under the Cannabis Act and the Cannabis Regulations Health Canada is the federal department responsible for helping the people of Canada maintain and improve their health. Health Canada is committed to improving the lives of all of Canada's people and to making this country's population among the healthiest in the world as measured by longevity, lifestyle and effective use of the public health care system. Disclaimer: This document does not constitute part of the Cannabis Act or its regulations. It should be read in conjunction with the relevant sections of the Act and its regulations. The information in this document is not intended to substitute for, supersede or limit the requirements under the legislation. In the event of discrepancy between the legislation and this document, the legislation shall prevail. The reader is advised to consult other legislation that may apply to them or their activities, such as applicable provincial or territorial legislation. This document may be updated from time to time so the reader is encouraged to check back periodically. DRAFT Également disponible en français sous le titre : Guide sur l’emballage et l’étiquetage des produits de cannabis To obtain additional information, please contact: Health Canada Address Locator 0900C2 Ottawa, ON K1A 0K9 Tel.: 613-957-2991 Toll free: 1-866-225-0709 Fax: 613-941-5366 TTY: 1-800-465-7735 E-mail: [email protected] © Her Majesty the Queen in Right of Canada, 2019 Publication date: August 30, 2019 This publication may be reproduced without permission provided the source is fully acknowledged.
    [Show full text]
  • New Plastic Formations in the Anthropocene
    Science of The Total Environment, vol. 754, 2021, pp. 14221-6. New plastic formations in the Anthropocene. De-la-Torre, Gabriel Enrique, Dioses-Salinas, Diana Carolina, Pizarro-Ortega, Carlos Ivan y Santillán, Luis. Cita: De-la-Torre, Gabriel Enrique, Dioses-Salinas, Diana Carolina, Pizarro- Ortega, Carlos Ivan y Santillán, Luis (2021). New plastic formations in the Anthropocene. Science of The Total Environment, 754, 14221-6. Dirección estable: https://www.aacademica.org/gabriel.e.delatorre/7 Esta obra está bajo una licencia de Creative Commons. Para ver una copia de esta licencia, visite https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es. Acta Académica es un proyecto académico sin fines de lucro enmarcado en la iniciativa de acceso abierto. Acta Académica fue creado para facilitar a investigadores de todo el mundo el compartir su producción académica. Para crear un perfil gratuitamente o acceder a otros trabajos visite: https://www.aacademica.org. Science of the Total Environment 754 (2021) 142216 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Review New plastic formations in the Anthropocene Gabriel Enrique De-la-Torre a,⁎, Diana Carolina Dioses-Salinas a, Carlos Ivan Pizarro-Ortega a, Luis Santillán a,b a Universidad San Ignacio de Loyola, Av. La Fontana 501, Lima 12, Peru b Peruvian Centre for Cetacean Research (CEPEC), Pucusana, Peru HIGHLIGHTS GRAPHICAL ABSTRACT • New plastic-associated contaminants have been recently reported in litera- ture. • The fate and effects depend on the char- acteristics of each new contaminant. • Plastic pollution monitoring guidelines must include the new terminology.
    [Show full text]
  • Anthropogenic Litter and Microplastic in Urban Streams: Abundance, Source, and Fate
    Loyola University Chicago Loyola eCommons Master's Theses Theses and Dissertations 2015 Anthropogenic Litter and Microplastic in Urban Streams: Abundance, Source, and Fate Amanda Rae Mccormick Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_theses Part of the Ecology and Evolutionary Biology Commons Recommended Citation Mccormick, Amanda Rae, "Anthropogenic Litter and Microplastic in Urban Streams: Abundance, Source, and Fate" (2015). Master's Theses. 3144. https://ecommons.luc.edu/luc_theses/3144 This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 2015 Amanda Rae Mccormick LOYOLA UNIVERSITY CHICAGO ANTHROPOGENIC LITTER AND MICROPLASTIC IN URBAN STREAMS: ABUNDANCE, SOURCE, AND FATE A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF MASTER OF SCIENCE PROGRAM IN BIOLOGY BY AMANDA RAE MCCORMICK CHICAGO, ILLINOIS DECEMBER 2015 Copyright by Amanda Rae McCormick, 2015 All rights reserved. ACKNOWLEDGEMENTS This research was funded by the Illinois Water Resource Center and the Graduate School of Loyola University Chicago. Thank you to my thesis adviser Timothy Hoellein and committee members Martin Berg and John Kelly for their comments on this thesis. Thanks also to Maxwell London, Miguel Rojas, Joshua Hittie, Melaney Dunne, Margaret Sladek, Maxwell Jabay, Joseph Schluep, and the Hoellein Lab at Loyola University Chicago for their assistance in the field and laboratory.
    [Show full text]
  • Impacts of a Ban Or Restrictions in Sale of Items in the EU's Single Use Plastics Directive
    SOCIAL RESEARCH NUMBER: 32/2020 PUBLICATION DATE: 19/05/2020 Preliminary Research to Assess the Impacts of a Ban or Restrictions in Sale in Wales of Items in the EU's Single Use Plastics Directive Mae’r ddogfen yma hefyd ar gael yn Gymraeg. This document is also available in Welsh. © Crown Copyright Digital ISBN 978-1-80038-424-8 Title: Preliminary Research to Assess the Impacts of a Ban or Restrictions in Sale in Wales of Items in the EU's Single Use Plastics Directive Author(s): George Cole, Resource Futures Carla Worth, Resource Futures Katie Powell, Resource Futures Sam Reeve, Resource Futures Susie Stevenson, Miller Research (UK) Nick Morgan, Miller Research (UK) Howard Walker, Bridge Economics Full Research Report: Cole, G; Worth, C; Powell, K; Reeve, S; Stevenson, S; Morgan, N; Walker, H (2019). Preliminary Research to Assess the Impacts of a Ban or Restrictions in Sale in Wales of Items in the EU's Single Use Plastics Directive. Cardiff: Welsh Government, GSR report number 32/2020 Available at: https://gov.wales/impacts-ban-or-restrictions-sale-items-eus-single- use-plastics-directive Views expressed in this report are those of the researcher and not necessarily those of the Welsh Government For further information please contact: Isabella Malet-Lambert Knowledge and Analytical Services Welsh Government Cathays Park Cardiff CF10 3NQ 03000 628250 [email protected] Table of contents List of tables ..........................................................................................................................
    [Show full text]
  • 1610 8 Shashoua Icomcc 2017
    ICOM-CC 18th Triennial Conference Sustainable future alternatives 2017 Copenhagen to petroleum-based polymeric SCIENTIFIC RESEARCH conservation materials YVONNE SHASHOUA* INTRODUCTION National Museum of Denmark Kongens Lyngby, Denmark [email protected] Conservation treatments often employ petroleum-based plastic materials KATJA JANKOVA ATANASOVA as packaging, adhesives and coatings that are synthesised from non- Technical University of Denmark Kongens Lyngby, Denmark renewable crude oil, a resource at risk of exhaustion within the next [email protected] 100 years. The Going Green conference held at the British Museum in CLAIRE CURRAN ICA Art Conservation April 2009 concluded that conservators are under increasing pressure to Cleveland OH, USA [email protected] review their practices in light of international environmental targets and *Author for correspondence the rising costs of fossil fuels. Biopolymers are considered sustainable either because they are synthesised from renewable sources or because they biodegrade to CO2 and H2O in soil and water after use. The range and KEYWORDS: sustainable, biopolymer, bioplastic quality of bioplastics have increased dramatically since 2006 and, today, polyethylene, polyester, soya, humic acid polyethylenes, polyesters, polyurethanes and polyvinyl alcohols can be fully synthesised from biomass, although their commercial availability ABSTRACT is more limited in Europe than in the USA and South America. While The research described here is the first study extensive research has been conducted into the rates and mechanism of on the use of sustainable, plant-based biopoly- degradation of bioplastics on disposal (Rani et al. 2012), few projects have mers in conservation practice. Two applications of biopolymers to conservation were investi- focused on their chemical and physical properties during use and none gated – in commercial bioplastics as substi- have addressed the application of bioplastics to conservation practice.
    [Show full text]
  • The Consequence That Is Plastiglomerate
    COMMENT The consequence that is plastiglomerate Patricia L. Corcoran 1* and Kelly Jazvac2 First documented in 2014, plastiglomerate continues to proliferate across the Earth’s surface. While these materials represent long- lasting symbols of anthropogenic impacts on the environment, they also highlight the need to address the global plastic crisis. Plastiglomerate is a material that describes rock frag- the potential to become buried, preserved, and form ments, sand grains, plastic debris and organic materials part of the rock record. Moreover, given their coastal (such as shells, wood and coral debris) held together in a occurrence, plastiglomerate might be washed out to sea matrix of once-molten plastic (Fig. 1a), and is one of very during storm events and become part of the benthic sed- few examples of preservation of plastic debris in rock. imentary record. Thus, along with global deposition of Generated in beach locations by human- induced fires — combustion-related products (for example, fly ash), and either as a purposeful solution to remove trash or acci- collapse and burial of building materials (concrete dentally as a result of campfires — these anthropogenic and asphalt), plastiglomerate joins an ever- expanding ‘stones’ were first reported on Kamilo Beach, Hawai’i group of long- lived human impacts. These remnants in 2014 (REF.1), but have since been identified in many or casts of the initial plastic products will remain fused coastal locations: from Bali, Indonesia, to California, into the lithosphere as Earth’s future rock record and USA, Madeira, Portugal and Ontario, Canada. As well can be used as a marker of the Anthropocene, when as their geographic distribution, the range of plasti- human activities began to rapidly alter the Earth and glomerate types has also expanded beyond their initial its atmosphere.
    [Show full text]
  • Nutrition Facts” Label?
    ANSWERS Lifestyle + Risk Reduction by heart Diet + Nutrition How Do I Understand the “Nutrition Facts” Label? Most foods in the grocery store have a Nutrition Facts label and ingredient list. When you go grocery shopping, take time to read the Nutrition Facts labels on the foods you purchase. Compare the nutrients and calories in one food to those in another. The information may surprise you. Make sure you aren’t buying foods high in calories, saturated fat, trans fat, sodium and added sugars! What information is on the Nutrition Facts label? The Nutrition Facts label contains this information: • Trans Fat – is also considered a “bad fat” because it • Serving size — tells you how much of the food is can raise your LDL cholesterol and your risk of heart considered a “serving.” A package may contain multiple disease. Choose foods with “0” grams of trans fat. Read servings. Servings per container will tell you the total the ingredient list to avoid foods that contain “partially number of servings in a package or container. If you eat hydrogenated” oils. Everyone can benefit from limiting more or less than the serving size listed, you need to trans fat. do the math to figure out the amount of nutrients and • Cholesterol — is found in foods that come from number of calories you’ve eaten. animals, such as meats, poultry, seafood, eggs and • Calories — tell you how much energy is in the food. It’s full-fat dairy products. The FDA’s Dietary Guidelines important to pay attention to calories if you’re trying to for Americans recommend eating as little dietary lose weight or manage your weight.
    [Show full text]