Mechanisms Compensating for Visual Field Restriction in Adolescents With

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms Compensating for Visual Field Restriction in Adolescents With Eye (2012) 26, 1437–1445 & 2012 Macmillan Publishers Limited All rights reserved 0950-222X/12 www.nature.com/eye 1;2 3;4 1 Mechanisms L Jacobson , F Lennartsson , T Pansell ,GO¨ qvist CLINICAL STUDY Seimyr2 and L Martin2;5 compensating for visual field restriction in adolescents with damage to the retro-geniculate visual system 1Eye Unit, Department of Neuropaediatrics, Astrid Lindgren Children’s Hospital, Karolinska University Abstract Hospital, Stockholm, Background To describe visual field (VF) Conclusion Congenital and later-acquired Sweden outcome in three adolescents with damage to homonymous VF defects may, at least in 2 the optic radiation and to focus on young subjects, be compensated for by Department of Clinical Neuroscience, mechanisms that may compensate the scanning. Exotropia may compensate VF Ophthalmology and Vision, practical functional limitations of VF defects. defects and, therefore, the VF should be Karolinska Institutet, Design Descriptive, prospective multi-case tested before strabismus surgery. Stockholm, Sweden study in a hospital setting. Eye (2012) 26, 1437–1445; doi:10.1038/eye.2012.190; Participants Three teenagers with cerebral published online 21 September 2012 3Department of Medical visual dysfunction because of damage to the Physics, Karolinska University Hospital, retro-geniculate visual pathways. Keywords: VF defects; retro-geniculate visual Stockholm, Sweden Methods Best-corrected visual acuity and system; compensating mechanisms; eye alignment were assessed. Visual field adolescents 4Department of function was tested with Goldmann Neuroradiology, Karolinska perimetry, and with Rarebit, Humphrey University Hospital, Introduction Visual Field Analyzer and Esterman Stockholm, Sweden computerized techniques. Fixation was Brain damage has become the most common 5School of Health and registered with video oculography during cause of visual impairment in children in Welfare, Ma¨ lardalen 1–3 Rarebit examination. Magnetic resonance developed countries as a consequence of University, Eskilstuna, imaging of the brain illustrated brain damage improving survival of children with life- Sweden and its relation to the posterior visual threatening conditions with cerebral system. complications and of children born preterm. Correspondence: Results One of the three subjects had Assessment of visual function in these children Dr L Jacobson, Eye Unit, Department of bilateral asymmetric white matter damage of may be hampered by their inability to Neuropaediatrics, Astrid immaturity, early-onset exotropia, and a understand or to co-operate in the tests. Lindgren Children´ s relative homonymous VF defect, but normal Therefore, there is still limited information Hospital, Karolinska binocular VF. The second subject also had available of visual outcome, and in particular of University Hospital, bilateral asymmetric white matter damage of visual field (VF) function. Stockholm, SE 171 76, Sweden immaturity and showed an inferior right Brain imaging in children with cerebral visual Tel: +46 8 6683510 quadrantanopia, confirmed by the binocular impairment (CVI) reveals different pathologies E-mail: lena.jacobson@ field. Registration of fixation revealed of pre- or perinatal origin such as the following: karolinska.se or lena. automatic scanning during perimetry. The malformations, white matter damage of [email protected] third subject had an almost total left immaturity, and cortico-subcortical damage homonymous hemianopia after resection of a (focal infarct, multicystic encephalomalacia, Received: 9 May 2012 4 Accepted in revised form: brain tumour in the right temporal lobe. The basal ganglia, and thalamic lesions). When 20 July 2012 hemianopia could be compensated for by fast brain damage occurs at 24–34-week gestation, Published online: voluntary scanning. the lesions typically occur in the white matter. 21 September 2012 Compensating visual field mechanisms L Jacobson et al 1438 The specific lesions of the myelinated tracts comprise All subjects were examined with Goldmann perimetry intraventricular haemorrhage, periventricular and three different types of computerized perimetry. haemorrhagic infarction and periventricular Fixation and eye movements were registered during one leukomalacia.5 Each lesion may occur in isolation, but of the computerized perimetries. Best-corrected decimal more commonly any single infant may present with visual acuity was documented. Eye alignment was multiple lesions. When a child is examined with cerebral examined with cover test. Stereo acuity was tested with imaging in childhood, the periventricular white matter the TNO test (Lame´ris Ootech BV, Nieuwegein, The pathology may be visualized. However, at that time, it Netherlands),13 relying on the random-dot technique.14 may not be possible to know the cause. The end-stage The three boys and their parents gave consent before lesion is described as white matter damage of enrolment in the study. The study was approved by the immaturity, a common cause of CVI in prematurely born Regional Ethics Committee, Stockholm North, in children. Later-acquired lesions due to trauma, stroke, accordance with ethical standards on human tumour, or surgery may affect the posterior visual experimentation and with the Helsinki Declaration of pathways and cause visual impairment. This 1975, as revised in 1983. heterogeneity of aetiologies representing insults at different developmental stages, may explain different Perimetry prerequisites for reorganization and compensation, reflected in the VF outcome. Kinetic manual Goldmann perimetry was performed in a Exotropia as compensation in homonymous standardized way.15 The extent of the VF was determined hemianopia has been suggested.6,7 Another using the II/4e stimulus. For the central VF, one or more compensatory mechanism based on saccadic exploration of the stimuli I/3e, I/2, I/1e and, if possible, 0/1e were towards the blind field has been described.8 Motion used. The fixation and co-operation during VF detection in the blind field has also been described in examinations of each subject were continuously carefully adults with acquired hemianopia.9,10 With such monitored and encouraged by the examiner. Every compensation mechanisms, we can expect that the subject was prompted to fixate in the middle of the practical binocular VF function in everyday living differs fixation mark, and every attempt to shift gaze led to from the monocular VF function assessed under strict renewed calls for looking straight ahead at the fixation control of fixation. mark. None of them had any obvious problems with Training programs have been developed for adults shifting attention. with previously normal VF function who have acquired For quantitative measurement of the central VF, the homonymous hemianopia, most often after stroke. These Rarebit Perimetry was used, testing the 301 Â 201 central rehabilitation techniques are based on optical devices, on VF. The Rarebit perimetry technique16 tests the integrity eye-movement training or visual restitution training.11 of the retinal receptor matrix, using very small and bright The value of such training programs is debated.12 No dots against a dark background and has shown to be training programs have yet been designed for children sensitive for damage in the visual system of different with congenital or very early-acquired VF defects. origins.16–19 The task for the subject is to follow a The practical consequences of VF defects in children flickering fixation mark that moves over the computer with pre- and perinatal brain damage for mobility and screen and to indicate perception of the dots by a single- orientation, for everyday life, for reading and for future or a double-click on the computer mouse. Fixation driving, have not yet been thoroughly described. stability is supervised by the examiner and encouraged The purpose of this multiple case presentation is to by dynamically changing the fixation mark, ie, the suggest possible automatically developed compensatory fixation mark gradually diminishes in size, signalling a mechanisms that improve VF function in children with pending presentation. In order to cover a larger VF area, lesions affecting the posterior visual pathways because of the fixation mark is moved according to a predefined pre- and perinatal or later-acquired brain damage. pattern during the examination. The results are expressed as the mean hit rate, ie, the percentage of stimulus presented. Normal hit rates for adults have Subjects and methods been found to range from 93 to 100% (median 96%),16,18 Three teenagers with cerebral visual dysfunction because and are approximately the same for young subjects with of the damage to the retro-geniculate visual pathways a median mean hit rate of 93% (range 78–100) in 6.5–12- were recruited. Two had spastic cerebral palsy due to year-old subjects and 97% (range 89–100) in 14–20-year- white matter damage of immaturity. One subject had old subjects.20 The results are also presented graphically, undergone surgery for a brain tumour affecting the optic where unfilled rectangles indicate that all stimuli have radiation in the temporal lobe. been perceived in that area; the darker the rectangle, Eye Compensating visual field mechanisms L Jacobson et al 1439 the more the stimuli that have been missed (see Figure 3). and a mixture of horizontal and vertical saccades The learning effect is reported to be very low, o1% unit (amplitude 6.1 deg SD 3.5) with no preferred direction. in young subjects.21 The monocular VF examinations were performed with
Recommended publications
  • Customer Vision Report (MED 4)
    MED 4 (11/25/2020) CUSTOMER VISION REPORT Purpose: Use this form to request vision examination information from your ophthalmologist or optometrist. Instructions: Complete the Customer Information section and have your Ophthalmologist/Optometrist complete the Vision Examination section. The vision examination must be conducted within 90 days prior to submission of the report to DMV. Mail the completed report to the address above. Questions can be referred to Medical Review Services, 804-367-6203. Acceptable standards of vision for safe driving are determined by the Code of Virginia and DMV under the guidance of the Medical Advisory Board. Note: Any charges incurred for the completion of this form are your responsibility. CSC STAFF Do NOT send MED 4 back with daily work unless there is an ocular condition or customer cannot be licensed due to a MED 6 calculation. CUSTOMER INFORMATION (To be completed by customer PRIOR to vision examination) If you change either your residence/home address or mailing address to a non-Virgina address, your driver license or photo identification (ID) card may be cancelled. NAME (last) (first) (mi) (suffix) CUSTOMER NUMBER (from your driver license) or SSN RESIDENCE/HOME ADDRESS BIRTHDATE (mm/dd/yyyy) CITY STATE ZIP CODE CITY OR COUNTY OF RESIDENCE MAILING ADDRESS (if different from above) CITY STATE ZIP CODE DAYTIME TELEPHONE NUMBER VISION EXAMINATION (to be completed by Ophthalmologist/Optometrist) FIRST EXAMINATION DATE MOST RECENT EXAMINATION DATE Does the patient have any visual/ocular condition(s) that could affect the ability to drive a motor vehicle? YES NO If YES, indicate condition below.
    [Show full text]
  • Boosting Learning Efficacy with Non-Invasive Brain Stimulation in Intact and Brain-Damaged Humans
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Behavioral/Cognitive Boosting learning efficacy with non-invasive brain stimulation in intact and brain-damaged humans F. Herpich1,2,3, F. Melnick, M.D.4 , S. Agosta1 , K.R. Huxlin4 , D. Tadin4 and L Battelli1,5,6 1Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto (TN), Italy 2Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy 3kbo Klinikum-Inn-Salzach, Gabersee 7, 83512, Wasserburg am Inn, Germany 4Department of Brain and Cognitive Sciences, Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA 5Berenson-Allen Center for Noninvasive Brain Stimulation and Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215 Massachusetts, USA 6Cognitive Neuropsychology Laboratory, Harvard University, Cambridge, MA, USA https://doi.org/10.1523/JNEUROSCI.3248-18.2019 Received: 28 December 2018 Revised: 10 April 2019 Accepted: 8 May 2019 Published: 27 May 2019 Author contributions: F.H., M.D.M., K.H., D.T., and L.B. designed research; F.H., M.D.M., and S.A. performed research; F.H., M.D.M., and D.T. analyzed data; F.H., M.D.M., and L.B. wrote the first draft of the paper; M.D.M., S.A., K.H., D.T., and L.B. edited the paper; K.H., D.T., and L.B. wrote the paper. Conflict of Interest: The authors declare no competing financial interests. The present study was funded by the Autonomous Province of Trento, Call “Grandi Progetti 2012”, project “Characterizing and improving brain mechanisms of attention — ATTEND (FH, SA, LB), “Fondazione Caritro — Bando Ricerca e Sviluppo Economico” (FH), NIH (DT, MM and KRH: R01 grants EY027314 and EY021209, CVS training grant T32 EY007125), and by an unrestricted grant from the Research to Prevent Blindness (RPB) Foundation to the Flaum Eye Institute.
    [Show full text]
  • Read PDF Edition
    REVIEW OF OPTOMETRY EARN 2 CE CREDITS: Positive Visual Phenomena—Etiologies Beyond the Eye, PAGE 58 ■ VOL. 155 NO. 1 January 15, 2018 www.reviewofoptometry.comwww.reviewofoptometry.com ■ ANNUAL CORNEA REPORT JANUARY 15, 2018 ■ CXL ■ EPITHELIAL DEFECTS How to Heal Persistent Epithelial Defects PAGE 38 ■ TRANSPLANTS Corneal Transplants: The OD’s Role PAGE 44 ■ INFILTRATES Diagnosing Corneal Infiltrative Disease PAGE 50 ■ POSITIVE VISUAL PHENOMENA CXL: Your Top 12 Questions —Answered! PAGE 30 001_ro0118_fc.indd 1 1/5/18 4:34 PM ĊčĞĉėĆęĊĉĆĒēĎĔęĎĈĒĊĒćėĆēĊċĔėĎēǦĔċċĎĈĊĕėĔĈĊĉĚėĊĘ ĊđĎĊċĎēĘĎČčę ċċĊĈęĎěĊ Ȉ 1 Ȉ 1 ĊđđǦęĔđĊėĆęĊĉ Ȉ Ȉ ĎĒĕđĊĎēǦĔċċĎĈĊĕėĔĈĊĉĚėĊ Ȉ Ȉ ĔēěĊēĎĊēę Ȉ͝ Ȉ Ȉ Ƭ 1 ǡ ǡǡǤ͚͙͘͜Ǥ Ȁ Ǥ ͚͙͘͜ǣ͘͘ǣ͘͘͘Ǧ͘͘͘ ĕĕđĎĈĆęĎĔēĘ Ȉ Ȉ Ȉ Ȉ Ȉ čĊĚėĎĔē̾ėĔĈĊĘĘ Ȉ Ȉ Katena — Your completecomplete resource forfor amniotic membrane pprocedurerocedure pproducts:roducts: Single use speculums Single use spears ͙͘͘ǡ͘͘͘ήĊĞĊĘęėĊĆęĊĉ Forceps ® ,#"EWB3FW XXXLBUFOBDPNr RO0118_Katena.indd 1 1/2/18 10:34 AM News Review VOL. 155 NO. 1 ■ JANUARY 15, 2018 IN THE NEWS Accelerated CXL Shows The FDA recently approved Luxturna (voretigene neparvovec-rzyl, Spark Promise—and Caution Therapeutics), a directly administered gene therapy that targets biallelic This new technology is already advancing, but not without RPE65 mutation-associated retinal dystrophy. The therapy is designed to some bumps in the road. deliver a normal copy of the gene to By Rebecca Hepp, Managing Editor retinal cells to restore vision loss. While the approval provides hope for patients, wo new studies highlight the resulted in infection—while tradi- the $425,000 per eye price tag stands as pros and cons of accelerated tional C-CXL has a reported inci- a signifi cant hurdle.
    [Show full text]
  • Case Report: Superior Homonymous Quadrantanopia in a Patient with an Infective Endocarditis
    Case Report: Superior homonymous quadrantanopia in a patient with an infective endocarditis Jennifer Nim, O.D. Long Island, New York, [email protected] An infective endocarditis, specifically bacterial endocarditis, is usually caused by bacteria carried in the blood that may originate from an infection in other parts of the body besides the heart.1 Injuries, surgeries or preexisting heart conditions make the body vulnerable to infections. Emboli may arise during this type of infection that may lead to visual field defects. Case Report A 62-year-old white male from New York presented with the primary complaint of a recent loss of his left peripheral vision in his left eye and moving white and red flashes in both eyes. The patient had a history of floaters which have subsided in the past years. In addition, the patient reported an acute loss of hearing. The patient denies any head trauma, slurred speech or paralysis in the limbs. Medical history revealed hypercholesteremia and hypertension, for which he takes vytorin and lotrel, respectively. The patient’s best-corrected visual acuities were 20/20 in the right eye (OD) and in the left eye (OS). Pupil and extraocular motility testings were normal. Slit lamp evaluation revealed trace arcus and cortical cataracts in both eyes (OU). Intraocular pressures were within normal ranges in OU. The dilation fundus examination revealed posterior vitreal detachments in OU and a flat, choroidal nevus in the OD. The posterior pole (see Figures 1) and peripheral retina were flat and intact in OU. An automated threshold visual field revealed left superior homonymous quandrantanopia that respected the vertical line but not the horizontal line (see Figures 2).
    [Show full text]
  • Embryology, Anatomy, and Physiology of the Afferent Visual Pathway
    CHAPTER 1 Embryology, Anatomy, and Physiology of the Afferent Visual Pathway Joseph F. Rizzo III RETINA Physiology Embryology of the Eye and Retina Blood Supply Basic Anatomy and Physiology POSTGENICULATE VISUAL SENSORY PATHWAYS Overview of Retinal Outflow: Parallel Pathways Embryology OPTIC NERVE Anatomy of the Optic Radiations Embryology Blood Supply General Anatomy CORTICAL VISUAL AREAS Optic Nerve Blood Supply Cortical Area V1 Optic Nerve Sheaths Cortical Area V2 Optic Nerve Axons Cortical Areas V3 and V3A OPTIC CHIASM Dorsal and Ventral Visual Streams Embryology Cortical Area V5 Gross Anatomy of the Chiasm and Perichiasmal Region Cortical Area V4 Organization of Nerve Fibers within the Optic Chiasm Area TE Blood Supply Cortical Area V6 OPTIC TRACT OTHER CEREBRAL AREASCONTRIBUTING TO VISUAL LATERAL GENICULATE NUCLEUSPERCEPTION Anatomic and Functional Organization The brain devotes more cells and connections to vision lular, magnocellular, and koniocellular pathways—each of than any other sense or motor function. This chapter presents which contributes to visual processing at the primary visual an overview of the development, anatomy, and physiology cortex. Beyond the primary visual cortex, two streams of of this extremely complex but fascinating system. Of neces- information flow develop: the dorsal stream, primarily for sity, the subject matter is greatly abridged, although special detection of where objects are and for motion perception, attention is given to principles that relate to clinical neuro- and the ventral stream, primarily for detection of what ophthalmology. objects are (including their color, depth, and form). At Light initiates a cascade of cellular responses in the retina every level of the visual system, however, information that begins as a slow, graded response of the photoreceptors among these ‘‘parallel’’ pathways is shared by intercellular, and transforms into a volley of coordinated action potentials thalamic-cortical, and intercortical connections.
    [Show full text]
  • VISUAL FIELD Pathway Extends from the „Front‟ to the „Back‟ of the RETINA Brain
    NOTE: To change the image on this slide, select the picture and delete it. Then click the Pictures icon in the placeholde r to insert your own image. Visual Pathway Disorders Amr Hassan, MD, FEBN Associate professor of Neurology - Cairo University Optic nerve • Anatomy of visual pathway • How to examine • Visual pathway disorders • Quiz 2 Optic nerve • Anatomy of visual pathway • How to examine • Visual pathway disorders • Quiz 3 Optic nerve The Visual Pathway VISUAL FIELD Pathway extends from the „front‟ to the „back‟ of the RETINA brain. ON OC OT LGN OPTIC RADIATIONS ON = Optic Nerve OC = Optic Chiasm OT = Optic Tract LGN = Lateral Geniculate Nucleus of Thalamus VISUAL CORTEX 5 The Visual Pathway Eyes & Retina Light >> lens >> retina (inverted and reversed image). Eyes & Retina Eyes & Retina • Macula: oval region approximately 3-5 mm that surrounds the fovea, also has high visual acuity. • Fovea: central fixation point of each eye// region of the retina with highest visual acuity. Eyes & Retina • Optic disc: region where axons leaving the retina gather to form the Optic nerve. Eyes & Retina • Blind spot located 15° lateral and inferior to central fixation point of each eye. Object to be seen Peripheral Retina Central Retina (fovea in the macula lutea) 12 Photoreceptors © Stephen E. Palmer, 2002 Photoreceptors Cones • Cone-shaped • Less sensitive • Operate in high light • Color vision • Less numerous • Highly represented in the fovea >> have high spatial & temporal resolution >> they detect colors. © Stephen E. Palmer, 2002 Photoreceptors Rods • Rod-shaped • Highly sensitive • Operate at night • Gray-scale vision • More numerous than cons- 20:1, have poor spatial & temporal resolution of visual stimuli, do not detect colors >> vision in low level lighting conditions © Stephen E.
    [Show full text]
  • SEMPHN Pathways
    Sudden or Recent Vision Loss Disclaimer COVID-19 note The Royal Australian and New Zealand College of Ophthalmologists (RANZCO) and The Royal Australian College of General Practitioners (RACGP) have made recommendations regarding eye examination during the COVID-19 pandemic. See RANZCO – COVID-19: Practical Guidance for General Practitioners Performing Eye Examinations. Last updated: 18 May 2020 Contents Disclaimer ......................................................................................................................................................................................... 1 Red Flags .................................................................................................................................................... 2 Background – About Sudden or Recent Vision Loss ............................................................................. 2 Assessment ................................................................................................................................................ 2 Management ............................................................................................................................................. 7 Practice Point .................................................................................................................................................................................. 7 Referral ......................................................................................................................................................
    [Show full text]
  • Visual Problems After Brain Injury
    Visual problems after brain injury As a charity, we rely on donations from people like you to continue providing free information to people affected by brain injury. Donate today: www.headway.org.uk/donate Introduction Vision is the skill that allows us to see the world around us. When we look at the world, a complex series of processes takes place between the eyes and the brain. The eyes take in the information, while the brain (which is connected to the eyes by a nerve called the optic nerve) is responsible for processing and interpreting it. Through this system we are able to see things such as colours, shapes, movement, objects and people. When the brain is injured, the ability to interpret visual information can be affected in different ways. This factsheet has been written to explain how brain injury can affect vision and how to seek professional support with these issues. Tips for coping with visual problems are also offered. Words in bold are defined in a glossary at the end of the factsheet. What is vision? There are lots of different aspects of vision. Some of the things the brain needs to do to decode information that it receives from the eyes are: • process the shape and colour of objects • process and merge information received from both eyes • recall information from memory to recognise objects or places • process the movement of objects • process the location and position of an object in space • process information across the visual field (including peripheral vision) Generally, different parts of the brain are responsible for processing these different aspects of vision.
    [Show full text]
  • 20-OPHTHALMOLOGY Cataract-Ds Brushfield-Down Synd Christmas
    20-OPHTHALMOLOGY cataract-ds BrushfielD-Down synd christmas tree-myotonic dystrophy coronaRY-pubeRtY cuneiform-cortical(polyopia) cupuliform-post subcapsular(max vision loss) Elschnig pearl, ring of Soemmering-after(post capsule) experimenTal-Tyr def glassworker-infrared radiation grey(soft), yellow, amber, red(cataracta rubra), brown(cataracta brunescence), black(cat nigrans)(GYARBB)-nuclear(hard) heat-ionising radiation Membranous-HallerMan Streiff synd morgagnian-hypermature senile oildrop(revers)-galactossemia(G1PUT def) post cortical/bread crumb/polychromatic lustre/rainbow-complicated post polar-PHPV(persistent hyperplastic prim vitreous) radiational-post subcapsular riders-zonular/lamellar(vitD def, hypoparathy) roseTTe(ant cortex)-Trauma, concussion shield-atopic dermatitis snowstorm/flake-juvenile DM(aldose reductase def, T1>T2, sorbitol accumulat) star-electrocution sunflower/flower of petal-Wilson ds, chalcosis, penetrating trauma syndermatotic-atopic ds total-cong rubella zonular-galactossemia(galactokinase def) stage of cataract lamellar separation incipient/intumescence(freq change of glass) immature mature hypermature Aim4aiims.inmorgagnian sclerotic lens layer ant capsule ant epithelium lens fibre[66%H2O, 34%prot-aLp(Largest), Bet(most aBundant), γ(crystalline, soluble)] nucleus embryonic(0-3mthIUL) fetal(3-8mthIUL)-Y shape(suture) infantile(8mthIUL-puberty) adult(>puberty) cortex post capsule thinnest-post pole>ant pole thickest, most active cell-equator vitA absent in lens vitC tpt in lens by myoinositol H2O tpt in lens
    [Show full text]
  • Driving and Vision
    FocusTHE ROYAL COLLEGE OF OPHTHALMOLOGISTS Summer 2013 Mr Andrew Elliott, Consultant Ophthalmologist, Frimley Park An occasional update commissioned by the College. Hospital NHS Foundation Trust, The views expressed are those of the authors Portsmouth Road, Camberley, Surrey GU16 7UJ Dr Gareth Rees, Medical Adviser, Drivers Medical, DVLA , Driving and vision Swansea SA6 7JL GTN Ophthalmologists have responsibilities concerning standards for vision and driving were published by drivers and the safety of the general public, and these the European Commission in August 20095. There has duties have been emphasised both by the GMC and subsequently been public consultation in Great Britain the Royal College of Ophthalmologists1,2. The freedom about these, and on 1 May 2012 those vision standards and flexibility of car travel is very important in modern in Great Britain that had previously been below the life, though a driving licence is not an absolute right minimum European standards were amended accordingly, and is subject to controls and safeguards which aim to and further amendments to the vision standards came keep the roads safe. These controls are administered by into force on 8 March 20136. In essence there have been the DVLA in Great Britain and the DVA in Northern changes to both visual acuity and visual field standards for Ireland. Group 1 and Group 2 drivers. So what exactly is the DVLA? Group 1 The Driver and Vehicle Licensing Agency (DVLA) is A minimum binocular visual acuity of 6/12 is now required an executive agency of the Department for Transport as well as the ability to read in good light (with corrective (DfT).
    [Show full text]
  • Vision Loss After Stroke Fact Sheet
    Vision loss after stroke What you need to know Types of vision loss › About one-third of stroke survivors Visual field loss experience vision loss. Your visual field is the entire area you can see › Most people who have vision loss after a when your eyes are fixed in one position. stroke do not fully recover their vision. Homonymous hemianopia is the loss of one › Some recovery is possible – this will half of the visual field in each eye. You may feel usually happen in the first few months like you are unable to see out of one eye, but in after a stroke. fact, both your eyes are affected. When reading, › Training, equipment and home words and sentences disappear when in the modifications can help you to live as missing visual field. People may appear to have independently and safely as possible. only half a face. Quadrantanopia is the loss of either the upper or Vision loss after stroke lower quarter of the visual field. Your vision depends on a healthy eye to receive information and a healthy brain to process that information. The nerves in the eye travel from the eye through the brain to the occipital cortex at the back of the brain, allowing you to see. Hemianopia Most strokes affect one side of the brain. Quadrantanopia Nerves from each eye travel together in the brain, so both eyes are affected. If the right Eye movement control side of your brain is damaged, the left side If the nerves that make your eyes move are vision in each eye may be affected.
    [Show full text]
  • Visual Field Examination in Children with Brain Disorders
    Visual field examination in children with brain disorders Yvonne Koenraads 2016 Visual field examination in children with brain disorders PhD thesis, Utrecht University, the Netherlands Cover design Yvonne Koenraads & Fotografie UMC Utrecht, afdeling oogheelkunde Layout Yvonne Koenraads Printed by Proefschriftmaken.nl & Uitgeverij BOXPress ISBN 978-90-393-6545-8 © 2016 Yvonne Koenraads All rights reserved. No parts of this publication may be reproduced or transmitted in any form or by any means, electronical or mechanical, including photocopy, recording, or any informa- tion storage or retrieval system, without permission in writing from the author. The copyright of the articles that have been published had been transferred to the respective journals. Correspondence Yvonne Koenraads, University Medical Center Utrecht, Department of Ophthalmology, P.O. Box 85500, 3508 GA, Utrecht. E-mail: [email protected] Visual field examination in children with brain disorders Gezichtsveldonderzoek bij kinderen met hersenaandoeningen (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op dinsdag 14 juni 2016 des ochtends te 10.30 uur door Yvonne Koenraads geboren op 31 december 1986 te Eindhoven Promotoren Prof.dr. K.P.J. Braun Prof.dr. S.M. Imhof Copromotor Dr. G.L. Porro The research described in this thesis was financially supported by Dr. F.P. Fischer Stichting (through UitZicht), ODAS, Rotterdamse Stichting Blindenbelangen, Stichting Nederlands Oogheelkundig Onderzoek & Stichting Vrienden UMC Utrecht. Publication of this thesis was kindly supported by Rotterdamse Stichting Blindenbelangen, Stichting Blindenhulp, Stichting voor Ooglijders, Landelijke Stichting voor Blinden en Slechtzienden, Allergan, Bayer, BCRM, Chipsoft, Medical Workshop, Procornea, Rockmed, Thea Pharma, Tramedico, UCB Pharma & Visser contactlenzen.
    [Show full text]