Boosting Learning Efficacy with Non-Invasive Brain Stimulation in Intact and Brain-Damaged Humans

Total Page:16

File Type:pdf, Size:1020Kb

Boosting Learning Efficacy with Non-Invasive Brain Stimulation in Intact and Brain-Damaged Humans This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Behavioral/Cognitive Boosting learning efficacy with non-invasive brain stimulation in intact and brain-damaged humans F. Herpich1,2,3, F. Melnick, M.D.4 , S. Agosta1 , K.R. Huxlin4 , D. Tadin4 and L Battelli1,5,6 1Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto (TN), Italy 2Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy 3kbo Klinikum-Inn-Salzach, Gabersee 7, 83512, Wasserburg am Inn, Germany 4Department of Brain and Cognitive Sciences, Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA 5Berenson-Allen Center for Noninvasive Brain Stimulation and Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215 Massachusetts, USA 6Cognitive Neuropsychology Laboratory, Harvard University, Cambridge, MA, USA https://doi.org/10.1523/JNEUROSCI.3248-18.2019 Received: 28 December 2018 Revised: 10 April 2019 Accepted: 8 May 2019 Published: 27 May 2019 Author contributions: F.H., M.D.M., K.H., D.T., and L.B. designed research; F.H., M.D.M., and S.A. performed research; F.H., M.D.M., and D.T. analyzed data; F.H., M.D.M., and L.B. wrote the first draft of the paper; M.D.M., S.A., K.H., D.T., and L.B. edited the paper; K.H., D.T., and L.B. wrote the paper. Conflict of Interest: The authors declare no competing financial interests. The present study was funded by the Autonomous Province of Trento, Call “Grandi Progetti 2012”, project “Characterizing and improving brain mechanisms of attention — ATTEND (FH, SA, LB), “Fondazione Caritro — Bando Ricerca e Sviluppo Economico” (FH), NIH (DT, MM and KRH: R01 grants EY027314 and EY021209, CVS training grant T32 EY007125), and by an unrestricted grant from the Research to Prevent Blindness (RPB) Foundation to the Flaum Eye Institute. We thank Valeria Piombino for data collection with neurological patients. Corresponding Author: Lorella Battelli: [email protected] Cite as: J. Neurosci 2019; 10.1523/JNEUROSCI.3248-18.2019 Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process. Copyright © 2019 the authors 1 Boosting learning efficacy with non-invasive brain stimulation in intact and 2 brain-damaged humans 3 4 5 Herpich1,2,3, F., Melnick4, M.D., Agosta1, S., Huxlin4*, K.R., Tadin4*, D. and Battelli1,5,6*, 6 L. 7 8 1Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 9 Corso Bettini 31, 38068 Rovereto (TN), Italy 10 2Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy 11 3kbo Klinikum-Inn-Salzach, Gabersee 7, 83512, Wasserburg am Inn, Germany 12 4Department of Brain and Cognitive Sciences, Flaum Eye Institute and Center for Visual 13 Science, University of Rochester, Rochester, NY, USA 14 5Berenson-Allen Center for Noninvasive Brain Stimulation and Department of 15 Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 16 02215 Massachusetts, USA 17 6Cognitive Neuropsychology Laboratory, Harvard University, Cambridge, MA, USA 18 19 * equal senior authors 20 21 Corresponding Author: Lorella Battelli: [email protected] 22 23 24 Abstract 25 26 Numerous behavioral studies have shown that visual function can improve with training, 27 although perceptual refinements generally require weeks to months of training to attain. 28 This, along with questions about long-term retention of learning, limits practical and 29 clinical applications of many such paradigms. Here, we show for the first time in female 30 and male human participants that just 10 days of visual training coupled with transcranial 31 random noise stimulation (tRNS) over visual areas causes dramatic improvements in 32 visual motion perception. Relative to control conditions and anodal stimulation, tRNS- 33 enhanced learning was at least twice as fast, and, crucially, it persisted for 6 months 34 after the end of training and stimulation. Notably, tRNS also boosted learning in patients 35 with chronic cortical blindness, leading to recovery of motion processing in the blind field 36 after just 10 days of training, a period too short to elicit enhancements with training 37 alone. In sum, our results reveal a remarkable enhancement of the capacity for long- 38 lasting plastic and restorative changes when a neuromodulatory intervention is coupled 39 with visual training. 40 41 2 42 Significance Statement 43 Our work demonstrates that visual training coupled with brain stimulation can 44 dramatically reduce the training period from months to weeks, and lead to fast 45 improvement in neurotypicals and chronic cortically blind patients, indicating the 46 potential of our procedure to help restore damaged visual abilities for currently 47 untreatable visual dysfunctions. Together, these results indicate the critical role of early 48 visual areas in perceptual learning and reveal its capacity for long lasting plastic 49 changes promoted by neuromodulatory intervention. 50 3 51 Introduction 52 The human brain changes throughout life (Gilbert & Li, 2012; Liat al., 2004). Visual 53 training is a well-known tool for inducing such changes, improving sensory performance 54 in healthy adults (Dosher & Lu, 2017; Li, 2016; Sagi, 2011; Wang et al., 2016); and in 55 various clinical populations (Deveau et al., 2013; Melnick et al., 2016; Nyquist et al., 56 2016), a phenomenon referred to as visual perceptual learning (VPL). The specific role 57 of different cortical visual areas during VPL is still openly debated, with several 58 mechanisms likely contributing to learning. For instance, neurophysiological studies 59 have shown that perceptual learning selectively modifies the signal strength of neurons 60 responding to relevant stimulus features, while concurrently suppressing the activity of 61 task irrelevant information (Yan et al., 2014). Other studies suggest that learning stems 62 from better read-out mechanisms in higher-level visual areas (Law & Gold, 2009). 63 Psychophysical studies have suggested that boosting sub-threshold, stimulus-related 64 cortical activity can promote perceptual learning (Seitz & Dinse, 2007), with attention and 65 reinforcement (provided by reward) increasing stimulus-related neuronal activity and 66 facilitating learning (Ahissar, 2001; Pascucci et al., 2015; Seitz & Watanabe, 2005). 67 In parallel, increasing effort is being directed at applying visual perceptual 68 training approaches to rehabilitate patients with various types of vision loss, including 69 cortical blindness (CB), amblyopia (Huang et al., 2008; Levi & Li, 2009; Li et al., 2013; Li 70 et al., 2011; Polat et al., 2004), macular degeneration (Baker et al., 2008; Kwon et al., 71 2012; Liu et al., 2007), myopia (Camilleri et al., 2014; Tan & Fong, 2008) and even 72 keratoconus (Sabesan et al., 2017). Two critical factors that limit practical applications of 73 VPL are: 1) the long duration of training usually required for adequate performance 74 enhancement (e.g. in chronic CB patients, Huxlin et al., 2009), and 2) persistence of 75 visual learning and/or recovered abilities after training ends. Non-invasive brain 76 stimulation coupled with perceptual training has emerged as a potentially promising 77 solution for both of these limitations in healthy adults (Cappelletti et al., 2013; Chesters 78 et al., 2017; Falcone et al., 2012; Fertonani et al., 2011; Sehm et al., 2013; Snowball et 4 79 al., 2013; Zoefel & Davis, 2017). 80 In CB, a form of vision loss caused by primary visual cortex (V1) damage, one 81 approach shown to recover vision involves training on motion integration tasks in the 82 blind field (Figure 1; Cavanaugh & Huxlin, 2017; Das et al., 2014; Huxlin et al., 2009; 83 Vaina et al., 2014). However, the training required to restore normal performance on this 84 task in the blind field of CB patients typically involves months of daily practice, and is 85 thus difficult to attain and sustain. As such, this represents an ideal task with which to 86 ask whether non-invasive brain stimulation of early visual cortex during training can 87 enhance and speed up the resultant perceptual learning. 88 We used two forms of direct current stimulation to modulate cortical functioning 89 and boost performance during learning: transcranial random noise (tRNS) and anodal 90 direct current stimulation (a-tDCS). 91 tRNS was first shown to enhance cortical excitability in the motor cortex (Terney 92 et al., 2008) and subsequent studies reported that it can improve perceptual functions 93 when delivered over the visual cortex (Campana et al., 2014; Pirulli et al., 2013; Tyler et 94 al., 2018; van der Groen et al., 2018), while the effect of a-tDCS is less clear (Miniussi & 95 Ruzzoli, 2013; Ding et al., 2013). 96 The present experiments asked if brain stimulation could improve visual learning 97 when administered during training in visually-intact humans and whether these 98 improvements persist. We then examined the translational potential of this approach to 99 promote visual recovery in chronic CB patients. Early visual areas of the brain were 100 targeted for stimulation because of their apparent role in mediating training-induced 101 visual plasticity in physiological, imaging and brain stimulation studies (Barbot et al., 102 2018; Camilleri et al., 2016; Gratton et al., 2017; Kang et al., 2014; Rokem & Silver, 103 2010; Schwartz et al., 2002; Yang & Maunsell, 2003). 104 105 5 106 Materials and Methods 107 Experiment 1: tRNS-mediated learning in healthy participants 108 Regulatory approval 109 The study was approved by the ethical committee of the University of Trento. 110 111 Subjects 112 A total of 45 subjects participated in the experiment (mean age: 19.9 years old; range: 113 19-36; 32 females and 13 males).
Recommended publications
  • Neuronal Activity in Monkey Ventral Striatum Related to the Expectation of Reward
    The Journal of Neuroscience. December 1992. 72(12): 45954610 Neuronal Activity in Monkey Ventral Striatum Related to the Expectation of Reward Wolfram Schultz, Paul Apicella,” Eugenio Scarnati,b and Tomas Ljungbergc lnstitut de Physiologie, Universitk de Fribourg, CH-1700 Fribourg, Switzerland Projections from cortical and subcortical limbic structures The anatomical substrate underlying these functions may con- to the basal ganglia are predominantly directed to the ventral sist in the conjunction of afferents from limbic structures and striatum. The present study investigated how the expecta- mesencephalicdopamine neurons. Major limbic structures in tion of external events with behavioral significance is re- monkeys, such asthe anterior cingulate gyms, orbitofrontal cor- flected in the activity of ventral striatal neurons. A total of tex, and amygdala, project to the ventral striatum, including the 420 neurons were studied in macaque monkeys performing nucleus accumbens,in a particularly dense and interdigitating in a delayed go-no-go task. Lights of different colors in- fashion, whereas their projections to the dorsal striatum are structed the animal to do an arm-reaching movement or re- more sparseand scattered(Baleydier and Mauguiere, 1980; Par- frain from moving, respectively, when a trigger light was ent et al., 1983; Russchenet al., 1985; Selemonand Goldman- illuminated a few seconds later. Task performance was re- Rakic, 1985). The amygdala is involved in the association of inforced by liquid reward in both situations. A total of 60 external stimuli with primary and secondaryreinforcers for sus- ventral striatal neurons showed sustained increases of ac- taining performance in learning tasks (Gaffan and Harrison, tivity before the occurrence of individual task events.
    [Show full text]
  • Customer Vision Report (MED 4)
    MED 4 (11/25/2020) CUSTOMER VISION REPORT Purpose: Use this form to request vision examination information from your ophthalmologist or optometrist. Instructions: Complete the Customer Information section and have your Ophthalmologist/Optometrist complete the Vision Examination section. The vision examination must be conducted within 90 days prior to submission of the report to DMV. Mail the completed report to the address above. Questions can be referred to Medical Review Services, 804-367-6203. Acceptable standards of vision for safe driving are determined by the Code of Virginia and DMV under the guidance of the Medical Advisory Board. Note: Any charges incurred for the completion of this form are your responsibility. CSC STAFF Do NOT send MED 4 back with daily work unless there is an ocular condition or customer cannot be licensed due to a MED 6 calculation. CUSTOMER INFORMATION (To be completed by customer PRIOR to vision examination) If you change either your residence/home address or mailing address to a non-Virgina address, your driver license or photo identification (ID) card may be cancelled. NAME (last) (first) (mi) (suffix) CUSTOMER NUMBER (from your driver license) or SSN RESIDENCE/HOME ADDRESS BIRTHDATE (mm/dd/yyyy) CITY STATE ZIP CODE CITY OR COUNTY OF RESIDENCE MAILING ADDRESS (if different from above) CITY STATE ZIP CODE DAYTIME TELEPHONE NUMBER VISION EXAMINATION (to be completed by Ophthalmologist/Optometrist) FIRST EXAMINATION DATE MOST RECENT EXAMINATION DATE Does the patient have any visual/ocular condition(s) that could affect the ability to drive a motor vehicle? YES NO If YES, indicate condition below.
    [Show full text]
  • Audiovisual Integration of Letters in the Human Brain
    Neuron, Vol. 28, 617±625, November, 2000, Copyright 2000 by Cell Press Audiovisual Integration of Letters in the Human Brain Tommi Raij,* Kimmo Uutela, and Riitta Hari dalities to allow them then to interact. Therefore, brain Brain Research Unit areas participating in, e.g., audiovisual integration would Low Temperature Laboratory be expected to show signs of (1) convergence (both Helsinki University of Technology auditory and visual stimuli should activate the same P.O. Box 2200 region) and (2) interaction (the activation evoked by au- FIN-02015-HUT diovisual stimulation should differ from the sum of uni- Espoo modally presented auditory and visual activations). Finland Our aim was to study the human brain's audiovisual integration mechanisms for letters, i.e., for stimuli that have been previously associated through learning. For Summary literate people, the alphabet is effortlessly transformed between the auditory and visual domains (and transmit- Letters of the alphabet have auditory (phonemic) and ted to the motor systems for speech and writing). Our visual (graphemic) qualities. To investigate the neural subjects received auditory, visual, and audiovisual let- representations of such audiovisual objects, we re- ters of the roman alphabet and were required to identify corded neuromagnetic cortical responses to audi- them, regardless of stimulus modality. Audiovisual let- torily, visually, and audiovisually presented single let- ters included matching letters, in which the auditory ters. The auditory and visual brain activations first and visual stimulus corresponded to each other based converged around 225 ms after stimulus onset and on previous experience, and nonmatching (randomly then interacted predominantly in the right temporo- paired) letters.
    [Show full text]
  • Read PDF Edition
    REVIEW OF OPTOMETRY EARN 2 CE CREDITS: Positive Visual Phenomena—Etiologies Beyond the Eye, PAGE 58 ■ VOL. 155 NO. 1 January 15, 2018 www.reviewofoptometry.comwww.reviewofoptometry.com ■ ANNUAL CORNEA REPORT JANUARY 15, 2018 ■ CXL ■ EPITHELIAL DEFECTS How to Heal Persistent Epithelial Defects PAGE 38 ■ TRANSPLANTS Corneal Transplants: The OD’s Role PAGE 44 ■ INFILTRATES Diagnosing Corneal Infiltrative Disease PAGE 50 ■ POSITIVE VISUAL PHENOMENA CXL: Your Top 12 Questions —Answered! PAGE 30 001_ro0118_fc.indd 1 1/5/18 4:34 PM ĊčĞĉėĆęĊĉĆĒēĎĔęĎĈĒĊĒćėĆēĊċĔėĎēǦĔċċĎĈĊĕėĔĈĊĉĚėĊĘ ĊđĎĊċĎēĘĎČčę ċċĊĈęĎěĊ Ȉ 1 Ȉ 1 ĊđđǦęĔđĊėĆęĊĉ Ȉ Ȉ ĎĒĕđĊĎēǦĔċċĎĈĊĕėĔĈĊĉĚėĊ Ȉ Ȉ ĔēěĊēĎĊēę Ȉ͝ Ȉ Ȉ Ƭ 1 ǡ ǡǡǤ͚͙͘͜Ǥ Ȁ Ǥ ͚͙͘͜ǣ͘͘ǣ͘͘͘Ǧ͘͘͘ ĕĕđĎĈĆęĎĔēĘ Ȉ Ȉ Ȉ Ȉ Ȉ čĊĚėĎĔē̾ėĔĈĊĘĘ Ȉ Ȉ Katena — Your completecomplete resource forfor amniotic membrane pprocedurerocedure pproducts:roducts: Single use speculums Single use spears ͙͘͘ǡ͘͘͘ήĊĞĊĘęėĊĆęĊĉ Forceps ® ,#"EWB3FW XXXLBUFOBDPNr RO0118_Katena.indd 1 1/2/18 10:34 AM News Review VOL. 155 NO. 1 ■ JANUARY 15, 2018 IN THE NEWS Accelerated CXL Shows The FDA recently approved Luxturna (voretigene neparvovec-rzyl, Spark Promise—and Caution Therapeutics), a directly administered gene therapy that targets biallelic This new technology is already advancing, but not without RPE65 mutation-associated retinal dystrophy. The therapy is designed to some bumps in the road. deliver a normal copy of the gene to By Rebecca Hepp, Managing Editor retinal cells to restore vision loss. While the approval provides hope for patients, wo new studies highlight the resulted in infection—while tradi- the $425,000 per eye price tag stands as pros and cons of accelerated tional C-CXL has a reported inci- a signifi cant hurdle.
    [Show full text]
  • AN ANALYSIS of RIGHT- and LEFT-BRAIN THINKERS and CERTAIN STYLES of LEARNING by Steven D. Bielefeldt a Research Paper Submitted
    AN ANALYSIS OF RIGHT- AND LEFT-BRAIN THINKERS AND CERTAIN STYLES OF LEARNING BY Steven D. Bielefeldt A Research Paper Submitted in Partial Fulfillment of the Requirements for the Master of Science Degree Education Approved: 2 Semester Credits Ax I Dr. Robert Sedlak The Graduate School University of Wisconsin -Stout May 2006 The Graduate School University of Wisconsin -Stout Menomonie, WI Author: Bielefeldt, Steven D. Title: An Analysis of Right- and Left-Brain Thinkers and Certain Styles of Learning Graduate Degree I Major: MS Education Research Advisor: Robert Sedlak, Ph.D. Month I Year: May, 2006 Number of Pages: 29 Style Manual Used: American Psychological Association, sth edition ABSTRACT The purpose of this study was to analyze right- and left- brain thinkers and certain styles of learning (specifically visual, auditory, or kinesthetic) in college- level adult learners. This study includes data collected from approximately 100 adult learners with a survey, as well as a comprehensive review and analysis of literature concerning the brain, brain-based learning, and certain learning styles. Research-based evidence from the study will be used to ellcourage instructors to develop and use appropriate styles of teaching to enhance their student's educational experience. Table of Contents ABSTRACT ........................................................................................................... ii List of Tables ......................................................................................................... V Chapter I:
    [Show full text]
  • Neural Plasticity Underlying Visual Perceptual Learning in Aging
    brain research ] ( ]]]]) ]]]– ]]] Available online at www.sciencedirect.com www.elsevier.com/locate/brainres Research Report Neural plasticity underlying visual perceptual learning in aging Jyoti Mishraa,n, Camarin Rollea, Adam Gazzaleya,b,c,nn aDepartment of Neurology, University of California, San Francisco, San Francisco, CA, USA bDepartment of Physiology, University of California, San Francisco, San Francisco, CA, USA cDepartment of Psychiatry, University of California, San Francisco, San Francisco, CA, USA article info abstract Article history: Healthy aging is associated with a decline in basic perceptual abilities, as well as higher-level Accepted 2 September 2014 cognitive functions such as working memory. In a recent perceptual training study using moving sweeps of Gabor stimuli, Berry et al. (2010) observed that older adults significantly Keywords: improved discrimination abilities on the most challenging perceptual tasks that presented Aging paired sweeps at rapid rates of 5 and 10 Hz. Berry et al. further showed that this perceptual fi Visual perception training engendered transfer-of-bene t to an untrained working memory task. Here, we Cognitive training investigated the neural underpinnings of the improvements in these perceptual tasks, as Perceptual learning assessed by event-related potential (ERP) recordings. Early visual ERP components time- Working memory locked to stimulus onset were compared pre- and post-training, as well as relative to a no- fi Transfer of benefit contact control group. The visual N1 and N2 components were signi cantly enhanced after ERP training, and the N1 change correlated with improvements in perceptual discrimination on the task. Further, the change observed for the N1 and N2 was associated with the rapidity of the perceptual challenge; the visual N1 (120–150 ms) was enhanced post-training for 10 Hz sweep pairs, while the N2 (240–280 ms) was enhanced for the 5 Hz sweep pairs.
    [Show full text]
  • Mechanisms Compensating for Visual Field Restriction in Adolescents With
    Eye (2012) 26, 1437–1445 & 2012 Macmillan Publishers Limited All rights reserved 0950-222X/12 www.nature.com/eye 1;2 3;4 1 Mechanisms L Jacobson , F Lennartsson , T Pansell ,GO¨ qvist CLINICAL STUDY Seimyr2 and L Martin2;5 compensating for visual field restriction in adolescents with damage to the retro-geniculate visual system 1Eye Unit, Department of Neuropaediatrics, Astrid Lindgren Children’s Hospital, Karolinska University Abstract Hospital, Stockholm, Background To describe visual field (VF) Conclusion Congenital and later-acquired Sweden outcome in three adolescents with damage to homonymous VF defects may, at least in 2 the optic radiation and to focus on young subjects, be compensated for by Department of Clinical Neuroscience, mechanisms that may compensate the scanning. Exotropia may compensate VF Ophthalmology and Vision, practical functional limitations of VF defects. defects and, therefore, the VF should be Karolinska Institutet, Design Descriptive, prospective multi-case tested before strabismus surgery. Stockholm, Sweden study in a hospital setting. Eye (2012) 26, 1437–1445; doi:10.1038/eye.2012.190; Participants Three teenagers with cerebral published online 21 September 2012 3Department of Medical visual dysfunction because of damage to the Physics, Karolinska University Hospital, retro-geniculate visual pathways. Keywords: VF defects; retro-geniculate visual Stockholm, Sweden Methods Best-corrected visual acuity and system; compensating mechanisms; eye alignment were assessed. Visual field adolescents 4Department of function was tested with Goldmann Neuroradiology, Karolinska perimetry, and with Rarebit, Humphrey University Hospital, Introduction Visual Field Analyzer and Esterman Stockholm, Sweden computerized techniques. Fixation was Brain damage has become the most common 5School of Health and registered with video oculography during cause of visual impairment in children in Welfare, Ma¨ lardalen 1–3 Rarebit examination.
    [Show full text]
  • The Visual Corticostriatal Loop Through the Tail of the Caudate: Circuitry and Function
    HYPOTHESIS AND THEORY ARTICLE published: 06 December 2013 SYSTEMS NEUROSCIENCE doi: 10.3389/fnsys.2013.00104 The visual corticostriatal loop through the tail of the caudate: circuitry and function CarolA.Seger* Program in Molecular, Cellular, and Integrative Neuroscience, Department of Psychology, Colorado State University, Fort Collins, CO, USA Edited by: Although high level visual cortex projects to a specific region of the striatum, the tail of the Ahmed A. Moustafa, University of caudate, and participates in corticostriatal loops, the function of this visual corticostriatal Western Sydney, Australia system is not well understood. This article first reviews what is known about the anatomy Reviewed by: of the visual corticostriatal loop across mammals, including rodents, cats, monkeys, and Erick J. Paul, University of Illinois Urbana Champaign, USA humans. Like other corticostriatal systems, the visual corticostriatal system includes Greg Ashby, University of California, both closed loop components (recurrent projections that return to the originating cortical Santa Barbara, USA location) and open loop components (projections that terminate in other neural regions). *Correspondence: The article then reviews what previous empirical research has shown about the function Carol A. Seger, Program in of the tail of the caudate. The article finally addresses the possible functions of the closed Molecular, Cellular, and Integrative Neuroscience, Department of and open loop connections of the visual loop in the context of theories and computational Psychology, Colorado State models of corticostriatal function. University, Mail code 1876, Fort Collins, CO 80523, USA Keywords: striatum, caudate, category learning, basal ganglia, corticostriatal, recurrent neural network, e-mail: [email protected] reinforcement learning, Area TE INTRODUCTION forming both open and closed loops.
    [Show full text]
  • Case Report: Superior Homonymous Quadrantanopia in a Patient with an Infective Endocarditis
    Case Report: Superior homonymous quadrantanopia in a patient with an infective endocarditis Jennifer Nim, O.D. Long Island, New York, [email protected] An infective endocarditis, specifically bacterial endocarditis, is usually caused by bacteria carried in the blood that may originate from an infection in other parts of the body besides the heart.1 Injuries, surgeries or preexisting heart conditions make the body vulnerable to infections. Emboli may arise during this type of infection that may lead to visual field defects. Case Report A 62-year-old white male from New York presented with the primary complaint of a recent loss of his left peripheral vision in his left eye and moving white and red flashes in both eyes. The patient had a history of floaters which have subsided in the past years. In addition, the patient reported an acute loss of hearing. The patient denies any head trauma, slurred speech or paralysis in the limbs. Medical history revealed hypercholesteremia and hypertension, for which he takes vytorin and lotrel, respectively. The patient’s best-corrected visual acuities were 20/20 in the right eye (OD) and in the left eye (OS). Pupil and extraocular motility testings were normal. Slit lamp evaluation revealed trace arcus and cortical cataracts in both eyes (OU). Intraocular pressures were within normal ranges in OU. The dilation fundus examination revealed posterior vitreal detachments in OU and a flat, choroidal nevus in the OD. The posterior pole (see Figures 1) and peripheral retina were flat and intact in OU. An automated threshold visual field revealed left superior homonymous quandrantanopia that respected the vertical line but not the horizontal line (see Figures 2).
    [Show full text]
  • Embryology, Anatomy, and Physiology of the Afferent Visual Pathway
    CHAPTER 1 Embryology, Anatomy, and Physiology of the Afferent Visual Pathway Joseph F. Rizzo III RETINA Physiology Embryology of the Eye and Retina Blood Supply Basic Anatomy and Physiology POSTGENICULATE VISUAL SENSORY PATHWAYS Overview of Retinal Outflow: Parallel Pathways Embryology OPTIC NERVE Anatomy of the Optic Radiations Embryology Blood Supply General Anatomy CORTICAL VISUAL AREAS Optic Nerve Blood Supply Cortical Area V1 Optic Nerve Sheaths Cortical Area V2 Optic Nerve Axons Cortical Areas V3 and V3A OPTIC CHIASM Dorsal and Ventral Visual Streams Embryology Cortical Area V5 Gross Anatomy of the Chiasm and Perichiasmal Region Cortical Area V4 Organization of Nerve Fibers within the Optic Chiasm Area TE Blood Supply Cortical Area V6 OPTIC TRACT OTHER CEREBRAL AREASCONTRIBUTING TO VISUAL LATERAL GENICULATE NUCLEUSPERCEPTION Anatomic and Functional Organization The brain devotes more cells and connections to vision lular, magnocellular, and koniocellular pathways—each of than any other sense or motor function. This chapter presents which contributes to visual processing at the primary visual an overview of the development, anatomy, and physiology cortex. Beyond the primary visual cortex, two streams of of this extremely complex but fascinating system. Of neces- information flow develop: the dorsal stream, primarily for sity, the subject matter is greatly abridged, although special detection of where objects are and for motion perception, attention is given to principles that relate to clinical neuro- and the ventral stream, primarily for detection of what ophthalmology. objects are (including their color, depth, and form). At Light initiates a cascade of cellular responses in the retina every level of the visual system, however, information that begins as a slow, graded response of the photoreceptors among these ‘‘parallel’’ pathways is shared by intercellular, and transforms into a volley of coordinated action potentials thalamic-cortical, and intercortical connections.
    [Show full text]
  • VISUAL FIELD Pathway Extends from the „Front‟ to the „Back‟ of the RETINA Brain
    NOTE: To change the image on this slide, select the picture and delete it. Then click the Pictures icon in the placeholde r to insert your own image. Visual Pathway Disorders Amr Hassan, MD, FEBN Associate professor of Neurology - Cairo University Optic nerve • Anatomy of visual pathway • How to examine • Visual pathway disorders • Quiz 2 Optic nerve • Anatomy of visual pathway • How to examine • Visual pathway disorders • Quiz 3 Optic nerve The Visual Pathway VISUAL FIELD Pathway extends from the „front‟ to the „back‟ of the RETINA brain. ON OC OT LGN OPTIC RADIATIONS ON = Optic Nerve OC = Optic Chiasm OT = Optic Tract LGN = Lateral Geniculate Nucleus of Thalamus VISUAL CORTEX 5 The Visual Pathway Eyes & Retina Light >> lens >> retina (inverted and reversed image). Eyes & Retina Eyes & Retina • Macula: oval region approximately 3-5 mm that surrounds the fovea, also has high visual acuity. • Fovea: central fixation point of each eye// region of the retina with highest visual acuity. Eyes & Retina • Optic disc: region where axons leaving the retina gather to form the Optic nerve. Eyes & Retina • Blind spot located 15° lateral and inferior to central fixation point of each eye. Object to be seen Peripheral Retina Central Retina (fovea in the macula lutea) 12 Photoreceptors © Stephen E. Palmer, 2002 Photoreceptors Cones • Cone-shaped • Less sensitive • Operate in high light • Color vision • Less numerous • Highly represented in the fovea >> have high spatial & temporal resolution >> they detect colors. © Stephen E. Palmer, 2002 Photoreceptors Rods • Rod-shaped • Highly sensitive • Operate at night • Gray-scale vision • More numerous than cons- 20:1, have poor spatial & temporal resolution of visual stimuli, do not detect colors >> vision in low level lighting conditions © Stephen E.
    [Show full text]
  • SEMPHN Pathways
    Sudden or Recent Vision Loss Disclaimer COVID-19 note The Royal Australian and New Zealand College of Ophthalmologists (RANZCO) and The Royal Australian College of General Practitioners (RACGP) have made recommendations regarding eye examination during the COVID-19 pandemic. See RANZCO – COVID-19: Practical Guidance for General Practitioners Performing Eye Examinations. Last updated: 18 May 2020 Contents Disclaimer ......................................................................................................................................................................................... 1 Red Flags .................................................................................................................................................... 2 Background – About Sudden or Recent Vision Loss ............................................................................. 2 Assessment ................................................................................................................................................ 2 Management ............................................................................................................................................. 7 Practice Point .................................................................................................................................................................................. 7 Referral ......................................................................................................................................................
    [Show full text]