UTAH PESTS Staff

Total Page:16

File Type:pdf, Size:1020Kb

UTAH PESTS Staff UTAH PESTS News Utah Plant Pest Diagnostic Laboratory and USU Extension Vol. III, Spring 2009 Sabbatical Research Experience with the NW Michigan Cherry Industry Diane Alston and family enjoyed Sleeping Bear Dunes National Lakeshore and feasting on cherry products– just a few activities spent during her sabbatical week- What’s Inside ends in Michigan, the cherry capital of the world. Imidacloprid for Insect Control Utah Pests Holds In- Service Training Turf Problems to Watch for This Spring Getting Nit-Picky About Head Lice Surge in Black Pineleaf Scale Spotlight: Transitioning to Organic Agriculture News, Publications, Web sites, Calendar News Highlights AFRICANIZED HON- EY BEES FOUND IN SOUTHERN UTAH My family and I had a fun and Utah Dept. of Agriculture productive sabbatical experience and Food (UDAF) recently in northwestern Michigan during detected Africanized honey the spring and summer of 2008. bees in monitored traps Michigan produces 75% of U.S. and in honey bee hives tart cherries and is one of four in Washington and Kane major producers of sweet cher- counties. UDAF, USU, and ries. I collaborated with Michigan agricultural stakeholders State University entomologists on whether the sandy soils of NW Michigan are will work together to de- research projects on plum curculio biological conducive to entomopathogens and microbial velop tools and educational control and cherry fruit fly ecology and man- activity. By targeting soil-dwelling life stages materials for beekeepers agement. Drs. Nikki Rothwell, Mark Whalon, of insects, such as the summer generation and citizens. This bee has Larry Gut, and others were generous with of plum curculio and cherry fruit fly larvae, been present in southern their time and expertise and helped me jump growers can take advantage of additional tim- and southwestern U.S. right into research opportunities with the ings to suppress pest populations. since the early 1990s. The Michigan fruit industry. Waxworm larvae were used to “bait” soils for new fact sheet, African- First, I conducted a survey of 37 fruit or- native entomopathogens. Entomopathogen- ized Honey Bees, provides chards and vineyards for the presence of induced insect mortality ranged from 5-95% more details. entomopathogens (nematodes, fungi, and per site, and was 50% or greater in 22 of the www.utahpests.usu.edu bacteria that kill insects). A goal was to assess 37 sites. Soils of organically managed sites continued on next page Michigan Sabbatical, continued from previous page UTAH PESTS had greater entomopathogen activity Staff than transitional organic, sustainable, and conventional orchard soils. Ento- Diane Alston mopathogens were more common in Extension Entomologist grape and tart cherry sites than in sweet [email protected] cherry, and apple sites were intermediate. 435-797-2516 These results support that the presence of mulches and ground covers, and lower Ryan Davis toxicity or shorter-lived pest control Arthropod Diagnostician products used in organic production may [email protected] encourage biologically active soils that 435-797-2435 can suppress soil-dwelling insects. Ad- ditionally, results suggest that the sandy Kent Evans soils of NW Michigan are conducive to Extension Plant Pathologist entomopathogens, and as long as ad- [email protected] equate soil moisture is maintained, may 435-797-2504 be good sites for application of entomo- pathogen products, such as nematodes Diane used a new trick for hanging Erin Frank and fungi. traps: attaching the trap to a bamboo Plant Disease Diagnostician [email protected] Second, I contributed to a statewide pole and hooking it over a limb as high 435-797-2435 effort to develop a predictive model of as 12 feet in the tree. plum curculio (PC) phenology in fruit. Such a model would allow growers to Erin Hodgson better time controls for the summer gen- data collected by Dr. Luis Teixeira of MSU Extension Entomologist suggesting that peak egg-laying of CFF [email protected] eration, such as insect growth regulators in cherry orchards occurs during and 435-797-5689 that reduce egg hatch, entomopathogens to kill larvae in the soil, or post-harvest just after cherry harvest when fruits are foliar sprays for adults. Results showed at peak ripeness, but that CFF trapped Marion Murray that PC phenology was more advanced in nearby black cherry trees don’t have IPM Project Leader mature eggs until later in August when Editor, Utah Pests News in tart and sweet cherry than in apple, black cherry fruits become ripe. My [email protected] and more advanced in fruit on the ground 435-797-0776 results support these findings. Observa- than fruit in the tree. At 450-500 DD50, the majority of PC in fruit on trees tions of CFF behavior in tart cherry trees were eggs and 1st instars, while in fruit found that flies didn’t begin to spend time st on fruits until they were fully red in color. Utah Plant Pest on the ground the majority were 1 to th Most of the flies collected from fruits Diagnostic Lab 4 instars. At 650-700 DD50, most PC rd th were males, suggesting that males sit and BNR Room 203 in cherry fruits on trees were 3 to 4 Utah State University instars while in fruit on the ground most wait to mate with females. Results from 5305 Old Main Hill were 4th instars or had already exited this study will be contributed to research Logan, UT 84322 (except not from apple). These data and Extension publications. suggest that applications of entomopatho- UTAH PESTS News In addition to the exciting research op- th is published quarterly. gens to target 4 instars burrowing into portunities, my family and I found many To subscribe, click here. soil would need to be applied beginning diversions. We took advantage of the at about 500 DD and continue past 700 Any pictures not credited belong to 50 abundance of places to kayak, fish, swim, DD . This study is on-going and more UTAH PESTS and USU Extension. 50 and hike. Sleeping Bear Dunes National data will be collected in subsequent years. Lakeshore is a real treasure and we hiked utahpests.usu.edu Third, I participated in a study on cherry on many of the park’s trails. We take fruit fly (CFF) reproductive maturity with us fond memories of the region and behavior in sweet and tart cherry and people in the “Cherry Capital of the orchards as compared to a native host, World.” black cherry. The goal was to build upon -Diane Alston, Extension Entomologist www.utahpests.usu.edu Utah Pests News - Spring 2009 - page 2 NEwS FrOM tHE Utah PESTS GrOUP Imidacloprid for Insect Control In the mid 1980s, Bayer CropScience patented a new chemi- Pest Diagnostic Lab for identification. Many common Utah cal for insect control—imidacloprid (IC). Registered for use pests are described in Extension fact sheets. in the United States in 1994, this chemical was the first in a new group of insecticides known as the neonicotinoids, and is As with any insecticide, IC Apply Imidacloprid currently considered the most widely used insecticide in the is a chemical that enters the en- Safely and Effectively.. world. Today, neonicotinoids (mode of action group 4a; click vironment. While it has lower here for MOA descriptions) includes active ingredients such toxicity levels than many broad- as acetamiprid, clothianidin, dinotefuran, nitenpyram, thiaclo- spectrum insecticides, it is • An IC product can be prid, and thiamethoxam. There are over 250 IC-containing capable of killing or giving sub- applied with, or after a products available in Utah. lethal doses to many non-target curative insecticide for insects, including bees, parasitic long-term pest control. Imidacloprid is registered on over 140 crops for a variety of wasps, birds, and mammals. This (Check the product label pests. The following are controlled by Merit 75 WP: chemical, when used as a seed for compatibility.) treatment, has been implicated • Do not mix IC with adelgids *mole crickets (but not proven) in contribut- any products containing annual bluegrass weevil Oriental beetle European crane fly ing to widespread honey bee Boron. aphids greenflatheaded june beetleborers pine tip moth death in Europe. It is banned • Imidacloprid can be asiatic garden beetles Japanese beetle psyllids in France, Italy, Germany, and applied with fertilizer to billbug lace bugs Slovenia as a seed treatment promote faster uptake and on such crops as sunflower, black vine weevil leaf beetles *sodsawfly webworm translocation. rapeseed, and sweet corn. It is *chinch bug soft scales • For insect control in highly toxic to fish and aquatic *cutworms/armyworms leafminersleafhoppers *thrips woody plants, fall and ear- invertebrates. Because of emerald ash borer masked chafers white grubs ly spring are good times its frequent use, insect resis- European chafer mealybugs to apply soil drenches/ tance to IC is building in some injections. These applica- Application methods to control insects in this list vary by crop and situation. Please carefully read the label before applying. (*suppressionwhiteflies only) systems like Colorado potato tions are best followed by beetle in Michigan, and the irrigation, and should not be applied to waterlogged Imidacloprid is not a true systemic insecticide because it not greenhouse whitefly in Europe. soil. translocated throughout all plant tissue, however it may dif- Make sure to rotate insecti- fuse partially into the phloem. When applied as a soil drench/ cides that have different modes • Because IC is translo- injection, trunk injection, or seed treatment, it is transported of action (see the spring 2008 cated quickly in turf, it is best to apply during the throughout the water-carrying vessels (xylem), providing Utah Pests newsletter for more egg-laying period of the “systemic” protection. When IC is applied as a foliar spray, it information on preventing target pest.
Recommended publications
  • Fuetal2021.Pdf
    Biological Control 160 (2021) 104662 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Using fine-scale relatedness to infer natural enemy movement Zhen Fu a, Michael S. Crossley b, Brendan Epstein c, Cassandra Bates a, David W. Crowder a, Axel A. Elling d, Paul A. Hohenlohe e, Randa Jabbour f, Ricardo A. Ramirez g, William E. Snyder b,* a Department of Entomology, Washington State University, Pullman, WA 99164, USA b Department of Entomology, University of Georgia, Athens, GA 30602, USA c Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA d Bayer Crop Science, Cary, NC 27513, USA e Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA f Department of Plant Sciences, University of Wyoming, Laramie, WY 82071, USA g Department of Biology, Utah State University, Logan, UT 84322, USA HIGHLIGHTS GRAPHICAL ABSTRACT • Restriction Site Associated DNA Sequencing (RAD-seq) revealed fine- scale genetic relationships among ento­ mopathogenic nematodes. • Heterorhabditis bacteriophora and Stei­ nernema feltiae grew increasingly less related with greater distance between collection sites. • Yet, intraspecific genetic diversity at a site could be high and distant strains could be closely related. • RAD-seq provides a powerful approach to inferring natural enemy movement within agricultural landscapes. ARTICLE INFO ABSTRACT Keywords: Natural enemies often move among habitats to track prey and resources. Indeed, biocontrol often depends on Conservation biological control natural enemies dispersing into crops after disturbances such as tillage and pesticide applications. However, the Genetic biodiversity small size of many natural enemies makes it difficult to observe such movements.
    [Show full text]
  • Insects for Human Consumption
    Chapter 18 Insects for Human Consumption Marianne Shockley1 and Aaron T. Dossey2 1Department of Entomology, University of Georgia, Athens, GA, USA, 2All Things Bugs, Gainesville, FL, USA 18.1. INTRODUCTION The utilization of insects as a sustainable and secure source of animal-based food for the human diet has continued to increase in popularity in recent years (Ash et al., 2010; Crabbe, 2012; Dossey, 2013; Dzamba, 2010; FAO, 2008; Gahukar, 2011; Katayama et al., 2008; Nonaka, 2009; Premalatha et al., 2011; Ramos- Elorduy, 2009; Smith, 2012; Srivastava et al., 2009; van Huis, 2013; van Huis et al., 2013; Vantomme et al., 2012; Vogel, 2010; Yen, 2009a, b). Throughout the world, a large portion of the human population consumes insects as a regular part of their diet (Fig. 18.1). Thousands of edible species have been identified (Bukkens, 1997; Bukkens and Paoletti, 2005; DeFoliart, 1999; Ramos-Elorduy, 2009). However, in regions of the world where Western cultures dominate, such as North America and Europe, and in developing countries heavily influenced by Western culture, mass media have negatively influenced the public’s percep- tion of insects by creating or reinforcing fears and phobias (Kellert, 1993; Looy and Wood, 2006). Nonetheless, the potentially substantial benefits of farming and utilizing insects as a primary dietary component, particularly to supplement or replace foods and food ingredients made from vertebrate livestock, are gain- ing increased attention even in Europe and the United States. Thus, we present this chapter to
    [Show full text]
  • Life Cycles: Egg to Bee Free
    FREE LIFE CYCLES: EGG TO BEE PDF Camilla de La Bedoyere | 24 pages | 01 Mar 2012 | QED PUBLISHING | 9781848355859 | English | London, United Kingdom Tracking the Life Cycle of a Honey Bee - dummies As we remove the frames, glance over the thousands of busy bees, check for brood, check for capped honey, maybe spot the queen… then the frames go back in their slots and the hive is sealed up again. But in the hours spent away from our hives, thousands of tiny miracles are happening everyday. Within the hexagonal wax cells little lives are hatching out and joining the hive family. The whole process from egg to adult worker bee takes around 18 days. During the laying season late spring to summer the Queen bee is capable of laying over eggs per day. Her worker bees help direct her to the best prepared comb and she lays a single egg in each hexagon shaped cell. The size of the cell prepared determines the type of egg she lays. If the worker bees have prepared a worker size cell, she Life Cycles: Egg to Bee lay a fertilized egg. This egg will produce a female worker bee. If the worker bees have prepared a slightly larger cell, the queen will recognize this as a drone cell and lay an unfertilized egg. This will produce a male drone bee. It is the workers and not the queen that determine the ratio of workers to drones within the hive. In three days the egg hatches and a larva emerges. It looks very similar to a small maggot.
    [Show full text]
  • Standard Methods for Wax Moth Research
    Journal of Apicultural Research 52(1): (2013) © IBRA 2013 DOI 10.3896/IBRA.1.52.1.10 REVIEW ARTICLE Standard methods for wax moth research James D Ellis1*, Jason R Graham1 and Ashley Mortensen1 1Honey Bee Research and Extension Laboratory, Department of Entomology and Nematology, University of Florida, Steinmetz Hall, Natural Area Dr., P.O. Box 110620, Gainesville, FL, 32611, USA. Received 7 July 2012, accepted subject to revision 16 July 2012, accepted for publication 14 November 2012. *Corresponding author: Email: [email protected] Summary Greater (Lepidoptera: Pyralidae, Galleria mellonella) and Lesser (Lepidoptera: Pyralidae, Achroia grisella) wax moths are ubiquitous pests of honey bee colonies globally. The economic importance of wax moths has led to a number of investigations on wax moth life history, biology, behaviour, ecology, molecular biology, physiology, and control. Despite the importance of wax moths to the apicultural industry, they are investigated considerably more as a model organism for studies in insect physiology, genomics, proteomics, etc. Those studying wax moths from an apicultural perspective typically use only a small number of the total available research methods outlined in the literature. Herein, we describe methods associated with wax moth research that we feel are important from an apicultural research perspective. Ultimately, we hope that this paper will revitalize research on wax moths, since they remain both an important honey bee colony pest and an interesting colony symbiont. Métodos estándar para la investigación de la polilla de la cera Resumen Las polillas de la cera grande (Lepidoptera: Pyralidae, Galleria mellonella) y pequeña (Lepidoptera: Pyralidae, Achroia grisella) son una plaga ubicua de las colonias de abejas al nivel mundial.
    [Show full text]
  • Edible Insects As a Source of Food Allergens Lee Palmer University of Nebraska-Lincoln, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations, Theses, & Student Research in Food Food Science and Technology Department Science and Technology 12-2016 Edible Insects as a Source of Food Allergens Lee Palmer University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/foodscidiss Part of the Food Chemistry Commons, and the Other Food Science Commons Palmer, Lee, "Edible Insects as a Source of Food Allergens" (2016). Dissertations, Theses, & Student Research in Food Science and Technology. 78. http://digitalcommons.unl.edu/foodscidiss/78 This Article is brought to you for free and open access by the Food Science and Technology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations, Theses, & Student Research in Food Science and Technology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. EDIBLE INSECTS AS A SOURCE OF FOOD ALLERGENS by Lee Palmer A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Food Science and Technology Under the Supervision of Professors Philip E. Johnson and Michael G. Zeece Lincoln, Nebraska December, 2016 EDIBLE INSECTS AS A SOURCE OF FOOD ALLERGENS Lee Palmer, M.S. University of Nebraska, 2016 Advisors: Philip E. Johnson and Michael G. Zeece Increasing global population increasingly limited by resources has spurred interest in novel food sources. Insects may be an alternative food source in the near future, but consideration of insects as a food requires scrutiny due to risk of allergens.
    [Show full text]
  • How Waxworms Eat Plastic by Harald Grove, M.Sc
    March 2021 – Issue 3(5) How waxworms eat plastic By Harald Grove, M.Sc. Student & Sachi Villanueva, M.Sc. Student What you need to know Waxworms are the caterpillars of the greater wax moth, Galleria mellonella. These insects are common pests of apiaries and feed voraciously on honeycomb. Interestingly, they also voluntarily feed on polyethylene, a type of plastic commonly used in shopping bags. Because their natural diet of honeycomb is chemically similar to polyethylene, the waxworm may have evolved the necessary biochemical adaptations to degrade plastic wastes. Waxworm (Photo Credit: Rob Henderson) Why this research is important How the research was conducted Global plastic production continues to increase due to the We fed waxworms polyethylene instead of their demand for cheap, durable, and versatile materials. honeycomb diet for several days. As the larvae devoured However, these characteristics make plastic resist the plastic sheet, their excretions changed and became degradation leading to accumulation in landfills and more liquid, indicating the presence of a different chemical marine ecosystems, negatively affecting our environment. waste. As one potential biodegradative product is a glycol, As a solution, research has focused on identifying we biochemically tested its presence in the excreta. Next, microorganisms like bacteria and fungi capable of plastic we analyzed the microbiome by treating the caterpillars biodegradation. When isolated, these microorganisms can with antibiotics to reduce their intestinal bacteria and then biodegrade plastics, albeit very slowly. However, when a measured the amount of glycol excreted. Additionally, we waxworm with an intact intestinal microbial community harvested and grew bacteria from the waxworm gut while (microbiome) consumes plastic, the biodegradation selecting for species capable of using polyethylene as a sole process is expedited.
    [Show full text]
  • Complete Nutrient Composition of Commercially Raised Invertebrates Used As Food for Insectivores
    Zoo Biology 21:269–285 (2002) Complete Nutrient Composition of Commercially Raised Invertebrates Used as Food for Insectivores Mark D. Finke* PETsMART Inc., Phoenix, Arizona A variety of invertebrates are commonly fed to insectivorous animals by both zoos and hobbyists, but information as to the nutrient composition of most com- mercially raised species is limited. Adult house crickets, house cricket nymphs (Acheta domesticus), superworms (Zophobas morio larvae), giant mealworm lar- vae, mealworm larvae and adult mealworms (Tenebrio molitor), waxworm lar- vae (Galleria mellonella), and silkworm larvae (Bombyx mori) were analyzed for moisture, crude protein, crude fat, ash, acid detergent fiber (ADF), neutral detergent fiber (NDF), minerals, amino acids, fatty acids, and vitamins. Earth- worms (Lumbricus terresstris) were analyzed for moisture, crude protein, crude fat, ash, ADF, NDF, minerals, amino acids, and vitamins A and D3. Proximate analyses were variable, with wide ranges found for moisture (57.9–83.6%), crude protein (9.3–23.7%), crude fat (1.6–24.9%), ADF (0.1–7.4%), NDF (0.0–11.5%), and ash (0.6–1.2%). Energy content ranged from a low of 674 kcal/kg for silk- worms to 2,741 kcal/kg for waxworms.Using an amino acid scoring pattern for rats, the first limiting amino acid for all invertebrates tested was the total sulfur amino acid methionine+cystine. Deficiencies by nutrient (% of samples defi- cient vs. NRC requirements for rats on a dry matter (DM) basis) were as fol- lows: calcium (100%), vitamin D3 (100%), vitamin A (89%), vitamin B12 (75%), thiamin (63%), vitamin E (50%), iodine (44%), manganese (22%), methionine- cystine (22%), and sodium (11%).
    [Show full text]
  • The Composition of Soil-Dwelling Pathogen Communities Mediates Effects on Wireworm Herbivores and Wheat Productivity T ⁎ Ivan Milosavljevića,B, Aaron D
    Biological Control 149 (2020) 104317 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon The composition of soil-dwelling pathogen communities mediates effects on wireworm herbivores and wheat productivity T ⁎ Ivan Milosavljevića,b, Aaron D. Esserc, Arash Rashedd, David W. Crowdera, a Department of Entomology, Washington State University, 166 FSHN Bldg, Pullman, WA 99164, USA b Department of Entomology, University of California, 900 University Ave, Riverside, CA 92521, USA c Washington State University Extension, 210 W Broadway, Ritzville, WA 99169, USA d Department of Plant, Soil, and Entomological Sciences, Aberdeen Research and Extension Center, University of Idaho, Aberdeen, ID 83210, USA ARTICLE INFO ABSTRACT Keywords: Greater natural enemy diversity generally increases prey mortality. Diversity can be beneficial when natural Biodiversity enemy species occupy distinct niches (complementarity effects) or when diverse communities contain the most Ecosystem functioning impactful species by chance (identity effects). Most research assessing effects of natural enemy diversity focuses Entomopathogenic fungi on aboveground predators, however, and few studies have assessed whether increased entomopathogen diversity Nematode in soil affects belowground herbivores. Here, we assessed effects of entomopathogen richness on herbivore Pathogen suppression and plant productivity in a system consisting of entomopathogens, wireworm herbivores, and wheat Wireworms plants. Specifically, in field experiments we varied the richness of four entomopathogen species (two nematodes, two fungi) that attack herbivorous Limonius californicus larvae belowground. We show that the presence of entomopathogens increased wireworm mortality and subsequently increased plant productivity, but a single entomopathogen species, Metarhizium brunneum, had stronger effects than other species (Beauveria bassiana, Heterorhabditis bacteriophora, and Steinernema carpocapsae).
    [Show full text]
  • Larvae Used In: Insects Waxworm – Galleria Mellonella Background
    Larvae used in: Insects Waxworm – Galleria mellonella Background. The waxworm is the larva of the greater wax moth, a small nondescript flying insect that lays its eggs in beehives, where the growing larvae feed on honey and wax. A robust hive of honey bees can repel the onslaught of waxworms, keeping the damage to a minimum, but waxworms can overrun and destroy a stressed colony. Waxworms are white to tan, plump, clearly segmented, and moderately active. They are a little softer than mealworms, so they must be treated somewhat more gently, but they are still very easy for first and second graders to handle. The waxworm has 13 segments (head, three thoracic, nine abdominal) and the mandatory six legs. But unlike the mealworm (a beetle), the waxworm has four pairs of leglike structures called prolegs—one pair on abdominal segments three through six. These prolegs are equipped with muscular pads called claspers, which help the larvae hold onto surfaces, and the 13th segment (tail) also has a clasper. The waxworm has bristles (stiff hairs) on its body and a row of clearly visible openings called spiracles along each side. The larvae have no lungs—oxygen enters through these spiracles and is distributed through the fluids of the body. Waxworms, like all moths, make silk. Silk is used as a lifeline, as a webbing over which the larvae can walk, and as a material to build a protective cocoon. The silk is produced in a gland under the head and extruded through structures called spinnerets. Waxworm habitat. Like mealworms, waxworms apply themselves to a career of eating and growing.
    [Show full text]
  • Why Are Some Parasites Picky Eaters? ? !
    MARCH 2017 Why are some parasites picky eaters? ? ! Authors: Dihong Lu, Claudia Sepulveda, Adler R. Dillman Associate Editor: Elitsa Panayotova Abstract Nematodes are microscopic roundworms that live in soil, used as biological pest control in the United States. oceans, and lakes (Fig. 1). Scientists estimate that there Some parasites are generalists and can infect a wide variety could be a million species of nematodes and that many of hosts while others are specialists and only infect certain of them are parasites. Sometimes farmers use parasitic hosts. We wanted to determine if S. scapterisci really is nematodes as a natural enemy to kill some pests. This is a specialist parasite and why it is a picky eater (showing one type of biological pest control. a preference for one insect over another). To do this we We studied a particular parasitic nematode called studied how these nematodes behave when given different Steinernema scapterisci. It infects insects and has been insects as food. Introduction Many parasitic nematodes, including nematodes which infect activated when they infect a host? humans and insects, have a life cycle that includes several 2) Is the nematode parasite S. scapterisci a cricket different stages of development. The stage in which they specialist? If yes, why? infect a host is the infective juvenile (IJ) stage. When IJs are in the soil they are "on standby" – they do not eat or develop further until they find hosts to infect (their food). When they find a host, IJs crawl inside, eat the host tissues, and resume development. It is a big transition from “standby” to actively growing in a host.
    [Show full text]
  • Downloads%2Fsb397901c&Usg=Aovvaw3bqvlzyo6ag Ltoexcrixz
    Catch The Buzz™ ® www.BeeCulture.com BiosecurityBiosecurity For BeekeepersBeekeepers AppreciationAppreciation ForFor PollenPollen $4.99 BC_October_2020.indd 1 9/17/2020 6:31:04 PM BC_October_2020.indd 2 9/17/2020 6:31:04 PM Healthy Bees. Healthy Planet. Available through beekeeping supply stores. 866-483-2929 | nodglobal.com | [email protected] @NODAPIARY BC_October_2020.indd 3 9/17/2020 6:31:07 PM BC_October_2020.indd 4 9/17/2020 6:31:09 PM Bee Culture October Features . HIVE MONITORING CONFERENCE 25 Fourth International Conference Goes Virtual. DO BEEKEEPERS LIKE Jerry Bromenshenk SAVING MONEY? 67 Wintering indoors. WHAT MAKES ME HAPPIEST 30 John Miller Besides my husband, dog and bees. Jennifer Berry A CASE FOR PERMANENT INSULATION 68 AMERICAN HONEY PRODUCERS 35 Warmer in Winter, cooler in Summer. Legislative report Bruce Moechnig Eric Silva FLOWERING STRIPS = REGENERON SCIENCE TALENT 38 Meet Raina Jain. INFECTION 71 Raina Jain Mick Kuikowski TELLING THE BEES 46 Keeping them informed of changes. SWARM TEAM CAPTAIN 72 Elsie Czyzowska Stephen Bishop VARROA RESISTANCE 76 BEE VET 50 Is it really possible? Biosecurity for beekeepers. Dr. Tracy Farone Terry Combs OVERWINTERING NUCS 80 PRESCRIBED FIRE 53 David MacFawn It might be just what the bees need. Richard Hines AGAINST THE GRAIN 83 Appreciation for pollen. ZOOMING 56 Dr. Christine Bertz To a bee meeting. Tina Sebestyen WE’LL MEET AGAIN - ONLINE! 84 Charlotte Ekker Wiggins MINDING YOUR BEES AND CUES 58 Part 1: Interpreting fruit scents. EBOLA, COVID-19 & BEEKEEPERS 86 Becky Masterman & Bridget Mendel Richard Godfrey HAVE A BUZZ 61 UP CLOSE WITH A NORTHERN Leah Smith CALIFORNIA BEEKEEPER 89 Ettamarie Peterson 800.289.7668 Executive Publisher – Brad Root Associate Publisher, Senior Editor – Jerry Hayes, [email protected], Ext.
    [Show full text]
  • Pdf (771.64 K)
    Assiut Veterinary Medical Journal Assiut Vet. Med. J. Vol. 66 No. 166 July 2020, 31-50 Assiut University web-site: www.aun.edu.eg VARVOACIDAL EFFECT OF FLUMVAR AT CONTROL OF HONEY BEE VARROASIS SARA MOHAMMADIYANI 1 AND SHAPOUR REZA SHOJAEI 2 1 Department of Parasitology, Karaj Branch, Islamic Azad University, Karaj, Iran. Corresponding Author Email: [email protected] 2 Department of Parasitology, Karaj Branch, Islamic Azad University, Karaj, Iran Received: 19 June 2020; Accepted: 21 July 2020 ABSTRACT Aim: Preliminary evaluation of flumvar efficacy in control of varroasis in some Tehran province's apiaries, Varroasis is the most important parasitic disease of honey bees that in addition of direct damages due to perforation of honey body can provide transmission the kinds of viruses and bacterias. However, during recent decade were carried out the efforts in order to biological control of varroasis but the main solution against varroa is chemical control by pesticides yet. Methods: In this study 30 hives in 2 experimental group's induding negative control, and flumvar were surveyed. After determination of primary in festation in experimental group with flumvar was applicated according to theirs manafactere subsequently, 40 days after treatment the varroal in festation were determined again. Results: flumvar was decreased varroal infestation from 12 to 2 and 11 to 1% respectively. The efficacy of flumvar was 90.26% respectively. No side effects were seen after flumval application. According to the more than 90 percent of flumvar efficacy the varroacidal effects of this pesticide is suitable. Key words: flumvar, varroasis, efficacy, apiary, Tehran. INTRODUCTION In the last century, beekeepers in the world have been as extensive as other agricultural The life of a bee is one of the wonders of life activities and include hundreds of thousands and one of the secrets of creation.
    [Show full text]