UTAH PESTS Diagnostic Laboratory

Total Page:16

File Type:pdf, Size:1020Kb

UTAH PESTS Diagnostic Laboratory Utah Plant Pest UTAH PESTS Diagnostic Laboratory USU Extension Summer 2017 / QUARTERLY Vol. XI NEWSLETTER IN THIS ISSUE High Tunnel Arthropod Pest Management High Tunnel Arthropod Pest Management p. 01 Elm Seed Bug p. 3 Featured Author: Dr. S. Nicole Frey on Choosing the Best Traps for Controlling Pocket Gophers p. 04 Pest Spotlight: Gypsy Moth p. 06 USDA Downy Mildew of Spinach p. 07 High tunnels can extend the growing season in a cold location such as northern Utah. CRISPR DNA Technology for Managing Pests p. 08 Use of high tunnels or field greenhouses Some of the primary tactics that can be used Neonicotinoid: Retailer is a popular production method in Utah to effectively suppress pests in high tunnels Phase-Out and Potential to substantially extend the length of the include: Alternative growing season. Tunnels can provide p. 10 benefits beyond temperature regulation, • Place floating row cover over Predicting Billbug such as increasing humidity, shading, and susceptible plants for concealment Management in reducing populations of some pests through and to exclude pests that have entered Intermountain West Turf exclusion and concealment. However, some the high tunnel. Row covers, or low p. 11 insect and related pests can thrive in the tunnels, can exclude insects that fly Elm Leafminer plastic-covered environment. If plants are or jump onto plants, including thrips, p. 12 irrigated with driplines, the dry soil between flea beetles, leafhoppers, whiteflies, plant rows is a conducive location for ant aphids, leafminers and grasshoppers. IPM in the News p. 14 nests. Moist, shaded plants can be attractive Additionally, curly top virus infection of to slugs and earwigs. Other common high tomato, pepper and other susceptible Picture of the Quarter tunnel pests in Utah include thrips, spider host plants tends to be very low where p. 16 mites, aphids, leafminers, whiteflies, flea the vector, beet leafhopper, is excluded. beetles, and grasshoppers. • To physically remove small arthropods, NEW FACT SHEETS such as aphids, mites, thrips and Early detection through regular and whiteflies, wash down plants with a stiff Spider Mites in Raspberry thorough plant inspections is important for spray of water from a hose-end nozzle. effective pest management. In addition Brown Marmorated Stink Bug Repeat every 2-3 days until pest to visual inspections, gently shake plants numbers subside. Elm Seed Bug over a light-colored tray or sheet to collect dislodged insects. Use a hand lens (10-30× • Use lower toxicity insecticides with magnification) to help with identification of physical modes of action, such as small insects and mites. insecticidal soap and horticultural and plant oils, to suppress soft-bodied insects continued on next page UTAH PESTS TEAM High Tunnel Arthropod Pest Management Diane Alston and mites. Apply early in the morning Entomologist or evening when temperatures inside the [email protected] tunnel have dropped below about 80°F 435-797-2516 to avoid injury from ‘burning’ of plant leaves. Ryan Davis Arthropod Diagnostician School IPM Associate [email protected] Learn About Nature 435-797-2435 Marion Murray Pavement ants can feed on plants, and IPM Project Leader Utah Pests Quarterly Editor are attracted to dry soil inside high [email protected] tunnels for building nests. Jerry Brust, University of Maryland 435-797-0776 • When high tunnels are fully enclosed, they can be an effective site for Cami Cannon Spider mites can thrive in the hot Vegetable IPM Associate releasing biological control agents. It Graphic Design, Utah Pests conditions of a high tunnel. is critical to select the correct species Quarterly Newsletter of natural enemy to target each • Use biological insecticides, such as Bt [email protected] pest species, as food preferences (Bacillus thuringiensis) for caterpillars, 435-797-2435 can be narrow. Additionally, select and spinosad for thrips, earwigs, natural enemies well-suited for the and leafminers. Use a molluscicide Claudia Nischwitz environmental conditions at the time of containing iron phosphate for slugs and Plant Pathologist release. [email protected] snails. 435-797-7569 ○ The USU publication, Greenhouse Biocontrol in Utah provides information Ricardo Ramirez for biocontrol agents in high tunnels, Entomologist including where to purchase. [email protected] The Sustainable Agriculture Research 435-797-8088 ○ and Education (SARE) fact sheet Lori Spears titled Sustainable Pest Management USU CAPS Coordinator in Greenhouses and High Tunnels by [email protected] Judson Reid, Cornell University, provides 801-668-4056 University of Missouri Extension additional details on selection and release of biological control agents. Thrips are a common pest of cucumber, squash and melon grown in high tunnels. Utah Plant Pest For more information on pest management Diagnostic Lab • Pavement, harvester, and field ants are in high tunnels in Utah, see the Utah Pests BNR Room 203 the most common ant pests of plants News Spring 2012 edition (page 3) for Utah State University in northern Utah. Apply homemade an article that includes disease prevention 5305 Old Main Hill or commercial ant baits to suppress strategies and more. Logan, UT 84322 nearby ant colonies. Pavement ant food preferences vary with the needs of the To subscribe, click here. colony. They prefer a variety of foods, including sweets, greases, proteins, Diane Aslton, Entomologist All images © UTAH PESTS and seeds. Boric acid is an effective and USU Extension unless active ingredient that can be added to otherwise credited. homemade ant baits. See Ryan Davis’ comprehensive article on homemade ant bait recipes in the Spring 2016 Utah Pests News edition (page 8). utahpests.usu.edu www.utahpests.usu.edu Utah Pests Quarterly / Spring 2017 / page 2 PEST ALERT Elm Seed Bug Elm seed bug adults hiding under overlapping elm leaves. Elm seed bugs are on the rise this summer. Since mid June, the UPPDL has received many calls concerning elm seed control. Elm seed bugs are most prevalent on and in structures that have nearby elm trees. Their small size allows them to easily enter houses through sliding windows, doors, and even picture windows. Fecal spots of elm seed bugs on a window frame. Appropriately labeled pyrethroid insecticides applied Elm bugs are very small and excluding them from the as a barrier perimeter treatment around foundations, home is the primary control method, but it can be difficult. windows, doors and eaves may provide some relief from Focus on sealing windows and doors. Windows are a migrating bugs. However, reports from callers indicate particularly favored entry point. Even if you have new that immediate kill of elm seed bugs from at least two windows or picture windows, elm seed bugs may infiltrate pyrethroid insecticides - bifenthrin and lambda-cyhalothrin around the frame, tracks, or even between the glass and - does not occur and entry into the home may still take frame. Exclusion efforts must be extremely thorough to be place before elm seed bugs die. If you have had pesticide effective. Inside, vacuum bugs that enter the home. applications made for elm seed bug, please contact the UPPDL to discuss the product used and its performance. For more information see the new Utah Pests fact sheet on Elm Seed Bug. Ryan Davis, Arthropod Diagnostician Late-stage immature elm seed bug. www.utahpests.usu.edu Utah Pests Quarterly / Spring 2017 / page 3 FEATURED AUTHOR: DR. S. NICOLE FREY Choosing the Best Traps for Controlling Pocket Gophers Dr. S. Nicole Frey is a Wildland Resources Associate Professor with USU Extension. Her work focuses on solving wildlife management issues in southern Utah. She also teaches Principles of Natural Resource Management at Southern Utah University, is involved in 4-H at the national and state level for the Wildlife Habitat Evaluation Program, and serves as the Continuing Education Coordinator for the Jack H. Berryman Institute. Pocket gopher (left) and pocket gopher mound (right). Valley pocket gophers (Thomomys bottae) are a common In 2015, we compared the effectiveness and efficiency of agricultural pest in many areas of Utah, Nevada, and three types of kill traps—Macabee, DK-1, and Cinch—in California. Pocket gophers predominantly eat roots, 4 alfalfa fields in Beaver County, Utah. Beaver County although they will pull vegetation into their burrows, ranks 10th in the state in the number of acres in hay, grass and eat plants immediately adjacent to their burrow silage, and greenchop production. The study began the holes. In a survey conducted by USU Extension in the first week of April and continued for 6 weeks. We chose 1990s, agricultural producers in Utah reported that the April date to ensure that we were trapping during the pocket gophers were one of the most abundant threats breeding season and to determine which trap would be to production. Because pocket gophers are active year- most effective if used once alfalfa had begun to grow. round, farmers require management options to protect their crops throughout the season. Removing pocket gophers We found the Macabee trap to be the most effective at via lethal control during their breeding season (March trapping pocket gophers (Table 1) and the most time- –April) is often the most effective method because this efficient trap (Figure 1). The trap is easy to use and has removes the adult population and reduces the potential for an appropriate size. Macabee traps caught more pocket juveniles during that season. gophers per total visits to the trap, but there were also a large number of traps tripped or plugged each week. It Using strychnine baits is a common method to control is possible that the Macabee traps, while attracting the gophers, but acquiring the bait and timing this method most attention, were unable to capture larger animals. with the gophers’ reproductive season can be tricky, when This could cause animals to become trap shy, ultimately we often have snow on the ground through March.
Recommended publications
  • Fuetal2021.Pdf
    Biological Control 160 (2021) 104662 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Using fine-scale relatedness to infer natural enemy movement Zhen Fu a, Michael S. Crossley b, Brendan Epstein c, Cassandra Bates a, David W. Crowder a, Axel A. Elling d, Paul A. Hohenlohe e, Randa Jabbour f, Ricardo A. Ramirez g, William E. Snyder b,* a Department of Entomology, Washington State University, Pullman, WA 99164, USA b Department of Entomology, University of Georgia, Athens, GA 30602, USA c Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA d Bayer Crop Science, Cary, NC 27513, USA e Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA f Department of Plant Sciences, University of Wyoming, Laramie, WY 82071, USA g Department of Biology, Utah State University, Logan, UT 84322, USA HIGHLIGHTS GRAPHICAL ABSTRACT • Restriction Site Associated DNA Sequencing (RAD-seq) revealed fine- scale genetic relationships among ento­ mopathogenic nematodes. • Heterorhabditis bacteriophora and Stei­ nernema feltiae grew increasingly less related with greater distance between collection sites. • Yet, intraspecific genetic diversity at a site could be high and distant strains could be closely related. • RAD-seq provides a powerful approach to inferring natural enemy movement within agricultural landscapes. ARTICLE INFO ABSTRACT Keywords: Natural enemies often move among habitats to track prey and resources. Indeed, biocontrol often depends on Conservation biological control natural enemies dispersing into crops after disturbances such as tillage and pesticide applications. However, the Genetic biodiversity small size of many natural enemies makes it difficult to observe such movements.
    [Show full text]
  • Natural History Collections
    Appendix H: Natural History Collections Page A. Overview. .......................................................................................................................................... H.1 What information can I find in this appendix?. ................................................................................... H:1 What are natural history collections?..... ............................................................................................ H:1 Why does the NPS collect and maintain natural history collections?. ............................................... H:2 Why are natural history collections important?. ................................................................................. H:2 What determines how NPS natural history collections are used?. .................................................... H:3 Where can I find further information on NPS natural history collections?.. ....................................... H:4 B. Natural History Collections.. ........................................................................................................... H:4 What kinds of specimens are commonly found in NPS natural history collections?. ........................ H:4 What characterizes NPS biological collections?. ............................................................................... H:5 Why are NPS biological collections important?.. ............................................................................... H:5 What kinds of specimens are found in NPS biological collections?. ................................................
    [Show full text]
  • Insects for Human Consumption
    Chapter 18 Insects for Human Consumption Marianne Shockley1 and Aaron T. Dossey2 1Department of Entomology, University of Georgia, Athens, GA, USA, 2All Things Bugs, Gainesville, FL, USA 18.1. INTRODUCTION The utilization of insects as a sustainable and secure source of animal-based food for the human diet has continued to increase in popularity in recent years (Ash et al., 2010; Crabbe, 2012; Dossey, 2013; Dzamba, 2010; FAO, 2008; Gahukar, 2011; Katayama et al., 2008; Nonaka, 2009; Premalatha et al., 2011; Ramos- Elorduy, 2009; Smith, 2012; Srivastava et al., 2009; van Huis, 2013; van Huis et al., 2013; Vantomme et al., 2012; Vogel, 2010; Yen, 2009a, b). Throughout the world, a large portion of the human population consumes insects as a regular part of their diet (Fig. 18.1). Thousands of edible species have been identified (Bukkens, 1997; Bukkens and Paoletti, 2005; DeFoliart, 1999; Ramos-Elorduy, 2009). However, in regions of the world where Western cultures dominate, such as North America and Europe, and in developing countries heavily influenced by Western culture, mass media have negatively influenced the public’s percep- tion of insects by creating or reinforcing fears and phobias (Kellert, 1993; Looy and Wood, 2006). Nonetheless, the potentially substantial benefits of farming and utilizing insects as a primary dietary component, particularly to supplement or replace foods and food ingredients made from vertebrate livestock, are gain- ing increased attention even in Europe and the United States. Thus, we present this chapter to
    [Show full text]
  • Life Cycles: Egg to Bee Free
    FREE LIFE CYCLES: EGG TO BEE PDF Camilla de La Bedoyere | 24 pages | 01 Mar 2012 | QED PUBLISHING | 9781848355859 | English | London, United Kingdom Tracking the Life Cycle of a Honey Bee - dummies As we remove the frames, glance over the thousands of busy bees, check for brood, check for capped honey, maybe spot the queen… then the frames go back in their slots and the hive is sealed up again. But in the hours spent away from our hives, thousands of tiny miracles are happening everyday. Within the hexagonal wax cells little lives are hatching out and joining the hive family. The whole process from egg to adult worker bee takes around 18 days. During the laying season late spring to summer the Queen bee is capable of laying over eggs per day. Her worker bees help direct her to the best prepared comb and she lays a single egg in each hexagon shaped cell. The size of the cell prepared determines the type of egg she lays. If the worker bees have prepared a worker size cell, she Life Cycles: Egg to Bee lay a fertilized egg. This egg will produce a female worker bee. If the worker bees have prepared a slightly larger cell, the queen will recognize this as a drone cell and lay an unfertilized egg. This will produce a male drone bee. It is the workers and not the queen that determine the ratio of workers to drones within the hive. In three days the egg hatches and a larva emerges. It looks very similar to a small maggot.
    [Show full text]
  • Standard Methods for Wax Moth Research
    Journal of Apicultural Research 52(1): (2013) © IBRA 2013 DOI 10.3896/IBRA.1.52.1.10 REVIEW ARTICLE Standard methods for wax moth research James D Ellis1*, Jason R Graham1 and Ashley Mortensen1 1Honey Bee Research and Extension Laboratory, Department of Entomology and Nematology, University of Florida, Steinmetz Hall, Natural Area Dr., P.O. Box 110620, Gainesville, FL, 32611, USA. Received 7 July 2012, accepted subject to revision 16 July 2012, accepted for publication 14 November 2012. *Corresponding author: Email: [email protected] Summary Greater (Lepidoptera: Pyralidae, Galleria mellonella) and Lesser (Lepidoptera: Pyralidae, Achroia grisella) wax moths are ubiquitous pests of honey bee colonies globally. The economic importance of wax moths has led to a number of investigations on wax moth life history, biology, behaviour, ecology, molecular biology, physiology, and control. Despite the importance of wax moths to the apicultural industry, they are investigated considerably more as a model organism for studies in insect physiology, genomics, proteomics, etc. Those studying wax moths from an apicultural perspective typically use only a small number of the total available research methods outlined in the literature. Herein, we describe methods associated with wax moth research that we feel are important from an apicultural research perspective. Ultimately, we hope that this paper will revitalize research on wax moths, since they remain both an important honey bee colony pest and an interesting colony symbiont. Métodos estándar para la investigación de la polilla de la cera Resumen Las polillas de la cera grande (Lepidoptera: Pyralidae, Galleria mellonella) y pequeña (Lepidoptera: Pyralidae, Achroia grisella) son una plaga ubicua de las colonias de abejas al nivel mundial.
    [Show full text]
  • Edible Insects As a Source of Food Allergens Lee Palmer University of Nebraska-Lincoln, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations, Theses, & Student Research in Food Food Science and Technology Department Science and Technology 12-2016 Edible Insects as a Source of Food Allergens Lee Palmer University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/foodscidiss Part of the Food Chemistry Commons, and the Other Food Science Commons Palmer, Lee, "Edible Insects as a Source of Food Allergens" (2016). Dissertations, Theses, & Student Research in Food Science and Technology. 78. http://digitalcommons.unl.edu/foodscidiss/78 This Article is brought to you for free and open access by the Food Science and Technology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations, Theses, & Student Research in Food Science and Technology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. EDIBLE INSECTS AS A SOURCE OF FOOD ALLERGENS by Lee Palmer A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Food Science and Technology Under the Supervision of Professors Philip E. Johnson and Michael G. Zeece Lincoln, Nebraska December, 2016 EDIBLE INSECTS AS A SOURCE OF FOOD ALLERGENS Lee Palmer, M.S. University of Nebraska, 2016 Advisors: Philip E. Johnson and Michael G. Zeece Increasing global population increasingly limited by resources has spurred interest in novel food sources. Insects may be an alternative food source in the near future, but consideration of insects as a food requires scrutiny due to risk of allergens.
    [Show full text]
  • Sawflies (Hymenoptera, Symphyta) Newly Recorded from Washington State
    JHR 49: 129–159 (2016)Sawflies( Hymenoptera, Symphyta) newly recorded from Washington State 129 doi: 10.3897/JHR.49.7104 RESEARCH ARTICLE http://jhr.pensoft.net Sawflies (Hymenoptera, Symphyta) newly recorded from Washington State Chris Looney1, David R. Smith2, Sharon J. Collman3, David W. Langor4, Merrill A. Peterson5 1 Washington State Dept. of Agriculture, 1111 Washington St. SE, Olympia, Washington, 98504, USA 2 Systematic Entomology Laboratory, Agricultural Research Service, USDA, c/o National Museum of Natural History, NHB 168, Washington, D.C. 20560, USA 3 Washington State University Extension, 600 128th St. SE, Everett, Washington, 98208, USA 4 Natural Resources Canada, Canadian Forest Service, 5320 122 Street NW, Edmonton, Alberta, T6H 3S5, Canada 5 Biology Department, Western Washington University, 516 High St., Bellingham, Washington, 98225, USA Corresponding author: Chris Looney ([email protected]) Academic editor: H. Baur | Received 5 November 2015 | Accepted 27 January 2016 | Published 28 April 2016 http://zoobank.org/319E4CAA-6B1F-408D-8A84-E202E14B26FC Citation: Looney C, Smith DR, Collman SJ, Langor DW, Peterson MA (2016) Sawflies (Hymenoptera, Symphyta) newly recorded from Washington State. Journal of Hymenoptera Research 49: 129–159. doi: 10.3897/JHR.49.7104 Abstract Examination of museum specimens, unpublished collection data, and field surveys conducted between 2010 and 2014 resulted in records for 22 species of sawflies new to Washington State, seven of which are likely to be pest problems in ornamental landscapes. These data highlight the continued range expansion of exotic species across North America. These new records also indicate that our collective knowledge of Pacific Northwest arthropod biodiversity and biogeography is underdeveloped, even for a relatively well known and species-poor group of insects.
    [Show full text]
  • Non-Native and Invasive Animals of Alaska: a Comprehensive List and Select Species Status Reports
    NON-NATIVE AND INVASIVE ANIMALS OF ALASKA: A COMPREHENSIVE LIST AND SELECT SPECIES STATUS REPORTS FINAL REPORT Jodi McClory Tracey Gotthardt NON-NATIVE AND INVASIVE ANIMALS OF ALASKA: A COMPREHENSIVE LIST AND SELECT SPECIES STATUS REPORTS FINAL REPORT Jodi McClory and Tracey Gotthardt Alaska Natural Heritage Program Environment and Natural Resources Institute University of Alaska Anchorage 707 A Street, Anchorage AK 99501 January 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY 4 INTRODUCTION 5 METHODOLOGY 5 RESULTS 6 DISCUSSION AND FUTURE DIRECTION 6 ACKNOWLEDGEMENTS 7 LITERATURE CITED 8 APPENDICES I: LIST OF NON-NATIVE ANIMAL SPECIES DOCUMENTED IN ALASKA 9 II: LIST OF NON-NATIVE ANIMAL SPECIES WITH THE POTENTIAL FOR INVASION IN ALASKA 17 III: STATUS REPORTS FOR SELECT NON-NATIVE ANIMAL SPECIES OF ALASKA 21 PACIFIC CHORUS FROG.......................................................................................................................... 22 RED-LEGGED FROG ................................................................................................................................24 ATLANTIC SALMON................................................................................................................................. 27 NORTHERN PIKE ..................................................................................................................................... 30 AMBER-MARKED BIRCH LEAFMINER .................................................................................................... 33 BIRCH LEAFMINER ................................................................................................................................
    [Show full text]
  • (Dip: Agromyzidae): a Second British Record and a New Host Plant ______
    Newsletter: July 2008 Issue 13 ________________________________________________________________________________________ Aulagromyza luteoscutellata (Dip: Agromyzidae): A Second British record and a new host plant ____________________________________ On 16th July 2008, Keith Palmer discovered mines of what he suspected were Aulagromyza luteoscutellata at sites in Foxbush, Hildenborough, Tonbridge, Kent (VC16). He sent them to Rob Edmunds, who confirmed the identification. As far as we are aware this represents the second record of this miner on the UK. The mines are characteristically dark green when fresh and show the faint chevron frass patterning. An occupied mine is shown opposite. This miner was discovered as new to the UK by RE in 2007 in Hampshire. The geographical separation of this new discovery would lead one to suspect that A. luteoscutellata is a previously overlooked species in Britain. KP found the larva mining Snowberry (Symphoricarpos albus), which is a new host plant record in the UK and in line with it s known hosts in Europe. Photos © Rob Edmunds Changes in the nomenclature of leafmining sawflies: ____________________________________ There are at least 2 species of Fenusa mining Ulmus leaves in Western Europe: This website is adopting the new nomenclature (a) Fenusa ulmi (Sundevall, 1847) proposed by Liston and Sheppard in their Checklist of which seems to prefer feeding on British and Irish Hymenoptera Symphyta (2008). Wych Elms (Ulmus glabra). In N. America it is found on a wide range of Ulmus species. The leafminer changes are: (b) Fenusa altenhoferi (Liston, 1993) 1. Heterarthrus healyi, feeding on Acer (=Kaliofenusa carpinifoliae), which campestre, becomes Heterarthrus is found on "Field Elms" such as wuestneii (Konow, 1905).
    [Show full text]
  • How Waxworms Eat Plastic by Harald Grove, M.Sc
    March 2021 – Issue 3(5) How waxworms eat plastic By Harald Grove, M.Sc. Student & Sachi Villanueva, M.Sc. Student What you need to know Waxworms are the caterpillars of the greater wax moth, Galleria mellonella. These insects are common pests of apiaries and feed voraciously on honeycomb. Interestingly, they also voluntarily feed on polyethylene, a type of plastic commonly used in shopping bags. Because their natural diet of honeycomb is chemically similar to polyethylene, the waxworm may have evolved the necessary biochemical adaptations to degrade plastic wastes. Waxworm (Photo Credit: Rob Henderson) Why this research is important How the research was conducted Global plastic production continues to increase due to the We fed waxworms polyethylene instead of their demand for cheap, durable, and versatile materials. honeycomb diet for several days. As the larvae devoured However, these characteristics make plastic resist the plastic sheet, their excretions changed and became degradation leading to accumulation in landfills and more liquid, indicating the presence of a different chemical marine ecosystems, negatively affecting our environment. waste. As one potential biodegradative product is a glycol, As a solution, research has focused on identifying we biochemically tested its presence in the excreta. Next, microorganisms like bacteria and fungi capable of plastic we analyzed the microbiome by treating the caterpillars biodegradation. When isolated, these microorganisms can with antibiotics to reduce their intestinal bacteria and then biodegrade plastics, albeit very slowly. However, when a measured the amount of glycol excreted. Additionally, we waxworm with an intact intestinal microbial community harvested and grew bacteria from the waxworm gut while (microbiome) consumes plastic, the biodegradation selecting for species capable of using polyethylene as a sole process is expedited.
    [Show full text]
  • Complete Nutrient Composition of Commercially Raised Invertebrates Used As Food for Insectivores
    Zoo Biology 21:269–285 (2002) Complete Nutrient Composition of Commercially Raised Invertebrates Used as Food for Insectivores Mark D. Finke* PETsMART Inc., Phoenix, Arizona A variety of invertebrates are commonly fed to insectivorous animals by both zoos and hobbyists, but information as to the nutrient composition of most com- mercially raised species is limited. Adult house crickets, house cricket nymphs (Acheta domesticus), superworms (Zophobas morio larvae), giant mealworm lar- vae, mealworm larvae and adult mealworms (Tenebrio molitor), waxworm lar- vae (Galleria mellonella), and silkworm larvae (Bombyx mori) were analyzed for moisture, crude protein, crude fat, ash, acid detergent fiber (ADF), neutral detergent fiber (NDF), minerals, amino acids, fatty acids, and vitamins. Earth- worms (Lumbricus terresstris) were analyzed for moisture, crude protein, crude fat, ash, ADF, NDF, minerals, amino acids, and vitamins A and D3. Proximate analyses were variable, with wide ranges found for moisture (57.9–83.6%), crude protein (9.3–23.7%), crude fat (1.6–24.9%), ADF (0.1–7.4%), NDF (0.0–11.5%), and ash (0.6–1.2%). Energy content ranged from a low of 674 kcal/kg for silk- worms to 2,741 kcal/kg for waxworms.Using an amino acid scoring pattern for rats, the first limiting amino acid for all invertebrates tested was the total sulfur amino acid methionine+cystine. Deficiencies by nutrient (% of samples defi- cient vs. NRC requirements for rats on a dry matter (DM) basis) were as fol- lows: calcium (100%), vitamin D3 (100%), vitamin A (89%), vitamin B12 (75%), thiamin (63%), vitamin E (50%), iodine (44%), manganese (22%), methionine- cystine (22%), and sodium (11%).
    [Show full text]
  • Parrotia Persica) Over the Last 3 Million Years
    Structures des paléoforêts européennes de la fin du Cénozoïque : apport des interactions plante-insecte Benjamin Adroit To cite this version: Benjamin Adroit. Structures des paléoforêts européennes de la fin du Cénozoïque : apport des in- teractions plante-insecte. Biodiversité et Ecologie. Université Montpellier; Institut für Geologie, Mineralogie und Paläontologie (Bonn), 2018. Français. NNT : 2018MONTG008. tel-01815989 HAL Id: tel-01815989 https://tel.archives-ouvertes.fr/tel-01815989 Submitted on 14 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE MONTPELLIER En EERGP - Écologie, Evolution, Ressources Génétique, Paléobiologie École doctorale GAIA - Biodiversité, Agriculture, Alimentation, Environnement, Terre, Eau Unité de recherche Institut des Sciences de l’Evolution de Montpellier UMR 5554 Structures des paléoforêts Européennes de la fin du Cénozoïque : apport des interactions plante-insecte Présentée par Benjamin ADROIT 0DUV 2018 Sous la direction de Jean-Frédéric TERRAL de l’Université de Montpellier et Torsten WAPPLER de l’Université de Bonn Devant le jury composé de Mme. Brigitte MEYER-BERTHAUD, Directrice de recherche, Université de Montpellier Présidente du jury M. Dieter UHL, apl. Professeur, Senckenberg Research Institute Frankfurt am Main Rapporteur M.
    [Show full text]