Life Cycles: Egg to Bee Free
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effect of Season and Behavioral Activity on the Hypopharyngeal Glands of Three Honey Bee Apis Mellifera L
JHR 68: 85–101Effect (2019) of season and behavioral activity on the hypopharyngeal glands of three honey bee ... 85 doi: 10.3897/jhr.68.29678 RESEARCH ARTICLE http://jhr.pensoft.net Effect of season and behavioral activity on the hypopharyngeal glands of three honey bee Apis mellifera L. races under stressful climatic conditions of central Saudi Arabia Hussain Ali1,2, Abdulaziz S. Alqarni1, Javaid Iqbal1,3, Ayman A. Owayss1, Hael S. Raweh1, Brian H. Smith4 1 Melittology Research lab, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia 2 Entomology Section, Agricultural Research Institute Tarnab, Pesha- war, Pakistan 3 Department of Entomology, MNS University of Agriculture, Multan, Pakistan 4 School of Life Sciences, Arizona State University, USA Corresponding author: Javaid Iqbal ([email protected]) Academic editor: Jack Neff | Received 11 September 2018 | Accepted 13 December 2018 | Published 25 February 2019 http://zoobank.org/5DC593C1-A701-49B5-B308-ED11F854261E Citation: Ali H, Alqarni AS, Iqbal J, Owayss AA, Raweh HS, Smith BH (2019) Effect of season and behavioral activity on the hypopharyngeal glands of three honey bee Apis mellifera L. races under stressful climatic conditions of central Saudi Arabia. Journal of Hymenoptera Research 68: 85–101. https://doi.org/10.3897/jhr.68.29678 Abstract Honey production gains are needed to deal with high demand in Saudi Arabia. The honey bee races are facing stressful hot-arid weather conditions that can affect different aspects of physiology and behav- ior. The hypopharyngeal glands (HPGs) of honey bees have prominent roles in various social behav- iors through their secretions. -
Honey Bee Immunity — Pesticides — Pests and Diseases
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Distance Master of Science in Entomology Projects Entomology, Department of 2017 A GUIDEBOOK ON HONEY BEE HEALTH: Honey Bee Immunity — Pesticides — Pests and Diseases Joey Caputo Follow this and additional works at: https://digitalcommons.unl.edu/entodistmasters Part of the Entomology Commons This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Distance Master of Science in Entomology Projects by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Photo by David Cappaert, Bugwood.org 1 A GUIDEBOOK ON HONEY BEE HEALTH Honey Bee Immunity — Pesticides— Pests and Diseases By Joey Caputo A graduate degree project submitted as partial fulfillment of the Option III requirements for the de- gree of Masters of Science in Entomology at the graduate school of the University of Nebraska- Lincoln, 2017. Last updated April 2017 — Version 1.2 i Contents Introduction 1 Honey Bee Immune System 2 Mechanical and Biochemical Immunity 2 Innate and Cell-Mediated Immunity 2 Humoral Immunity 2 Social Immunity 3 Detoxification Complexes 5 Problems in Beekeeping 5 Colony Collapse Disorder (CCD) 5 Bacterial, Fungal and Microsporidian Diseases 6 American foulbrood 6 European foulbrood 7 Nosemosis 8 Chalkbrood 10 Crithidia 10 Stonebrood 11 Varroa Mite and Viruses 11 Varroa Biology and Life Cycle 12 Varroa Mite Damage and Parasitic Mite -
Minimizing Honey Bee Exposure to Pesticides1 J
ENY-162 Minimizing Honey Bee Exposure to Pesticides1 J. D. Ellis, J. Klopchin, E. Buss, L. Diepenbrock, F. M. Fishel, W. H. Kern, C. Mannion, E. McAvoy, L. S. Osborne, M. Rogers, M. Sanford, H. Smith, B. S. Stanford, P. Stansly, L. Stelinski, S. Webb, and A. Vu2 Introduction state, and international partners to identify ways to reduce pesticide exposure to beneficial pollinators, while including Growers and pesticide applicators have a number of options appropriate label restrictions to safeguard pollinators, the when faced with a pest problem: do nothing, or apply environment, and humans. More information can be found some type of cultural, chemical, biological, or physical here: epa.gov/pollinator-protection. The bottom line is that method to mitigate the damage. The action to be taken the label is the law—it must be followed. should be chosen after weighing the risks and benefits of all available options. There are many situations where pest control is necessary and chemical controls must be Pollinator Importance used. Certain chemistries of insecticides, fungicides, and The western honey bee (Apis mellifera, Figure 1) is conceiv- herbicides are known to have negative and long-term ably the most important pollinator in Florida and American impacts on bees, other pollinators, and other beneficial agricultural landscapes (Calderone 2012). Over 50 major arthropods. Fortunately, there are pesticides that have crops in the United States and at least 13 in Florida either minimal impacts on pollinators and beneficial organisms. depend on honey bees for pollination or produce more The pollinator-protection language that is required to be yield when honey bees are plentiful (Delaplane and on US pesticide labels outlines how best to minimize these Mayer 2000). -
The Controllable Bee Hive and New System of Bee Management: 1887 Annual Circular
The University of Maine DigitalCommons@UMaine Maine History Documents Special Collections 1887 The Controllable Bee Hive and New System of Bee Management: 1887 Annual Circular Lizzie E. Cotton Follow this and additional works at: https://digitalcommons.library.umaine.edu/mainehistory Part of the History Commons This Monograph is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Maine History Documents by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. Pamp 88 i Mrs. Lizzie E. Cotton, WEST GORHAM, MAINE. the CONTROLLABLE BEE HIVE ------•—^-AND—j—•------ NEW SYSTEM Of BEE MANAGEMENT. In bringing this my Annual Circular for 1887 before the public, I wish to advise every intelli gent person who has a spot of land on which to set a hive, to keep bees. Managed on my plan in Controllable Hives, bees are more profit than any thing connected with the farm or garden. Bees will go many miles in all directions from their hives to collect honey. The sources from which bees collect honey are almost innumerable. Nearly every flower, plant, tree, shrub and vine in field, forest, garden and pasture yield honey. If it is not desired to enter largely into the production of honey for market, it is certainly very desirable to keep one or two hives of bees to produce honey for family use. There is no greater health giving lux ury than pure honey in snow white comb. Severe hoarseness, sore throats, coughs, and many other diseases are cured by the use of pure honey. -
Save the Bees Save the Bees
Unit for week 5 save the bees Save the bees Stresses on the Honey bee Several factors may create stress in the hive, which can cause a decrease in population. Below are some of those possible contributors. All of these effects on the colony can be observed, some more easily than others, in the Observation Hive. VARROA MITES: The Varroa mite is a parasitic, invasive species that was introduced to the United States in the 1980’s . It BEYOND THE originated in Asia and the western honey bee has no resistance. The mated adult female Varroa mites enter the brood cells right before HIVE the bees cap the pupae and feed on the growing bee. The bee will hatch with deformities such as misshapen wings that result in an inability to fly. SMALL HIVE BEETLES: Hive beetles are pests to honey bees. Ask the Audience They entered the United States in the late 90’s. Most strong hives will not be severely affected by the beetle; however, if the hive • Do you know what it feels like beetle becomes too overbearing, the colony will desert the hive. The to be stressed? beetle tunnels in the comb and creates destruction in the storage of honey and pollen. Ways to identify a beetle problem is a smell of • Do you have any pests in your fermented honey, a slimy covering of the comb, and the presence life? of beetle maggots. • Do you have a vegetable DISEASE: although bees keep their hive very clean and try to garden or any flowers in your maintain sanitation as best as possible, there are many pathogens, yard? disease causing microorganisms, which can infect the bees. -
Fuetal2021.Pdf
Biological Control 160 (2021) 104662 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Using fine-scale relatedness to infer natural enemy movement Zhen Fu a, Michael S. Crossley b, Brendan Epstein c, Cassandra Bates a, David W. Crowder a, Axel A. Elling d, Paul A. Hohenlohe e, Randa Jabbour f, Ricardo A. Ramirez g, William E. Snyder b,* a Department of Entomology, Washington State University, Pullman, WA 99164, USA b Department of Entomology, University of Georgia, Athens, GA 30602, USA c Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA d Bayer Crop Science, Cary, NC 27513, USA e Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA f Department of Plant Sciences, University of Wyoming, Laramie, WY 82071, USA g Department of Biology, Utah State University, Logan, UT 84322, USA HIGHLIGHTS GRAPHICAL ABSTRACT • Restriction Site Associated DNA Sequencing (RAD-seq) revealed fine- scale genetic relationships among ento mopathogenic nematodes. • Heterorhabditis bacteriophora and Stei nernema feltiae grew increasingly less related with greater distance between collection sites. • Yet, intraspecific genetic diversity at a site could be high and distant strains could be closely related. • RAD-seq provides a powerful approach to inferring natural enemy movement within agricultural landscapes. ARTICLE INFO ABSTRACT Keywords: Natural enemies often move among habitats to track prey and resources. Indeed, biocontrol often depends on Conservation biological control natural enemies dispersing into crops after disturbances such as tillage and pesticide applications. However, the Genetic biodiversity small size of many natural enemies makes it difficult to observe such movements. -
A Saliva Protein of Varroa Mites Contributes to the Toxicity Toward Apis Cerana and the DWV Elevation Received: 10 August 2017 Accepted: 9 February 2018 in A
www.nature.com/scientificreports OPEN A Saliva Protein of Varroa Mites Contributes to the Toxicity toward Apis cerana and the DWV Elevation Received: 10 August 2017 Accepted: 9 February 2018 in A. mellifera Published: xx xx xxxx Yi Zhang & Richou Han Varroa destructor mites express strong avoidance of the Apis cerana worker brood in the feld. The molecular mechanism for this phenomenon remains unknown. We identifed a Varroa toxic protein (VTP), which exhibited toxic activity toward A. cerana worker larvae, in the saliva of these mites, and expressed VTP in an Escherichia coli system. We further demonstrated that recombinant VTP killed A. cerana worker larvae and pupae in the absence of deformed-wing virus (DWV) but was not toxic to A. cerana worker adults and drones. The recombinant VTP was safe for A. mellifera individuals, but resulted in elevated DWV titers and the subsequent development of deformed-wing adults. RNAi- mediated suppression of vtp gene expression in the mites partially protected A. cerana larvae. We propose a modifed mechanism for Varroa mite avoidance of worker brood, due to mutual destruction stress, including the worker larvae blocking Varroa mite reproduction and Varroa mites killing worker larvae by the saliva toxin. The discovery of VTP should provide a better understanding of Varroa pathogenesis, facilitate host-parasite mechanism research and allow the development of efective methods to control these harmful mites. Varroa destructor Anderson & Trueman (Acari: Varroidae) was originally identifed as an ectoparasite of the Asian honeybee Apis cerana. Before the year 2000, V. destructor was miscalled V. jacobsoni. In fact, these two species are diferent in body shape, cytochrome oxidase (CO-I) gene sequence, and virulence to honey bees1. -
Insects for Human Consumption
Chapter 18 Insects for Human Consumption Marianne Shockley1 and Aaron T. Dossey2 1Department of Entomology, University of Georgia, Athens, GA, USA, 2All Things Bugs, Gainesville, FL, USA 18.1. INTRODUCTION The utilization of insects as a sustainable and secure source of animal-based food for the human diet has continued to increase in popularity in recent years (Ash et al., 2010; Crabbe, 2012; Dossey, 2013; Dzamba, 2010; FAO, 2008; Gahukar, 2011; Katayama et al., 2008; Nonaka, 2009; Premalatha et al., 2011; Ramos- Elorduy, 2009; Smith, 2012; Srivastava et al., 2009; van Huis, 2013; van Huis et al., 2013; Vantomme et al., 2012; Vogel, 2010; Yen, 2009a, b). Throughout the world, a large portion of the human population consumes insects as a regular part of their diet (Fig. 18.1). Thousands of edible species have been identified (Bukkens, 1997; Bukkens and Paoletti, 2005; DeFoliart, 1999; Ramos-Elorduy, 2009). However, in regions of the world where Western cultures dominate, such as North America and Europe, and in developing countries heavily influenced by Western culture, mass media have negatively influenced the public’s percep- tion of insects by creating or reinforcing fears and phobias (Kellert, 1993; Looy and Wood, 2006). Nonetheless, the potentially substantial benefits of farming and utilizing insects as a primary dietary component, particularly to supplement or replace foods and food ingredients made from vertebrate livestock, are gain- ing increased attention even in Europe and the United States. Thus, we present this chapter to -
Queen Morphometric and Reproductive Characters of Apis Mellifera Jemenitica, a Native Honey Bee to Saudi Arabia
Bulletin of Insectology 66 (2): 239-244, 2013 ISSN 1721-8861 Queen morphometric and reproductive characters of Apis mellifera jemenitica, a native honey bee to Saudi Arabia Abdulaziz S. ALQARNI, Hassan M. BALHARETH, Ayman A. OWAYSS College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia Abstract Ten traits of morphological characters and reproductive organs of newly emerged virgin queens of native and imported honey bee races, Apis mellifera jemenitica Ruttner (AMJ) and Apis mellifera carnica Pollman (AMC), were measured. The results for the comparison between the AMC and AMJ queens showed significant differences in most cases. The virgin AMC queens showed significantly increased body weight (165.9 ± 9.8 mg) over that of AMJ (137.8 ± 7.9 mg) in the two seasons of the study. In addi- tion, the AMC queens had significantly higher values than those of AMJ for all tested morphological traits, including the head capsule (2.61 × 2.44 mm versus 2.45 × 2.23 mm), right mandible (1.29 × 0.38 mm versus 1.18 × 0.37 mm), forewing (9.39 × 3.10 mm versus 9.17 × 3.00 mm), and the length of the 3rd + 4th abdominal tergites (5.95 mm versus 5.57 mm), respectively. The num- ber of ovarioles of the right ovary in the AMC queens was significantly higher (157.0 ± 14.9) than that (146.6 ± 13.9) of AMJ. The diameters of the spermathecae were 1.253 and 1.230 for AMC and AMJ, respectively, with significant differences between the two races in the 2nd season of the study. -
Evaluations of the Removal of Varroa Destructor in Russian Honey Bee Colonies That Display Different Levels of Varroa Sensitive Hygienic Activities
J Insect Behav https://doi.org/10.1007/s10905-018-9672-2 Evaluations of the Removal of Varroa destructor in Russian Honey Bee Colonies that Display Different Levels of Varroa Sensitive Hygienic Activities Maria J. Kirrane1,2 & Lilia I. de Guzman3 & Pádraig M. Whelan1,2 & Amanda M. Frake3 & Thomas E. Rinderer3 Revised: 2 March 2018 /Accepted: 6 March 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract The removal of Varroa destructor was assessed in Russian honey bee (RHB) colonies with known levels of Varroa Sensitive Hygienic (VSH) and brood removal activities. The expression of grooming behaviour using individual bees was also measured using three groups of RHB displaying different VSH levels: low hygiene (RHB-LH, < 35% VSH), medium hygiene (RHB-MH, 35–70%) and high hygiene (RHB-HH, > 70%). Italian colonies (5.43–71.62% VSH) served as control. Our results demonstrated, for the first time, significant relationships between two hygienic re- sponses (VSH activity measured as percent change in infestation and the actual brood removal of Varroa-infested donor comb) and two measurements of mite fall (trapped old mites/trapped mites or O/T and trapped young mites/trapped mites or Y/T). However, these relationships were only observed in RHB colonies. In addition, the RHB colonies that displayed the highest levels of hygiene (RHB-HH) also groomed longer in response to the presence of a V. destructor mite based on individual bee assays. The positive regressions between the two hygienic measurements and O/T and their negative regressions with Y/T suggest that the removal of infested brood prevented successful mite reproduction, ultimately suppressing V. -
What Kind of Queen?
WWhathat KKindind OOff QQueen?ueen? Italian, Carniolan, Caucasian, or Russian? Jennifer Berry A Little Background syrup. In the past the Italians were Honey bees were fi rst introduced the reigning monarch in the U.S. but into this country in the early 1600s in recent decades they’ve been chal- by settlers from Europe. The race lenged. The Carniolans along with the of bees that traveled by boat to the Russians are gaining in popularity. Americas was Apis mellifera mellifera, Carniolans, Apis mellifera car- commonly known as the Dark, Ger- nica, are a dark, grey bee that man, or Black bee. The German bee originated in Slovenia. The Carnio- was predominant for decades but lan gained popularity because of its cooler temperatures frames, lids, later lost ground to the imported Ital- gentle disposition and resistance to and inner covers cemented together. ian honey bee because of certain, un- brood diseases. The other advantage Caucasians are also inclined to drift, desirable characteristics. Beekeepers they have over the Italian is their and robbing behavior can be bother- were annoyed with the temperament ability to “flow with the flow.” In some. You won’t fi nd them very often of the German bee. It was defensive, other words they build up quickly in anymore for these reasons. nervous on the comb and would boil the late Winter in time for the Spring The newest arrivals on the scene out of the colony when disturbed. It fl ow then shut down brood produc- are the Russian bees which have was also very susceptible to Euro- tion when nectar and pollen become been growing in popularity over the pean Foul Brood, which swept the scarce. -
Identification of Africanized Honey Bees Through Wing Morphometrics
Apidologie 39 (2008) 488–494 Available online at: c INRA/DIB-AGIB/ EDP Sciences, 2008 www.apidologie.org DOI: 10.1051/apido:2008028 Original article Identification of Africanized honey bees through wing morphometrics: two fast and efficient procedures* Tiago Mauricio Francoy1, Dieter Wittmann2,MartinDrauschke3,Stefan Muller¨ 3,VolkerSteinhage3, Marcela A. F. Bezerra-Laure1,DavidDe Jong1, Lionel Segui Goncalves¸ 4 1 Depto. de Genética, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil 2 Institut für Nutzpflanzenwissenschaften und Ressourcenschutz, Universität Bonn, Bonn, Germany 3 Institut für Informatik III, Universität Bonn, Bonn, Germany 4 Depto. de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil Received 28 December 2007 – Revised 10 March 2008 – Accepted 19 March 2008 Abstract – Currently available morphometric and genetic techniques that can accurately identify African- ized honey bees are both costly and time consuming. We tested two new morphometric techniques (ABIS – Automatic Bee Identification System and geometric morphometrics analysis) on samples consisting of digital images of five worker forewings per colony. These were collected from 394 colonies of Africanized bees from all over Brazil and from colonies of African bees, Apis mellifera scutellata (n = 14), and Euro- pean bees, A. m. ligustica (n = 10), A. m. mellifera (n = 15), and A. m. carnica (n=15) from the Ruttner collection in Oberursel, Germany (preserved specimens). Both methods required less than five minutes per sample, giving more than 99% correct identifications. There was just one misidentification (based on ge- ometric morphometrics analysis) of Africanized bees compared with European subspecies, which would be the principal concern in newly-colonized areas, such as the southern USA.