Insects As a Food Resource

Total Page:16

File Type:pdf, Size:1020Kb

Insects As a Food Resource Online ISSN: 2299-9884 Polish Journal of Entomology 90(2): 48–62 (2021) DOI: 10.5604/01.3001.0014.8764 Insects as a food source – potential and perspectives Danail Ilchev Takov1* , Milan Zubrik2 , Mario Contarini3 1 Institute of Biodiversity and Ecosystem Research – Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd, Sofia 1000, Bulgaria. 2 Forest Protection Service, National Forest Centre, Lesnícka 11, 969 23 Banská Štiavnica, Slovakia. 3 Università degli Studi della Tuscia, Dipartimento di Scienze Agrarie e Forestali (DAFNE), Via San Camillo de Lellis snc, 01100 Viterbo, Italy. * Corresponding author: [email protected] Abstract: The practice of consuming insects is called entomophagy. Compared to conventional livestock farming, insect farming (breeding insects for food) has led to increased food conversion efficiency, reduced greenhouse gas emissions, reduced water pollution, reduced land use and led to low environmental pollution. The great potential of insects as a food source is due to their main attributes: 1. Short life cycle, 2. Wide distribution, 3. Fast and prolific reproduction, 4. Reduced need of space compared to other farming practices. Insects have advantages over animal meat due to their high protein content and high levels of lipids, vitamins and minerals. But in general, these nutrients vary widely depending on the insect species, stage of development, sex and other factors. Insects are rich in elements such as calcium, potassium, manganese, sodium, iron, copper, zinc and phosphorus, probably due to their food sources. In the near future, insect-based food can be seen as a balanced food source obtained through environmentally friendly practices at low costs, thus making it widely available. In the long run, insects for human and animal consumption show an increasing potential as a nutritious, sustainable and efficient food source. Key words: Entomophagy, edible insects, nutritional value of insects, insects in the human diet, food source perspectives Introduction Cultural differences and related eating Healthcare institutions registering global habits display diversity in the use of food trends emphasize the great importance of sources to meet the needs of different groups malnutrition, respectively, micronutrient of people. These dissimilarities are observed deficiencies and excessive weight as a global especially in the different types of food and health emergency affecting the state of the delicacies used in various parts of the world. world's population. According to the UN, it is In the continents of Africa, South America and estimated that 11% of the world's population Asia, insects are a commonly used food is starving, with two billion affected by source (de Castro et al. 2018, Ayensu et al. micronutrient deficiencies and 40% of the 2019), unlike in Western countries where this world's population being overweight or obese is not so well received. Globalization has led (Food and Agriculture Organization) (FAO to the mixing of different cultures, with both 2017). Considering these facts, malnutrition is differences and similarities between them. key to individual and community health. The However, this type of food, thanks to its rich fact that these figures are constantly growing composition of nutrients, especially protein, is worrying, and for this reason an expedient can be the solution to the problem of hunger and effective solution is being sought. Studies and malnutrition (de Carvalho et al. 2020). show that in the near future, insects may be 48 Polish Journal of Entomology 90 (2) 2021 an essential part of the solution to global continents except Antarctica (Costa-Neto nutrition, as they are a rich source of protein, & Dunkel 2016, Schrader et al. 2016). There is fiber and fatty acids (Giron et al. 2017, de a wide variety of insect species consumed in Castro et al. 2018, Ayensu et al. 2019, Patel et Mexico, India, and generally in Southeast Asia, al. 2019). Several studies have revealed the as opposed to very low percentages in Europe true impact and importance of insects as and North America (Halloran et al. 2014, a balanced food source, with added benefits Shockley & Dossey 2014, Vantomme 2015). for the human intestinal microbiota as Edible insects have long been part of the reported by Stull et al. (2018) and de Carvalho human diet, especially in tropical countries et al. (2019). The purpose of this review is to (van Huis 2016). Among the most commonly provide summarized information related to consumed insects are ants, bees, crickets, the advantages and disadvantages of using flies, and others, but their consumption has insects as a food source, the impact on the become uncommon in Western societies, environment and the benefits for humans. although insect proteins have advantages as nutrients over plant proteins (Zielińska et al. Nutritional problems worldwide and 2015, Patel et al. 2019). Insects also have the impact of insects in the human advantages over animal meat due to their diet high-quality protein content and high levels of lipids, vitamins and minerals (Tables 1 and 2) The world population is projected to (Sun-Waterhouse et al. 2016). This is a solid number close to 11 billion by the end of the alternative, as it is a practice that has existed century, bringing with it the urgent need for for a long time in some cultures (i.e. sustainable resource systems to respond to Southeast Asia). Insect consumption is part of environmental and planet-wide effects and the traditional diet of 2 billion people environmental challenges involving the worldwide (Halloran et al. 2014, Vantomme introduction of new rules, and policy 2015, de Carvalho et al. 2020). The use of coherence (FAO 2017). Over time, the insects as human food and livestock feed is an challenges become greater and more pressing evolving concept due to their health, when it comes to feeding the human environmental and livelihood benefits (Gmuer population. The requirements of a balanced et al. 2016). In addition, they can also be diet make this task even more difficult to grown efficiently with the help of biowaste, achieve. This is no longer just a matter of food which makes insect production economically sources, but also of policies that allow the viable and mass production meets many development of new solutions and food nutritional needs (Oonincx & De Boer 2012, sources capable of meeting all these Oonincx et al. 2015). requirements (de Carvalho et al. 2020). Compared to conventional livestock Insects are consumed in all stages of farming, insect farming has increased feed development: eggs, larvae, pupae and adults. conversion efficiency, reduced greenhouse They are included as a planned part of the gas emissions, reduced water pollution, less diet throughout the year or when seasonally land use and low environmental pollution served as a side dish, breakfast or food (Oonincx et al. 2010, Premalatha et al. 2011, ingredient. Insects in nature are an important van Huis et al. 2013, Payne et al. 2016, Fischer biomass resource, distributed in aquatic, & Steenbekkers 2018). For the future, insects forest and agricultural ecosystems (New 2009, for human and animal consumption show de Castro et al. 2018). They are found on all good potential as a sustainable and efficient continents and there is historical evidence food source, although available information that they were consumed by people from all on the extent of their impact, mainly on the 49 Polish Journal of Entomology 90 (2) 2021 environment, is still scarce (Halloran et al. pets, poultry or pigs and even for direct 2016). Greenhouse gas emissions are of human consumption (van Huis 2017, Sogari et paramount importance, and insect breeding al. 2019). shows better results than conventional animal species (eg poultry, pigs and cattle), as insects Edible insect species are more efficient in converting plant protein into animal protein and accumulating energy There are many edible insect species in nutrients, with an expected higher distributed around the world. Jongema (2017) conversion ratio (de Carvalho et al. 2020). compiled a detailed list of edible insects listing However, more data are needed to confirm 2 111 species, however, the actual number of these findings, as it is known that insect insect species suitable as human food or rearing produces large amounts of methane, animal feed applications could be much which is a greenhouse gas, and conditions larger. Approximately 500 species of edible such as light, temperature and CO2 and O2 insects are consumed in Africa, however the concentrations will affect the production of exact number of edible insects in Africa is still this methane. In addition, the real impact of under revision (Kelemu et al. 2015, insect breeding is known and recognized, as Hlongwane et al. 2020). In Latin America, with these organisms are associated with the 545 edible species, Mexico has the largest production of methane and ammonia number reported for any country in the world. (Halloran et al. 2016). There are 95 species recorded in Brazil, 83 in The promising potential of insects is due to Ecuador and 48 in Venezuela (Bermúdez- several main facts: 1. their short life cycle, 2. Serrano 2020). their wide distribution, 3. high degree of The most common insects consumed are reproduction, 4. no need for large areas, beetles (Coleoptera, 31% of all insect species compared to a wide range of cultivation of consumed). The next edible insect groups other foods (Sun-Waterhouse et al. 2016, de include moths and butterflies (Lepidoptera, Carvalho et al. 2020). Some studies show that 17%) and bees, wasps and ants the cost of edible insects exceeds traditional (Hymenoptera, 15%). Moreover, grasshoppers meat products (Agea et al. 2008). However, if and locusts (Orthoptera, 13%) and true bugs the cost of production of insects in industry (Hemiptera, 11%) are consumed. Termites decreases and is combined with sustainable (Isoptera), dragonflies (Odonata), flies farming, agriculture and processing (Diptera) and other insects each comprise less technologies, this may increase their than 3% of insects consumed (Jongema 2017).
Recommended publications
  • Fuetal2021.Pdf
    Biological Control 160 (2021) 104662 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Using fine-scale relatedness to infer natural enemy movement Zhen Fu a, Michael S. Crossley b, Brendan Epstein c, Cassandra Bates a, David W. Crowder a, Axel A. Elling d, Paul A. Hohenlohe e, Randa Jabbour f, Ricardo A. Ramirez g, William E. Snyder b,* a Department of Entomology, Washington State University, Pullman, WA 99164, USA b Department of Entomology, University of Georgia, Athens, GA 30602, USA c Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA d Bayer Crop Science, Cary, NC 27513, USA e Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA f Department of Plant Sciences, University of Wyoming, Laramie, WY 82071, USA g Department of Biology, Utah State University, Logan, UT 84322, USA HIGHLIGHTS GRAPHICAL ABSTRACT • Restriction Site Associated DNA Sequencing (RAD-seq) revealed fine- scale genetic relationships among ento­ mopathogenic nematodes. • Heterorhabditis bacteriophora and Stei­ nernema feltiae grew increasingly less related with greater distance between collection sites. • Yet, intraspecific genetic diversity at a site could be high and distant strains could be closely related. • RAD-seq provides a powerful approach to inferring natural enemy movement within agricultural landscapes. ARTICLE INFO ABSTRACT Keywords: Natural enemies often move among habitats to track prey and resources. Indeed, biocontrol often depends on Conservation biological control natural enemies dispersing into crops after disturbances such as tillage and pesticide applications. However, the Genetic biodiversity small size of many natural enemies makes it difficult to observe such movements.
    [Show full text]
  • Insects for Human Consumption
    Chapter 18 Insects for Human Consumption Marianne Shockley1 and Aaron T. Dossey2 1Department of Entomology, University of Georgia, Athens, GA, USA, 2All Things Bugs, Gainesville, FL, USA 18.1. INTRODUCTION The utilization of insects as a sustainable and secure source of animal-based food for the human diet has continued to increase in popularity in recent years (Ash et al., 2010; Crabbe, 2012; Dossey, 2013; Dzamba, 2010; FAO, 2008; Gahukar, 2011; Katayama et al., 2008; Nonaka, 2009; Premalatha et al., 2011; Ramos- Elorduy, 2009; Smith, 2012; Srivastava et al., 2009; van Huis, 2013; van Huis et al., 2013; Vantomme et al., 2012; Vogel, 2010; Yen, 2009a, b). Throughout the world, a large portion of the human population consumes insects as a regular part of their diet (Fig. 18.1). Thousands of edible species have been identified (Bukkens, 1997; Bukkens and Paoletti, 2005; DeFoliart, 1999; Ramos-Elorduy, 2009). However, in regions of the world where Western cultures dominate, such as North America and Europe, and in developing countries heavily influenced by Western culture, mass media have negatively influenced the public’s percep- tion of insects by creating or reinforcing fears and phobias (Kellert, 1993; Looy and Wood, 2006). Nonetheless, the potentially substantial benefits of farming and utilizing insects as a primary dietary component, particularly to supplement or replace foods and food ingredients made from vertebrate livestock, are gain- ing increased attention even in Europe and the United States. Thus, we present this chapter to
    [Show full text]
  • Life Cycles: Egg to Bee Free
    FREE LIFE CYCLES: EGG TO BEE PDF Camilla de La Bedoyere | 24 pages | 01 Mar 2012 | QED PUBLISHING | 9781848355859 | English | London, United Kingdom Tracking the Life Cycle of a Honey Bee - dummies As we remove the frames, glance over the thousands of busy bees, check for brood, check for capped honey, maybe spot the queen… then the frames go back in their slots and the hive is sealed up again. But in the hours spent away from our hives, thousands of tiny miracles are happening everyday. Within the hexagonal wax cells little lives are hatching out and joining the hive family. The whole process from egg to adult worker bee takes around 18 days. During the laying season late spring to summer the Queen bee is capable of laying over eggs per day. Her worker bees help direct her to the best prepared comb and she lays a single egg in each hexagon shaped cell. The size of the cell prepared determines the type of egg she lays. If the worker bees have prepared a worker size cell, she Life Cycles: Egg to Bee lay a fertilized egg. This egg will produce a female worker bee. If the worker bees have prepared a slightly larger cell, the queen will recognize this as a drone cell and lay an unfertilized egg. This will produce a male drone bee. It is the workers and not the queen that determine the ratio of workers to drones within the hive. In three days the egg hatches and a larva emerges. It looks very similar to a small maggot.
    [Show full text]
  • Standard Methods for Wax Moth Research
    Journal of Apicultural Research 52(1): (2013) © IBRA 2013 DOI 10.3896/IBRA.1.52.1.10 REVIEW ARTICLE Standard methods for wax moth research James D Ellis1*, Jason R Graham1 and Ashley Mortensen1 1Honey Bee Research and Extension Laboratory, Department of Entomology and Nematology, University of Florida, Steinmetz Hall, Natural Area Dr., P.O. Box 110620, Gainesville, FL, 32611, USA. Received 7 July 2012, accepted subject to revision 16 July 2012, accepted for publication 14 November 2012. *Corresponding author: Email: [email protected] Summary Greater (Lepidoptera: Pyralidae, Galleria mellonella) and Lesser (Lepidoptera: Pyralidae, Achroia grisella) wax moths are ubiquitous pests of honey bee colonies globally. The economic importance of wax moths has led to a number of investigations on wax moth life history, biology, behaviour, ecology, molecular biology, physiology, and control. Despite the importance of wax moths to the apicultural industry, they are investigated considerably more as a model organism for studies in insect physiology, genomics, proteomics, etc. Those studying wax moths from an apicultural perspective typically use only a small number of the total available research methods outlined in the literature. Herein, we describe methods associated with wax moth research that we feel are important from an apicultural research perspective. Ultimately, we hope that this paper will revitalize research on wax moths, since they remain both an important honey bee colony pest and an interesting colony symbiont. Métodos estándar para la investigación de la polilla de la cera Resumen Las polillas de la cera grande (Lepidoptera: Pyralidae, Galleria mellonella) y pequeña (Lepidoptera: Pyralidae, Achroia grisella) son una plaga ubicua de las colonias de abejas al nivel mundial.
    [Show full text]
  • Edible Insects As a Source of Food Allergens Lee Palmer University of Nebraska-Lincoln, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations, Theses, & Student Research in Food Food Science and Technology Department Science and Technology 12-2016 Edible Insects as a Source of Food Allergens Lee Palmer University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/foodscidiss Part of the Food Chemistry Commons, and the Other Food Science Commons Palmer, Lee, "Edible Insects as a Source of Food Allergens" (2016). Dissertations, Theses, & Student Research in Food Science and Technology. 78. http://digitalcommons.unl.edu/foodscidiss/78 This Article is brought to you for free and open access by the Food Science and Technology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations, Theses, & Student Research in Food Science and Technology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. EDIBLE INSECTS AS A SOURCE OF FOOD ALLERGENS by Lee Palmer A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Food Science and Technology Under the Supervision of Professors Philip E. Johnson and Michael G. Zeece Lincoln, Nebraska December, 2016 EDIBLE INSECTS AS A SOURCE OF FOOD ALLERGENS Lee Palmer, M.S. University of Nebraska, 2016 Advisors: Philip E. Johnson and Michael G. Zeece Increasing global population increasingly limited by resources has spurred interest in novel food sources. Insects may be an alternative food source in the near future, but consideration of insects as a food requires scrutiny due to risk of allergens.
    [Show full text]
  • How Waxworms Eat Plastic by Harald Grove, M.Sc
    March 2021 – Issue 3(5) How waxworms eat plastic By Harald Grove, M.Sc. Student & Sachi Villanueva, M.Sc. Student What you need to know Waxworms are the caterpillars of the greater wax moth, Galleria mellonella. These insects are common pests of apiaries and feed voraciously on honeycomb. Interestingly, they also voluntarily feed on polyethylene, a type of plastic commonly used in shopping bags. Because their natural diet of honeycomb is chemically similar to polyethylene, the waxworm may have evolved the necessary biochemical adaptations to degrade plastic wastes. Waxworm (Photo Credit: Rob Henderson) Why this research is important How the research was conducted Global plastic production continues to increase due to the We fed waxworms polyethylene instead of their demand for cheap, durable, and versatile materials. honeycomb diet for several days. As the larvae devoured However, these characteristics make plastic resist the plastic sheet, their excretions changed and became degradation leading to accumulation in landfills and more liquid, indicating the presence of a different chemical marine ecosystems, negatively affecting our environment. waste. As one potential biodegradative product is a glycol, As a solution, research has focused on identifying we biochemically tested its presence in the excreta. Next, microorganisms like bacteria and fungi capable of plastic we analyzed the microbiome by treating the caterpillars biodegradation. When isolated, these microorganisms can with antibiotics to reduce their intestinal bacteria and then biodegrade plastics, albeit very slowly. However, when a measured the amount of glycol excreted. Additionally, we waxworm with an intact intestinal microbial community harvested and grew bacteria from the waxworm gut while (microbiome) consumes plastic, the biodegradation selecting for species capable of using polyethylene as a sole process is expedited.
    [Show full text]
  • Complete Nutrient Composition of Commercially Raised Invertebrates Used As Food for Insectivores
    Zoo Biology 21:269–285 (2002) Complete Nutrient Composition of Commercially Raised Invertebrates Used as Food for Insectivores Mark D. Finke* PETsMART Inc., Phoenix, Arizona A variety of invertebrates are commonly fed to insectivorous animals by both zoos and hobbyists, but information as to the nutrient composition of most com- mercially raised species is limited. Adult house crickets, house cricket nymphs (Acheta domesticus), superworms (Zophobas morio larvae), giant mealworm lar- vae, mealworm larvae and adult mealworms (Tenebrio molitor), waxworm lar- vae (Galleria mellonella), and silkworm larvae (Bombyx mori) were analyzed for moisture, crude protein, crude fat, ash, acid detergent fiber (ADF), neutral detergent fiber (NDF), minerals, amino acids, fatty acids, and vitamins. Earth- worms (Lumbricus terresstris) were analyzed for moisture, crude protein, crude fat, ash, ADF, NDF, minerals, amino acids, and vitamins A and D3. Proximate analyses were variable, with wide ranges found for moisture (57.9–83.6%), crude protein (9.3–23.7%), crude fat (1.6–24.9%), ADF (0.1–7.4%), NDF (0.0–11.5%), and ash (0.6–1.2%). Energy content ranged from a low of 674 kcal/kg for silk- worms to 2,741 kcal/kg for waxworms.Using an amino acid scoring pattern for rats, the first limiting amino acid for all invertebrates tested was the total sulfur amino acid methionine+cystine. Deficiencies by nutrient (% of samples defi- cient vs. NRC requirements for rats on a dry matter (DM) basis) were as fol- lows: calcium (100%), vitamin D3 (100%), vitamin A (89%), vitamin B12 (75%), thiamin (63%), vitamin E (50%), iodine (44%), manganese (22%), methionine- cystine (22%), and sodium (11%).
    [Show full text]
  • The Composition of Soil-Dwelling Pathogen Communities Mediates Effects on Wireworm Herbivores and Wheat Productivity T ⁎ Ivan Milosavljevića,B, Aaron D
    Biological Control 149 (2020) 104317 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon The composition of soil-dwelling pathogen communities mediates effects on wireworm herbivores and wheat productivity T ⁎ Ivan Milosavljevića,b, Aaron D. Esserc, Arash Rashedd, David W. Crowdera, a Department of Entomology, Washington State University, 166 FSHN Bldg, Pullman, WA 99164, USA b Department of Entomology, University of California, 900 University Ave, Riverside, CA 92521, USA c Washington State University Extension, 210 W Broadway, Ritzville, WA 99169, USA d Department of Plant, Soil, and Entomological Sciences, Aberdeen Research and Extension Center, University of Idaho, Aberdeen, ID 83210, USA ARTICLE INFO ABSTRACT Keywords: Greater natural enemy diversity generally increases prey mortality. Diversity can be beneficial when natural Biodiversity enemy species occupy distinct niches (complementarity effects) or when diverse communities contain the most Ecosystem functioning impactful species by chance (identity effects). Most research assessing effects of natural enemy diversity focuses Entomopathogenic fungi on aboveground predators, however, and few studies have assessed whether increased entomopathogen diversity Nematode in soil affects belowground herbivores. Here, we assessed effects of entomopathogen richness on herbivore Pathogen suppression and plant productivity in a system consisting of entomopathogens, wireworm herbivores, and wheat Wireworms plants. Specifically, in field experiments we varied the richness of four entomopathogen species (two nematodes, two fungi) that attack herbivorous Limonius californicus larvae belowground. We show that the presence of entomopathogens increased wireworm mortality and subsequently increased plant productivity, but a single entomopathogen species, Metarhizium brunneum, had stronger effects than other species (Beauveria bassiana, Heterorhabditis bacteriophora, and Steinernema carpocapsae).
    [Show full text]
  • Larvae Used In: Insects Waxworm – Galleria Mellonella Background
    Larvae used in: Insects Waxworm – Galleria mellonella Background. The waxworm is the larva of the greater wax moth, a small nondescript flying insect that lays its eggs in beehives, where the growing larvae feed on honey and wax. A robust hive of honey bees can repel the onslaught of waxworms, keeping the damage to a minimum, but waxworms can overrun and destroy a stressed colony. Waxworms are white to tan, plump, clearly segmented, and moderately active. They are a little softer than mealworms, so they must be treated somewhat more gently, but they are still very easy for first and second graders to handle. The waxworm has 13 segments (head, three thoracic, nine abdominal) and the mandatory six legs. But unlike the mealworm (a beetle), the waxworm has four pairs of leglike structures called prolegs—one pair on abdominal segments three through six. These prolegs are equipped with muscular pads called claspers, which help the larvae hold onto surfaces, and the 13th segment (tail) also has a clasper. The waxworm has bristles (stiff hairs) on its body and a row of clearly visible openings called spiracles along each side. The larvae have no lungs—oxygen enters through these spiracles and is distributed through the fluids of the body. Waxworms, like all moths, make silk. Silk is used as a lifeline, as a webbing over which the larvae can walk, and as a material to build a protective cocoon. The silk is produced in a gland under the head and extruded through structures called spinnerets. Waxworm habitat. Like mealworms, waxworms apply themselves to a career of eating and growing.
    [Show full text]
  • Why Are Some Parasites Picky Eaters? ? !
    MARCH 2017 Why are some parasites picky eaters? ? ! Authors: Dihong Lu, Claudia Sepulveda, Adler R. Dillman Associate Editor: Elitsa Panayotova Abstract Nematodes are microscopic roundworms that live in soil, used as biological pest control in the United States. oceans, and lakes (Fig. 1). Scientists estimate that there Some parasites are generalists and can infect a wide variety could be a million species of nematodes and that many of hosts while others are specialists and only infect certain of them are parasites. Sometimes farmers use parasitic hosts. We wanted to determine if S. scapterisci really is nematodes as a natural enemy to kill some pests. This is a specialist parasite and why it is a picky eater (showing one type of biological pest control. a preference for one insect over another). To do this we We studied a particular parasitic nematode called studied how these nematodes behave when given different Steinernema scapterisci. It infects insects and has been insects as food. Introduction Many parasitic nematodes, including nematodes which infect activated when they infect a host? humans and insects, have a life cycle that includes several 2) Is the nematode parasite S. scapterisci a cricket different stages of development. The stage in which they specialist? If yes, why? infect a host is the infective juvenile (IJ) stage. When IJs are in the soil they are "on standby" – they do not eat or develop further until they find hosts to infect (their food). When they find a host, IJs crawl inside, eat the host tissues, and resume development. It is a big transition from “standby” to actively growing in a host.
    [Show full text]
  • Downloads%2Fsb397901c&Usg=Aovvaw3bqvlzyo6ag Ltoexcrixz
    Catch The Buzz™ ® www.BeeCulture.com BiosecurityBiosecurity For BeekeepersBeekeepers AppreciationAppreciation ForFor PollenPollen $4.99 BC_October_2020.indd 1 9/17/2020 6:31:04 PM BC_October_2020.indd 2 9/17/2020 6:31:04 PM Healthy Bees. Healthy Planet. Available through beekeeping supply stores. 866-483-2929 | nodglobal.com | [email protected] @NODAPIARY BC_October_2020.indd 3 9/17/2020 6:31:07 PM BC_October_2020.indd 4 9/17/2020 6:31:09 PM Bee Culture October Features . HIVE MONITORING CONFERENCE 25 Fourth International Conference Goes Virtual. DO BEEKEEPERS LIKE Jerry Bromenshenk SAVING MONEY? 67 Wintering indoors. WHAT MAKES ME HAPPIEST 30 John Miller Besides my husband, dog and bees. Jennifer Berry A CASE FOR PERMANENT INSULATION 68 AMERICAN HONEY PRODUCERS 35 Warmer in Winter, cooler in Summer. Legislative report Bruce Moechnig Eric Silva FLOWERING STRIPS = REGENERON SCIENCE TALENT 38 Meet Raina Jain. INFECTION 71 Raina Jain Mick Kuikowski TELLING THE BEES 46 Keeping them informed of changes. SWARM TEAM CAPTAIN 72 Elsie Czyzowska Stephen Bishop VARROA RESISTANCE 76 BEE VET 50 Is it really possible? Biosecurity for beekeepers. Dr. Tracy Farone Terry Combs OVERWINTERING NUCS 80 PRESCRIBED FIRE 53 David MacFawn It might be just what the bees need. Richard Hines AGAINST THE GRAIN 83 Appreciation for pollen. ZOOMING 56 Dr. Christine Bertz To a bee meeting. Tina Sebestyen WE’LL MEET AGAIN - ONLINE! 84 Charlotte Ekker Wiggins MINDING YOUR BEES AND CUES 58 Part 1: Interpreting fruit scents. EBOLA, COVID-19 & BEEKEEPERS 86 Becky Masterman & Bridget Mendel Richard Godfrey HAVE A BUZZ 61 UP CLOSE WITH A NORTHERN Leah Smith CALIFORNIA BEEKEEPER 89 Ettamarie Peterson 800.289.7668 Executive Publisher – Brad Root Associate Publisher, Senior Editor – Jerry Hayes, [email protected], Ext.
    [Show full text]
  • Pdf (771.64 K)
    Assiut Veterinary Medical Journal Assiut Vet. Med. J. Vol. 66 No. 166 July 2020, 31-50 Assiut University web-site: www.aun.edu.eg VARVOACIDAL EFFECT OF FLUMVAR AT CONTROL OF HONEY BEE VARROASIS SARA MOHAMMADIYANI 1 AND SHAPOUR REZA SHOJAEI 2 1 Department of Parasitology, Karaj Branch, Islamic Azad University, Karaj, Iran. Corresponding Author Email: [email protected] 2 Department of Parasitology, Karaj Branch, Islamic Azad University, Karaj, Iran Received: 19 June 2020; Accepted: 21 July 2020 ABSTRACT Aim: Preliminary evaluation of flumvar efficacy in control of varroasis in some Tehran province's apiaries, Varroasis is the most important parasitic disease of honey bees that in addition of direct damages due to perforation of honey body can provide transmission the kinds of viruses and bacterias. However, during recent decade were carried out the efforts in order to biological control of varroasis but the main solution against varroa is chemical control by pesticides yet. Methods: In this study 30 hives in 2 experimental group's induding negative control, and flumvar were surveyed. After determination of primary in festation in experimental group with flumvar was applicated according to theirs manafactere subsequently, 40 days after treatment the varroal in festation were determined again. Results: flumvar was decreased varroal infestation from 12 to 2 and 11 to 1% respectively. The efficacy of flumvar was 90.26% respectively. No side effects were seen after flumval application. According to the more than 90 percent of flumvar efficacy the varroacidal effects of this pesticide is suitable. Key words: flumvar, varroasis, efficacy, apiary, Tehran. INTRODUCTION In the last century, beekeepers in the world have been as extensive as other agricultural The life of a bee is one of the wonders of life activities and include hundreds of thousands and one of the secrets of creation.
    [Show full text]