RSC Advances

Total Page:16

File Type:pdf, Size:1020Kb

RSC Advances RSC Advances REVIEW View Article Online View Journal | View Issue Naphthoquinones of the spinochrome class: occurrence, isolation, biosynthesis and biomedical Cite this: RSC Adv.,2018,8,32637 applications Yakun Hou, a Elena A. Vasileva,b Alan Carne,c Michelle McConnell,d Alaa El-Din A. Bekhit a and Natalia P. Mishchenko*b Quinones are widespread in nature and have been found in plants, fungi and bacteria, as well as in members of the animal kingdom. More than forty closely related naphthoquinones have been found in echinoderms, mainly in sea urchins but occasionally in brittle stars, sea stars and starfish. This review aims to examine controversial issues on the chemistry, biosynthesis, functions, stability and application aspects of the spinochrome class, a prominent group of secondary metabolites found in sea urchins. The emphasis of this review is on the isolation and structure of these compounds, together with evaluation of their Received 5th June 2018 relevant biological activities, source organisms, the location of origin and methods used for isolation and Accepted 17th August 2018 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. identification. In addition, the studies of their biosynthesis and ecological function, stability and chemical DOI: 10.1039/c8ra04777d synthesis have been highlighted. This review aims to establish a focus for future spinochrome research rsc.li/rsc-advances and its potential for benefiting human health and well-being. 1. Introduction biosynthesis, distribution, isolation and identication tech- niques, stability, synthesis and biomedical applications is Rational use of biological resources of the aquatic environment presented. is a realistic scientic and practical goal since they represent This article is licensed under a 70% of the organisms on earth. Marine hydrobionts, such as sea urchins, and specically their gonads, are a valuable renewable 2. The structure and nomenclature of food resource. At the same time, they can serve as a unique spinochromes source of various natural compounds, which can be the basis Open Access Article. Published on 21 September 2018. Downloaded 4/30/2020 5:58:32 AM. for the creation of various biomaterials,1,2 effective medicinal Spinochromes are polyhydroxylated derivatives of either juglone and parapharmaceutical preparations,3 as well as functional (5-hydroxy-1,4-naphthoquinone) or naphthazarin (5,8- food products.3–5 Many species of regular sea urchins are dihydroxy-1,4-naphthoquinone) that are substituted with commercially harvested because their gonads are consumed in various functional groups such as ethyl, acetyl, methoxyl, and many countries of Asia, the Mediterranean and North America. amino groups. The rst discovered compound of this class, Aer the removal of the gonads, large amounts of sea urchin a red pigment in the perivisceral (coelomic) uid of Echinus shells are le as waste. This shell material is rich in bioactive esculentus was called ‘echinochrome’, without knowing its quinonoid pigments, principally spinochromes.4–6 Although chemical composition.9 The structure of this ‘echinochrome’ this class of compounds has been known for over 100 years,7,8 was established later by Kuhn and Wallenfels (1940)10 as 6-ethyl- there is still some controversy in relation to their structures, 2,3,7-trihydroxynaphthazarin and it was named echinochrome stability, biosynthesis and ecological functions. In this review, A (Table 1, structure 1). Subsequently, a number of pigment a critical evaluation of existing data on spinochrome structures, compounds were isolated from the shells and spines of various sea urchin species, which were named spinochromes to aDepartment of Food Science, University of Otago, PO Box 56, Dunedin 9054, New distinguish them from the echinochrome A found in the 7 Zealand coelomic uid, ovaries and internal organs of sea urchins. bLaboratory of the Chemistry of Natural Quinonoid Compounds, G.B. Elyakov Pacic However, it was found later that echinochrome A is also a major Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, pigment component of the shells and spines of many sea Prospect 100 let Vladivostoku 159/2, 690022, Vladivostok, Russia. E-mail: urchins, so it was assigned to the class of spinochromes, but the [email protected] 18 c original name echinochrome has remained. Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand New spinochromes were named based on the rst letter of dDepartment of Microbiology and Immunology, University of Otago, PO Box 56, the name of the sea urchin species that they were isolated from, Dunedin 9054, New Zealand as for example, spinochrome P was rst isolated from This journal is © The Royal Society of Chemistry 2018 RSC Adv.,2018,8, 32637–32650 | 32637 View Article Online RSC Advances 32638 Table 1 Structures of known spinochromes | RSC Adv. ,2018, 8 , 32637 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. – 32650 This article is licensed under a Open Access Article. Published on 21 September 2018. Downloaded 4/30/2020 5:58:32 AM. No. Structure elucidation R2 R3 R5 R6 R7 R8 Molecular formula Molecular mass Trivial name References 1 6-Ethyl-2,3,5,7,8-pentahydroxy-1,4-naphthoquinone OH OH OH C2H5 OH OH C12H9O7 265 Echinochrome A 7 2 2-Acetyl-3,5,6,8-tetrahydoxy-1,4-naphthoquinone COCH3 OH OH OH H OH C12H7O7 263 Spinochrome A 7 This journal is © The Royal Society of Chemistry 2018 3 2,3,5,7-Tetrahydroxy-1,4-naphthoquinone OH OH OH H OH H C10H6O6 221 Spinochrome B 7 4 2-Acetyl-3,5,6,7,8-pentahydroxy-1,4-naphthoquinone COCH3 OH OH OH OH OH C12H7O8 279 Spinochrome C 7 5 2,3,5,7,8-Pentahydroxy-1,4-naphthoquinone OH OH OH H OH OH C10H6O7 237 Spinochrome D 7 6 2,3,5,6,7,8-Hexahydroxy-1,4-naphthoquinone OH OH OH OH OH OH C10H6O8 252 Spinochrome E 7 7 6-Ethyl-2,5-dihydroxy-1,4-naphthoquinone OH H OH C2H5 HHC12H10O4 218 11 8 6-Acetyl-2,5,7-trihydroxy-1,4-naphthoquinone OH H OH COCH3 OH H C12H8O6 248 11 9 6-Ethyl-2,3,5,7-tetrahydroxy-1,4-naphthoquinone OH OH OH C2H5 OH H C12H10O6 250 11 10 6-Acetyl-2,3,5,7-tetrahydroxy-1,4-naphthoquinone OH OH OH COCH3 OH H C12H8O7 264 11 11 3-Acetyl-2,5,6,7-tetrahydroxy-1,4-naphthoquinone OH COCH3 OH OH OH H C12O7H8 264 11 12 2,5,8-Tryihydroxy-1,4-naphthoquinone OH H OH H H OH C10O5H6 206 Naphthopurpurin 11 13 3-Acetyl-2,5,8-trihydroxy-1,4-naphthoquinone OH COCH3 OH H H OH C12O6H8 248 11 14 6-Ethyl-2,5,8-trihydroxy-1,4-naphthoquinone OH H OH C2H5 HOHC12O5H10 234 11 15 6-Acetyl-2,5,8-trihydroxy-1,4-naphthoquinone OH H OH COCH3 HOHC12O6H8 248 11 16 3-Ethyl-2,5,7,8-tetrahydroxy-1,4-naphthoquinone OH C2H5 OH H OH OH C12H10O6 250 11 17 2,5,7,8-Tetrahydroxy-1,4-naphthoquinone OH H OH H OH OH C H O 222 Mompain 11 10 6 6 Review 0 0 18 2-Hydroxy-2 -methyl-2 H-pyrano[2,3-b]naphthazarin OH OH C4-unit OH 12 View Article Online Review This journal is © The Royal Society of Chemistry 2018 Table 1 (Contd.) Creative Commons Attribution-NonCommercial 3.0 Unported Licence. This article is licensed under a Open Access Article. Published on 21 September 2018. Downloaded 4/30/2020 5:58:32 AM. No. Structure elucidation R2 R3 R5 R6 R7 R8 Molecular formula Molecular mass Trivial name References 19 3-Acetyl-2,7-dihydroxy-6-methyl-1,4-naphthoquinone OH CH3CO OH CH3 OH OH C13H11O7 278 12 20 6-Ethyl-3,5,6,8-tetrahydroxy-2-methoxy-1,4-naphthoquinone OCH3 OH OH C2H5 OH OH C13H12O7 280 13 21 6-ethyl-2,5,6,8-tetrahydroxy-3-methoxy-1,4-naphthoquinone OH OCH3 OH C2H5 OH OH C13H12O7 280 13 22 3,5,6,7,8-Pentahydroxy-2-methoxy-1,4-naphthoquinone OCH3 OH OH OH OH OH C11H8O8 268 Namakochrome 14 RSC Adv. 28 2,3,5,8-Tetrahydroxy-1,4-naphthoquinone OH OH OH H H OH C10H6O6 222 Spinazarin 15 29 6-Ethyl-2,3,5,8-tetrahydroxy-1,4-naphthoquinone OH OH OH C2H5 HOHC12H10O6 250 Ethylspinazarin 15 30 3-Amino-6-ethyl-2,5,6,8-tetrahydroxy-1,4-naphthoquinone OH NH OH C H OH H C H NO 265 Echinamine A 16 ,2018, 2 2 5 12 11 6 31 2-Amino-6-ethyl-3,5,7,8-tetrahydroxy-1,4-naphthoquinone NH2 OH OH C2H5 OH OH C12H11NO6 265 Echinamine B 16 32 2-Amino-3,5,6,7,8-pentahydroxy-1,4-naphthoquinone NH2 OH OH OH OH OH C10H7NO7 253 Spinamine E 17 8 , 32637 – RSC Advances 32650 | 32639 View Article Online RSC Advances Review Paracentrotus lividus. Spinochromes extracted from several sea ones with characteristics similar to compounds 23 and 25 and its urchin species have been named as spinochromes A, F, C, M anhydrous derivative with characteristics similar to compounds 24 and H as well as others that can be found in the literature.18 It and 26 were isolated from the tropical sea urchin Astropyga radiata, was later shown that many quinones previously designated with and their structures were analysed using 2D-NMR procedures that different letters are in fact the same compound. Goodwin and were not available earlier.26 It was established that these Srisukh (1950)19 revised the nomenclature of all spinochromes compounds predominantly exist as ethylidene-3,30-bis(2,6,7- known at that time and proposed naming them in alphabetic trihydroxynaphthazarin) (23)and7,70-anhydroethylidene-6,60- order, as spinochromes A (2), B (3), C (4), D (5) and E (6), as bis(2,3,7-trihydroxynaphthazarin) (26), respectively.26 In addition indicated for the structures summarised in Table 1.
Recommended publications
  • Echinoidea: Diadematidae) to the Mediterranean Coast of Israel
    Zootaxa 4497 (4): 593–599 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4497.4.9 http://zoobank.org/urn:lsid:zoobank.org:pub:268716E0-82E6-47CA-BDB2-1016CE202A93 Needle in a haystack—genetic evidence confirms the expansion of the alien echinoid Diadema setosum (Echinoidea: Diadematidae) to the Mediterranean coast of Israel OMRI BRONSTEIN1,2 & ANDREAS KROH1 1Natural History Museum Vienna, Geological-Paleontological Department, 1010 Vienna, Austria. E-mails: [email protected], [email protected] 2Corresponding author Abstract Diadema setosum (Leske, 1778), a widespread tropical echinoid and key herbivore in shallow water environments is cur- rently expanding in the Mediterranean Sea. It was introduced by unknown means and first observed in southern Turkey in 2006. From there it spread eastwards to Lebanon (2009) and westwards to the Aegean Sea (2014). Since late 2016 spo- radic sightings of black, long-spined sea urchins were reported by recreational divers from rock reefs off the Israeli coast. Numerous attempts to verify these records failed; neither did the BioBlitz Israel task force encounter any D. setosum in their campaigns. Finally, a single adult specimen was observed on June 17, 2017 in a deep rock crevice at 3.5 m depth at Gordon Beach, Tel Aviv. Although the specimen could not be recovered, spine fragments sampled were enough to genet- ically verify the visual underwater identification based on morphology. Sequences of COI, ATP8-Lysine, and the mito- chondrial Control Region of the Israel specimen are identical to those of the specimen collected in 2006 in Turkey, unambiguously assigning the specimen to D.
    [Show full text]
  • Invertebrate Predators and Grazers
    9 Invertebrate Predators and Grazers ROBERT C. CARPENTER Department of Biology California State University Northridge, California 91330 Coral reefs are among the most productive and diverse biological communities on earth. Some of the diversity of coral reefs is associated with the invertebrate organisms that are the primary builders of reefs, the scleractinian corals. While sessile invertebrates, such as stony corals, soft corals, gorgonians, anemones, and sponges, and algae are the dominant occupiers of primary space in coral reef communities, their relative abundances are often determined by the activities of mobile, invertebrate and vertebrate predators and grazers. Hixon (Chapter X) has reviewed the direct effects of fishes on coral reef community structure and function and Glynn (1990) has provided an excellent review of the feeding ecology of many coral reef consumers. My intent here is to review the different types of mobile invertebrate predators and grazers on coral reefs, concentrating on those that have disproportionate effects on coral reef communities and are intimately involved with the life and death of coral reefs. The sheer number and diversity of mobile invertebrates associated with coral reefs is daunting with species from several major phyla including the Annelida, Arthropoda, Mollusca, and Echinodermata. Numerous species of minor phyla are also represented in reef communities, but their abundance and importance have not been well-studied. As a result, our understanding of the effects of predation and grazing by invertebrates in coral reef environments is based on studies of a few representatives from the major groups of mobile invertebrates. Predators may be generalists or specialists in choosing their prey and this may determine the effects of their feeding on community-level patterns of prey abundance (Paine, 1966).
    [Show full text]
  • Spinochrome D Attenuates Doxorubicin-Induced Cardiomyocyte Death Via Improving Glutathione Metabolism and Attenuating Oxidative Stress
    marine drugs Article Spinochrome D Attenuates Doxorubicin-Induced Cardiomyocyte Death via Improving Glutathione Metabolism and Attenuating Oxidative Stress Chang Shin Yoon 1 , Hyoung Kyu Kim 1, Natalia P. Mishchenko 2 , Elena A. Vasileva 2, Sergey A. Fedoreyev 2, Valentin A. Stonik 2 and Jin Han 1,* 1 National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center (CMDC), Inje University, Busan 614-735, Korea; [email protected] (C.S.Y.); [email protected] (H.K.K.) 2 G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia; [email protected] (N.P.M.); [email protected] (E.A.V.); [email protected] (S.A.F.); [email protected] (V.A.S.) * Correspondence: [email protected]; Tel.: +82-51-890-6727; Fax: +82-51-894-5714 Received: 28 November 2018; Accepted: 15 December 2018; Published: 20 December 2018 Abstract: Doxorubicin, an anthracycline from Streptomyces peucetius, exhibits antitumor activity against various cancers. However, doxorubicin is cardiotoxic at cumulative doses, causing increases in intracellular reactive oxygen species in the heart. Spinochrome D (SpD) has a structure of 2,3,5,6,8-pentahydroxy-1,4-naphthoquinone and is a structural analogue of well-known sea urchin pigment echinochrome A. We previously reported that echinochrome A is cardioprotective against doxorubicin toxicity. In the present study, we assessed the cardioprotective effects of SpD against doxorubicin and determined the underlying mechanism. 1H-NMR-based metabolomics and mass spectrometry-based proteomics were utilized to characterize the metabolites and proteins induced by SpD in a human cardiomyocyte cell line (AC16) and human breast cancer cell line (MCF-7).
    [Show full text]
  • Helsingin Akvaariokeskus Lista Päivitetty 3.8.2018 Tilaus Tulee
    Helsingin Akvaariokeskus lista päivitetty 3.8.2018 Tilaus tulee täältä parin viikon välein. Nouto elävillä ehdottomasti toimituspäivänä Pyydä hintatiedot spostitse [email protected] muista AINA mainita listan nimi (DeJong) sekä koodi, jonka hinnan haluat tietää * Saatavilla satunnaisesti ** Harvoin saatavilla *** Hyvin harvinaisia, saatavilla vain pyynnöstä MAC MAC Certified Species CUL Kasvatetut korallit ! Hyvin herkkiä kuljetukselle H Käsinpyydetyt ilman myrkkyä T.R. Viljellyt C Lajien mukana tulee cites paperit Asno Liike Number Latin name Stock 000022 H Acanthurus bahianus 4 000042 H Acanthurus bariene 1 000051 H Acanthurus chirurgus 10 000052 H Acanthurus chirurgus 10 000063 H* Acanthurus tristis 1 000072 H Acanthurus coeruleus 5 000073 H Acanthurus coeruleus 2 000082 H* Acanthurus dussumieri 1 000091 H Acanthurus nigricans 1 000092 H Acanthurus nigricans 3 000093 H Acanthurus nigricans 4 000111 H* Acanthurus guttatus 2 000122 H Acanthurus japonicus 10 000123 H Acanthurus japonicus 1 000152 H Acanthurus leucocheilus 2 000162 H Acanthurus lineatus 8 000163 H Acanthurus lineatus 1 000172 H Acanthurus mata 1 000173 H Acanthurus mata 1 000181 H* Acanthurus maculiceps 1 000223 H Acanthurus nigrofuscus 4 000241 H* Acanthurus leucosternon (hybrid) 1 000242 H* Acanthurus leucosternon (hybrid) 1 000251 H Acanthurus olivaceus 6 000271 H Acanthurus Chronixis 2 000291 H Acanthurus tennentii 1 000293 H Acanthurus tennentii 1 000304 H Acanthurus thompsoni 1 000312 H Acanthurus triostegus 18 000313 H Acanthurus triostegus 4 000331
    [Show full text]
  • Ecology of Mesophotic Macroalgae and Halimeda Kanaloana Meadows in the Main Hawaiian Islands
    ECOLOGY OF MESOPHOTIC MACROALGAE AND HALIMEDA KANALOANA MEADOWS IN THE MAIN HAWAIIAN ISLANDS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BOTANY (ECOLOGY, EVOLUTION AND CONSERVATION BIOLOGY) AUGUST 2012 By Heather L. Spalding Dissertation Committee: Celia M. Smith, Chairperson Michael S. Foster Peter S. Vroom Cynthia L. Hunter Francis J. Sansone i © Copyright by Heather Lee Spalding 2012 All Rights Reserved ii DEDICATION This dissertation is dedicated to the infamous First Lady of Limu, Dr. Isabella Aiona Abbott. She was my inspiration for coming to Hawai‘i, and part of what made this place special to me. She helped me appreciate the intricacies of algal cross-sectioning, discover tela arachnoidea, and understand the value of good company (and red wine, of course). iii ACKNOWLEDGEMENTS I came to Hawai‘i with the intention of doing a nice little intertidal project on macroalgae, but I ended up at the end of the photic zone. Oh, well. This dissertation would not have been possible without the support of many individuals, and I am grateful to each of them. My committee has been very patient with me, and I appreciate their constant encouragement, gracious nature, and good humor. My gratitude goes to Celia Smith, Frank Sansone, Peter Vroom, Michael Foster, and Cindy Hunter for their time and dedication. Dr. Isabella Abbott and Larry Bausch were not able to finish their tenure on my committee, and I thank them for their efforts and contributions.
    [Show full text]
  • Sea Urchin): Basis for Future Policy Preservation and Conservation
    Int. J. Biosci. 2019 International Journal of Biosciences | IJB | ISSN: 2220-6655 (Print) 2222-5234 (Online) http://www.innspub.net Vol. 14, No. 4, p. 350-359, 2019 RESEARCH PAPER OPEN ACCESS Bioactive compounds proximate composition and cytotoxicity of Echinoidea (Sea Urchin): Basis for future policy preservation and conservation Genevieve U Garcia*1,2, Nenita D Palmes1, Oliva P Canencia1 1 Department of Science Education, University of Science and Technology of Southern Philippines, Cagayan de Oro City, Philippines ]2 Department of Education, Division of Cagayan de Oro City, Philippines Key words: Echinoidea, Proximate composition, Cytotoxicity, Preservation and conservation, Philippines http://dx.doi.org/10.12692/ijb/14.4.350-359 Article published on April 30, 2019 Abstract The presence of Echinoidea in marine ecosystem at the inter-tidal zone of the Philippines is abundant. The proximate composition and cytotoxicity of the combined spines, tests and gonads of the selected three species of sea urchin namely: Diadema setusom, Tripnuestes gratilla and Astropyga radiata greatly vary in their proximate composition. Specifically, the three-sample species are potential source of nutrients and minerals. The cytotoxic activity using brine shrimp lethality test differ in selected sea urchins. The test for cytotoxicity showed that LC50 is ˃1000 ppm which is non-toxic. The results confirmed samples non-toxicity since the species are edible and local folks eat and sell them as source of livelihood. Preservation and conservation of sea urchin species are necessary for it is one of the most significant marine invertebrates used as bioindicator and as source for livelihood and commercialization. * Corresponding Author: Genevieve U Garcia [email protected] 350 Garcia et al.
    [Show full text]
  • Phd Lamprianidou Fani 2
    DEVELOPMENT OF A MODEL FOR EVALUATING AND OPTIMIZING THE PERFORMANCE OF INTEGRATED MULTITROPHIC AQUACULTURE (IMTA) SYSTEMS A THESIS SUBMITTED TO THE UNIVERSITY OF STIRLING FOR THE DEGREE OF DOCTOR OF PHILOSOPHY by FANI LAMPRIANIDOU UNIVERSITY OF STIRLING, INSTITUTE OF AQUACULTURE NOVEMBER 2015 In loving memory of Herta 2 ABSTRACT Earth’s population is expected to reach 9 billion by 2050. Ensuring food security for the growing world population is one of today’s society’s major challenges and responsibilities. Aquatic products have the potential to contribute significantly in the growing population’s dietary requirements. Since increasing the pressure on most natural fish stocks is now widely agreed not to be an option, the aquaculture sector needs to grow. The challenge is to increase aquaculture production without depleting natural resources or damaging the environment but also in a financially sustainable way. Integrated Multitrophic Aquaculture (IMTA) is one method of sustainable aquatic production. Integrating bioremediatory organisms that extract particulate organic matter or dissolved inorganic nutrients with monocultures of fed species has the potential of reducing the particulate and soluble waste loads from effluents, whilst producing a low-input protein source that may also increase the farm income. IMTA is a viable solution for mitigating the environmental impact of waste released from fish farms. The fish waste is exploited as a food source for lower trophic, extractive organisms giving an added value to the investment in feed. Studies up to now have shown that under experimental conditions as well as in small-scale commercial studies, various filter-feeding, deposit-feeding and grazing species can ingest fish waste particles.
    [Show full text]
  • Genomics of the Globally Distributed Echinoid Genus Tripneustes
    GENOMICS OF THE GLOBALLY DISTRIBUTED ECHINOID GENUS Tripneustes A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MANOA¯ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY (ECOLOGY,EVOLUTION,&CONSERVATION BIOLOGY) May 2018 BY Áki Jarl LÁRUSON DISSERTATION COMMITTEE: Floyd A. Reed, Chairperson Robert C. Thomson Robert J. Toonen Daniel Rubinoff David B. Carlon Keywords: Marine Invertebrate, Phylogenomics, Transcriptomics, Population Genomics © Copyright 2018 – Áki Jarl Láruson All rights reserved i DEDICATION I dedicate this dissertation to my grandfather, Marteinn Jónsson (née Donald L. Martin). ii Acknowledgements Every step towards the completion of this dissertation has been made possible by more people than I could possibly recount. I am profoundly grateful to my teachers, in all their forms, and especially my undergraduate advisor, Dr. Sean Craig, of Humboldt State Uni- versity, for all the opportunities he afforded me in experiencing biological research. My dissertation committee deserves special mention, for perpetually affording me pressing encouragement, but also providing an attitude of support and positivity that has been formative beyond measure. My mentor and committee chair, Dr. Floyd Reed, has pro- vided me with perspectives, insights, and advise that I will carry with me for the rest of my life. My family, although far from the tropical shores of Hawai‘i, have been with me in so many ways throughout this endeavor, and I am so profoundly grateful for their love and support. iii Abstract Understanding genomic divergence can be a key to understanding population dynam- ics. As global climate change continues it becomes especially important to understand how and why populations form and dissipate, and how they may be better protected.
    [Show full text]
  • Metallothionein Gene Family in the Sea Urchin Paracentrotus Lividus: Gene Structure, Differential Expression and Phylogenetic Analysis
    International Journal of Molecular Sciences Article Metallothionein Gene Family in the Sea Urchin Paracentrotus lividus: Gene Structure, Differential Expression and Phylogenetic Analysis Maria Antonietta Ragusa 1,*, Aldo Nicosia 2, Salvatore Costa 1, Angela Cuttitta 2 and Fabrizio Gianguzza 1 1 Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; [email protected] (S.C.); [email protected] (F.G.) 2 Laboratory of Molecular Ecology and Biotechnology, National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR) Detached Unit of Capo Granitola, Torretta Granitola, 91021 Trapani, Italy; [email protected] (A.N.); [email protected] (A.C.) * Correspondence: [email protected]; Tel.: +39-091-238-97401 Academic Editor: Masatoshi Maki Received: 6 March 2017; Accepted: 5 April 2017; Published: 12 April 2017 Abstract: Metallothioneins (MT) are small and cysteine-rich proteins that bind metal ions such as zinc, copper, cadmium, and nickel. In order to shed some light on MT gene structure and evolution, we cloned seven Paracentrotus lividus MT genes, comparing them to Echinodermata and Chordata genes. Moreover, we performed a phylogenetic analysis of 32 MTs from different classes of echinoderms and 13 MTs from the most ancient chordates, highlighting the relationships between them. Since MTs have multiple roles in the cells, we performed RT-qPCR and in situ hybridization experiments to understand better MT functions in sea urchin embryos. Results showed that the expression of MTs is regulated throughout development in a cell type-specific manner and in response to various metals. The MT7 transcript is expressed in all tissues, especially in the stomach and in the intestine of the larva, but it is less metal-responsive.
    [Show full text]
  • Psammechinus Miliaris (P.L.S. Müller, 1771)
    Psammechinus miliaris (P.L.S. Müller, 1771) AphiaID: 124319 OURIÇO-DO-MAR-VERDE Animalia (Reino) > Echinodermata (Filo) > Echinozoa (Subfilo) > Echinoidea (Classe) > Euechinoidea (Subclasse) > Carinacea (Infraclasse) > Echinacea (Superordem) > Camarodonta (Ordem) > Echinidea (Infraordem) > Parechinidae (Familia) © Vasco Ferreira - OMARE - Observatório Marinho de Esposende / Out. 06 © Vasco Ferreira - OMARE - Observatório Marinho de Esposende / Out. 05 2017 2017 Karls Van Ginderdeuren v_s_ - iNaturalist.org Facilmente confundível com: 1 Sphaerechinus Echinus esculentus granularis Ouriço-do-mar Ouriço-do-mar Strongylocentrotus Paracentrotus lividus droebachiensis Ouriço-do-mar . Sinónimos Echinus (Psammechinus) korenii Desor in L. Agassiz & Desor, 1846 Echinus basteri Gmelin, 1791 Echinus miliaris P.L.S. Müller, 1771 Echinus pustulatus L. Agassiz, 1841 Echinus virens Düben & Koren, 1844 Parechinus miliaris (P.L.S. Müller, 1771) Parechinus miliaris Mortensen, 1903 Psammechinus korenii Desor in L. Agassiz & Desor, 1846 Psammechinus pustulatus (L. Agassiz, 1841) Referências additional source Massin, C.; Norro, A.; Mallefet, J. (2002). Biodiversity of a wreck from the Belgian Continental Shelf: monitoring using scientific diving. Preliminary results. Bull. IRSNB (Biologie) 72, pp 67-72. [details] basis of record Hansson, H.G. (2001). Echinodermata, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels,. 50: pp. 336-351. [details] redescription Mortensen, T. (1943). A Monograph of the Echinoidea. III, 3. Camarodonta. II. Echinidæ, Strongylocentrotidæ, Parasaleniidæ, Echinometridæ. 446 pp., C. A. Reitzel, Copenhagen. [details] additional source Southward, E.C.; Campbell, A.C. (2006). [Echinoderms: keys and notes for the identification of British species]. Synopses of the British fauna (new series), 56.
    [Show full text]
  • Spatio-Temporal Patterns Based on Demographic and Genetic Diversity of the Purple Sea Urchin Paracentrotus Lividus in the Area Around Corsica (Mediterranean Sea)
    Research Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available online at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.14184 Spatio-temporal patterns based on demographic and genetic diversity of the purple sea urchin Paracentrotus lividus in the area around Corsica (Mediterranean Sea) SOPHIE DUCHAUD1, 2, ERIC D. H. DURIEUX1, 2, STEPHANE COUPE3, VANINA PASQUALINI1, 2 and SONIA TERNENGO1, 2 1 Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences Pour l’Environnement, 20250 Corte, France 2 Université de Corse Pasquale Paoli, UMS CNRS 3514 Plateforme Marine Stella Mare, 20620 Biguglia, France 3 Université Toulon, Aix Marseille Univ, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France Corresponding author: [email protected] Handling Editor: Xavier Turon Received: 12 July 2017; Accepted: 12 September 2018; Published on line: 14 December 2018 Abstract Sea urchins were harvested for decades in many areas throughout its distribution range, potentially leading to population collapse. In France, the purple sea urchin Paracentrotus lividus is intensively harvested. Yet, the demography and population dynamics remained under-documented, particularly in Corsica. In this context, we have characterized the fluctuations in density of several size classes at 8 sites around the island, and assessed the genetic diversity and structuring of the population. Densities recorded lie between 0 and 2.18 (± 0.41) individuals.m-2 and spatio-temporal variabilities have also been highlighted. The study of the influ- ence of vegetation cover on the size classes suggests that small- and medium- sized individuals prefer substrates of intermediate heights, whereas individuals with a diameter ≥ 5 cm are more often observed on encrusting substrates, and may be responsible for the continuation of this type of benthic community.
    [Show full text]
  • Copyright© 2018 Mediterranean Marine Science
    Mediterranean Marine Science Vol. 19, 2018 Spatio-temporal patterns based on demographic and genetic diversity of the purple sea urchin Paracentrotus lividus in the area around Corsica (Mediterranean Sea) DUCHAUD SOPHIE Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences Pour l’Environnement, 20250 Corte, France Université de Corse Pasquale Paoli, UMS CNRS 3514 Plateforme Marine Stella Mare, 20620 Biguglia DURIEUX ERIC Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences Pour l’Environnement, 20250 Corte Université de Corse Pasquale Paoli, UMS CNRS 3514 Plateforme Marine Stella Mare, 20620 Biguglia COUPE STEPHANE Univ Toulon, Aix Marseille Univ, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde PASQUALINI VANINA Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences Pour l’Environnement, 20250 Corte Université de Corse Pasquale Paoli, UMS CNRS 3514 Plateforme Marine Stella Mare, 20620 Biguglia TERNENGO SONIA Univ Toulon, Aix Marseille Univ, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde http://dx.doi.org/10.12681/mms.14184 Copyright © 2018 Mediterranean Marine Science http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 03/10/2019 04:47:03 | To cite this article: DUCHAUD, S., DURIEUX, E., COUPE, S., PASQUALINI, V., & TERNENGO, S. (2018). Spatio-temporal patterns based on demographic and genetic diversity of the purple sea urchin Paracentrotus lividus in the area around Corsica (Mediterranean Sea). Mediterranean Marine Science, 19(3), 620-641. doi:http://dx.doi.org/10.12681/mms.14184 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 03/10/2019 04:47:03 | Research Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available online at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.14184 Spatio-temporal patterns based on demographic and genetic diversity of the purple sea urchin Paracentrotus lividus in the area around Corsica (Mediterranean Sea) SOPHIE DUCHAUD1, 2, ERIC D.
    [Show full text]