Helsingin Akvaariokeskus Lista Päivitetty 3.8.2018 Tilaus Tulee

Total Page:16

File Type:pdf, Size:1020Kb

Helsingin Akvaariokeskus Lista Päivitetty 3.8.2018 Tilaus Tulee Helsingin Akvaariokeskus lista päivitetty 3.8.2018 Tilaus tulee täältä parin viikon välein. Nouto elävillä ehdottomasti toimituspäivänä Pyydä hintatiedot spostitse [email protected] muista AINA mainita listan nimi (DeJong) sekä koodi, jonka hinnan haluat tietää * Saatavilla satunnaisesti ** Harvoin saatavilla *** Hyvin harvinaisia, saatavilla vain pyynnöstä MAC MAC Certified Species CUL Kasvatetut korallit ! Hyvin herkkiä kuljetukselle H Käsinpyydetyt ilman myrkkyä T.R. Viljellyt C Lajien mukana tulee cites paperit Asno Liike Number Latin name Stock 000022 H Acanthurus bahianus 4 000042 H Acanthurus bariene 1 000051 H Acanthurus chirurgus 10 000052 H Acanthurus chirurgus 10 000063 H* Acanthurus tristis 1 000072 H Acanthurus coeruleus 5 000073 H Acanthurus coeruleus 2 000082 H* Acanthurus dussumieri 1 000091 H Acanthurus nigricans 1 000092 H Acanthurus nigricans 3 000093 H Acanthurus nigricans 4 000111 H* Acanthurus guttatus 2 000122 H Acanthurus japonicus 10 000123 H Acanthurus japonicus 1 000152 H Acanthurus leucocheilus 2 000162 H Acanthurus lineatus 8 000163 H Acanthurus lineatus 1 000172 H Acanthurus mata 1 000173 H Acanthurus mata 1 000181 H* Acanthurus maculiceps 1 000223 H Acanthurus nigrofuscus 4 000241 H* Acanthurus leucosternon (hybrid) 1 000242 H* Acanthurus leucosternon (hybrid) 1 000251 H Acanthurus olivaceus 6 000271 H Acanthurus Chronixis 2 000291 H Acanthurus tennentii 1 000293 H Acanthurus tennentii 1 000304 H Acanthurus thompsoni 1 000312 H Acanthurus triostegus 18 000313 H Acanthurus triostegus 4 000331 H Zebrasoma flavescens 1 000332 H Zebrasoma flavescens 4 000333 H Zebrasoma flavescens 11 000334 H Zebrasoma flavescens 5 000335 H Zebrasoma flavescens (Show) 12 000341 H** Zebrasoma gemmatum 1 000342 H** Zebrasoma gemmatum 15 000343 H** Zebrasoma gemmatum 2 000400 H Zebrasoma desjardinii Lateral line all s 1 000402 H Zebrasoma desjardinii 1 000403 H Zebrasoma desjardinii 1 000412 H Ctenochaetus binotatus 3 000431 H Ctenochaetus truncatus 1 000433 H Ctenochaetus truncatus 1 000442 H Ctenochaetus striatus 2 000463 H Ctenochaetus tominiensis 1 000472 H Ctenochaetus flavicauda 1 000481 H Naso elegans 2 000482 H Naso elegans 5 000483 H Naso elegans 4 000501 H Naso vlamingii 7 000502 H Naso vlamingii 9 000512 H Naso brevirostris 4 000521 H Naso unicornis 3 000522 H Naso unicornis 2 000545 H Naso brachycentron 2 000571 H ! Paracanthurus hepatus 17 000572 H ! Paracanthurus hepatus 69 000573 H ! Paracanthurus hepatus 10 000575 H ! Paracanthurus hepatus 1 000580 H ! Paracanthurus hepatus (yellow belly) 45 000582 H ! Paracanthurus hepatus (yellow belly) 2 000622 H Siganus vulpinus 39 000652 H** Siganus uspi (Fiji) 32 000653 H** Siganus uspi (Fiji) 2 000661 H Siganus guttatus 8 000672 H Siganus puellus 1 000681 H Siganus virgatus 5 000682 H Siganus virgatus 10 000692 H Siganus corallinus 2 000693 H Siganus corallinus 2 000702 H Siganus doliatus (Fiji) 4 000711 H Siganus punctatus 5 000712 H Siganus punctatus 3 001012 H Centropyge acanthops 16 001013 H Centropyge acanthops 5 001021 H Centropyge argi 7 001031 H* Centropyge aurantia 1 001062 H* Centropyge hybrid (flavis/vroliki) 1 001072 H Centropyge bispinosa 1 001072 VAN Centropyge bispinosa (Vanuatu-Fiji) 24 001092 H Centropyge eibli 5 001102 H Centropyge ferrugata 2 001122 H Centropyge flavicauda 2 001132 H Centropyge flavissima 4 001133 H Centropyge flavissima 1 001152 H Centropyge heraldi 1 001192 H*** Centropyge debelius 1 001222 H** Centropyge joculator 2 001262 H Centropyge nox 1 001282 H Centropyge tibicen 1 001292 H Centropyge vrolikii 1 001332 H* Paracentropyge multifasciata 1 001352 H*** Chaetodontoplus conspicillatus 1 001353 H*** Chaetodontoplus conspicillatus 2 001362 H Chaetodontoplus caeruleopunctatus 1 001374 H Chaetodontoplus duboulayi 7 001381 H Chaetodontoplus melanosoma 1 001382 H Chaetodontoplus melanosoma 2 001392 H Chaetodontoplus mesoleucus 3 001422 H** Chaetodontoplus personifer (real) 1 001483 H Apolemichthys trimaculatus 4 001484 H Apolemichthys trimaculatus 2 001485 H Apolemichthys trimaculatus 3 001492 H* Apolemichthys xanthopunctatus 5 001493 H* Apolemichthys xanthopunctatus 3 001513 H Apolemichthys xanthurus 2 001552 H Pomacanthus navarchus 3 001563 H Pomacanthus sexstriatus 1 001573 H Pomacanthus xanthometopon (J) 1 001582 H Pomacanthus xanthometopon 1 001583 H Pomacanthus xanthometopon 1 001584 H Pomacanthus xanthometopon 2 001631 H Holacanthus bermudensis (J) 1 001633 H Holacanthus bermudensis 2 001641 H Holacanthus tricolor 1 001642 H Holacanthus tricolor 2 001643 H Holacanthus tricolor 1 001644 H Holacanthus tricolor 2 001662 H Holacanthus passer 2 001663 H Holacanthus passer 2 001665 H Holacanthus passer 1 001672 H*** Holacanthus africanus 1 001741 H* Pomacanthus chrysurus (J) 1 001752 H* Pomacanthus chrysurus (A) 1 001772 H Pomacanthus imperator (J) 11 001773 H Pomacanthus imperator (J) 4 001783 H Pomacanthus imperator (A) 1 001803 H Pomacanthus maculosus 4 001804 H Pomacanthus maculosus 2 001830 H Pomacanthus semicirculatus 5 001831 H Pomacanthus semicirculatus 5 001835 H Pomacanthus semicirculatus 2 001872 H Pygoplites diacanthus (Indian/Red sea) 2 001873 H Pygoplites diacanthus (Indian/Red sea) 3 001881 H* Genicanthus bellus (female) 1 001902 H Genicanthus lamarck 2 001912 H Genicanthus melanospilos (female) 3 001952 H* Genicanthus watanabei (female) 1 001954 H* Genicanthus watanabei (pair) 5 002012 H Parachaetodon ocellatus 2 002062 H Chaetodon capistratus 1 002072 H Chaetodon auriga 15 002073 H Chaetodon auriga 1 002091 H Chaetodon bennetti 1 002201 H Chaetodon collare 1 002222 H* Chaetodon austriacus 2 002302 H* Chaetodon fasciatus 3 002312 H Chaetodon flavirostris 1 002362 H Chaetodon guttatissimus 2 002431 H Chaetodon kleinii 2 002432 H Chaetodon kleinii 14 002433 H Chaetodon kleinii 2 002442 H** Chaetodon larvatus 4 002492 H Chaetodon lunula 18 002493 H Chaetodon lunula 5 002612 H* Chaetodon ocellatus 1 002631 H Chaetodon sedentarius 8 002822 H Chaetodon semilarvatus 5 002823 H Chaetodon semilarvatus 5 002972 H Chaetodon xanthurus 10 003002 H* Prognathodes marcellae 1 003022 H* Chelmon muelleri 1 003036 H* Chelmon rostratus (Australia) 2 003052 H* Chelmonops curiosus 1 003053 H* Chelmonops curiosus 1 003062 H Forcipiger flavissimus 9 003133 H Hemitaurichthys zoster 2 003151 H Heniochus diphreutes 6 003202 H Heniochus varius 1 004032 H Synchiropus stellatus (red) 27 004042 H* Synchiropus sycorax 20 004062 H* Synchiropus morrisoni 1 004092 H Synchiropus ocellatus 50 004132 H* Dactylopus dactylopus 1 004142 H* Callionymus bairdi 1 005052 H Hoplolatilus fronticinctus 1 005062 H Hoplolatilus luteus 10 006063 H C ! Hippocampus (SUB) elongatus 1 006152 H ! Doryrhamphus excisus 23 006162 H ! Dunckerocampus dactyliophorus 18 006172 H ! Doryrhamphus janssi 16 006182 H ! Dunckerocampus boylei 2 006202 H ! Dunckerocampus pessuliferus 49 006232 H ! Corythoichthys intestinalis 13 006262 H ! Trachyrhamphus longirostris 1 006322 H ! Aeoliscus strigatus 56 007032 H Pseudochromis bitaeniatus 1 007042 H Pseudochromis springeri 56 007092 H Pseudochromis flavivertex 52 007101 H Pseudochromis fridmani 20 007102 H Pseudochromis fridmani 161 007103 H Pseudochromis fridmani 20 007121 H Pseudochromis cyanotaenia (female) 4 007222 H Pictichromis paccagnellae 37 007352 H* Trachinops brauni 1 008022 H Gramma loreto 23 008032 H* Gramma melacara 3 008052 H** Gramma dejongi 1 008062 H* Gramma mutation 1 008102 H* Liopropoma mowbrayi 1 008122 H* Liopropoma susumi 1 008172 H* Assessor flavissimus 21 008182 H Assessor macneilli 16 008202 H Serranus baldwini 5 008272 H Serranus tabacarius 2 008301 H*** Rainfordia opercularis 2 008443 H* Paraplesiops meleagris 3 008472 H Epinephelus flavocaeruleus 4 008543 H Cephalopholis miniata 1 008552 H Cephalopholis cruentatus 1 008553 H Cephalopholis cruentatus 1 008712 H Hypoplectrus indigo 3 008731 H Hypoplectrus puella 2 008732 H Hypoplectrus puella 3 008741 H Hypoplectrus nigricans 1 008742 H Hypoplectrus nigricans 1 008812 H Cromileptes altivelis 4 008852 H Plectranthias inermis 7 009002 H Luzonichthys taeniatus 20 009022 H* Luzonichthys sp. (Pacific) 20 009043 H Pseudanthias cooperi 36 009062 H Pseudanthias parvirostris (male) 10 009082 H Pseudanthias pleurotaenia (female) 7 009083 H Pseudanthias pleurotaenia (male) 3 009101 H Pseudanthias bimaculatus (female) 6 009102 H Pseudanthias bimaculatus (male) 15 009102 H* HAWAI Pseudanthias bicolor (male) (Hawaii) 24 009141 H* Pseudanthias pulcherrimus (female) 3 009142 H* Pseudanthias pulcherrimus (male) 9 009162 H Pseudanthias smithvanizi 31 009172 H* Pseudanthias flavoguttatus 43 009182 H Pseudanthias squamipinnis 178 009183 H Pseudanthias squamipinnis (male) 12 009272 H* ! Pseudanthias bartlettorum 22 009302 H* Pseudanthias aurulentus 11 009322 H Pseudanthias dispar 50 009352 H Pseudanthias lori 8 009392 H Pseudanthias tuka 15 009412 H* Serranocirrhitus latus 12 009421 H** Sacura margaritacea female 1 009422 H** Sacura margaritacea male 1 009432 H Nemanthias carberryi 1 010012 H Sphaeramia nematoptera 85 010022 H ! Apogon leptacanthus 43 010032 H ! Apogon maculatus 2 010052 H ! Apogon margaritophorus 5 010062 H ! Pterapogon kauderni 200 010142 H ! Apogon cyanosoma 13 010152 H ! Apogon parvulus 10 010172 H** Pempheris spp. 5 010182 H* Parapriacanthus ransonneti 45 011153 H** Pristigenys serrula 20 012031 H** ! Anampses lennardi 7 012032 H** ! Anampses lennardi 9 012033 H** ! Anampses lennardi 2 012072 H ! Anampses lineatus 2 012101 H ! Anampses meleagrides 2 012102 H ! Anampses meleagrides 1 012112 H ! Anampses neoguinaicus 2 012162 H ! Anampses
Recommended publications
  • Catalogue Customer-Product
    AQUATIC DESIGN CENTRE 26 Zennor Trade Park Balham ¦ London ¦ SW12 0PS Shop Enquiries Tel: 020 7580 6764 Email: [email protected] PLEASE CALL TO CHECK AVAILABILITY ON DAY In Stock Yes/No Marine Invertebrates and Corals Anemones Common name Scientific name Atlantic Anemone Condylactis gigantea Atlantic Anemone - Pink Condylactis gigantea Beadlet Anemone - Red Actinea equina Y Bubble Anemone - Coloured Entacmaea quadricolor Y Bubble Anemone - Common Entacmaea quadricolor Bubble Anemone - Red Entacmaea quadricolor Caribbean Anemone Condylactis spp. Y Carpet Anemone - Coloured Stichodactyla haddoni Carpet Anemone - Common Stichodactyla haddoni Carpet Anemone - Hard Blue Stichodactyla haddoni Carpet Anemone - Hard Common Stichodactyla haddoni Carpet Anemone - Hard Green Stichodactyla haddoni Carpet Anemone - Hard Red Stichodactyla haddoni Carpet Anemone - Hard White Stichodactyla haddoni Carpet Anemone - Mini Maxi Stichodactyla tapetum Carpet Anemone - Soft Blue Stichodactyla gigantea Carpet Anemone - Soft Common Stichodactyla gigantea Carpet Anemone - Soft Green Stichodactyla gigantea Carpet Anemone - Soft Purple Stichodactyla gigantea Carpet Anemone - Soft Red Stichodactyla gigantea Carpet Anemone - Soft White Stichodactyla gigantea Carpet Anemone - Soft Yellow Stichodactyla gigantea Carpet Anemone - Striped Stichodactyla haddoni Carpet Anemone - White Stichodactyla haddoni Curly Q Anemone Bartholomea annulata Flower Anemone - White/Green/Red Epicystis crucifer Malu Anemone - Common Heteractis crispa Malu Anemone - Pink Heteractis
    [Show full text]
  • Echinoidea: Diadematidae) to the Mediterranean Coast of Israel
    Zootaxa 4497 (4): 593–599 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4497.4.9 http://zoobank.org/urn:lsid:zoobank.org:pub:268716E0-82E6-47CA-BDB2-1016CE202A93 Needle in a haystack—genetic evidence confirms the expansion of the alien echinoid Diadema setosum (Echinoidea: Diadematidae) to the Mediterranean coast of Israel OMRI BRONSTEIN1,2 & ANDREAS KROH1 1Natural History Museum Vienna, Geological-Paleontological Department, 1010 Vienna, Austria. E-mails: [email protected], [email protected] 2Corresponding author Abstract Diadema setosum (Leske, 1778), a widespread tropical echinoid and key herbivore in shallow water environments is cur- rently expanding in the Mediterranean Sea. It was introduced by unknown means and first observed in southern Turkey in 2006. From there it spread eastwards to Lebanon (2009) and westwards to the Aegean Sea (2014). Since late 2016 spo- radic sightings of black, long-spined sea urchins were reported by recreational divers from rock reefs off the Israeli coast. Numerous attempts to verify these records failed; neither did the BioBlitz Israel task force encounter any D. setosum in their campaigns. Finally, a single adult specimen was observed on June 17, 2017 in a deep rock crevice at 3.5 m depth at Gordon Beach, Tel Aviv. Although the specimen could not be recovered, spine fragments sampled were enough to genet- ically verify the visual underwater identification based on morphology. Sequences of COI, ATP8-Lysine, and the mito- chondrial Control Region of the Israel specimen are identical to those of the specimen collected in 2006 in Turkey, unambiguously assigning the specimen to D.
    [Show full text]
  • Invertebrate Predators and Grazers
    9 Invertebrate Predators and Grazers ROBERT C. CARPENTER Department of Biology California State University Northridge, California 91330 Coral reefs are among the most productive and diverse biological communities on earth. Some of the diversity of coral reefs is associated with the invertebrate organisms that are the primary builders of reefs, the scleractinian corals. While sessile invertebrates, such as stony corals, soft corals, gorgonians, anemones, and sponges, and algae are the dominant occupiers of primary space in coral reef communities, their relative abundances are often determined by the activities of mobile, invertebrate and vertebrate predators and grazers. Hixon (Chapter X) has reviewed the direct effects of fishes on coral reef community structure and function and Glynn (1990) has provided an excellent review of the feeding ecology of many coral reef consumers. My intent here is to review the different types of mobile invertebrate predators and grazers on coral reefs, concentrating on those that have disproportionate effects on coral reef communities and are intimately involved with the life and death of coral reefs. The sheer number and diversity of mobile invertebrates associated with coral reefs is daunting with species from several major phyla including the Annelida, Arthropoda, Mollusca, and Echinodermata. Numerous species of minor phyla are also represented in reef communities, but their abundance and importance have not been well-studied. As a result, our understanding of the effects of predation and grazing by invertebrates in coral reef environments is based on studies of a few representatives from the major groups of mobile invertebrates. Predators may be generalists or specialists in choosing their prey and this may determine the effects of their feeding on community-level patterns of prey abundance (Paine, 1966).
    [Show full text]
  • Spinochrome D Attenuates Doxorubicin-Induced Cardiomyocyte Death Via Improving Glutathione Metabolism and Attenuating Oxidative Stress
    marine drugs Article Spinochrome D Attenuates Doxorubicin-Induced Cardiomyocyte Death via Improving Glutathione Metabolism and Attenuating Oxidative Stress Chang Shin Yoon 1 , Hyoung Kyu Kim 1, Natalia P. Mishchenko 2 , Elena A. Vasileva 2, Sergey A. Fedoreyev 2, Valentin A. Stonik 2 and Jin Han 1,* 1 National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center (CMDC), Inje University, Busan 614-735, Korea; [email protected] (C.S.Y.); [email protected] (H.K.K.) 2 G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia; [email protected] (N.P.M.); [email protected] (E.A.V.); [email protected] (S.A.F.); [email protected] (V.A.S.) * Correspondence: [email protected]; Tel.: +82-51-890-6727; Fax: +82-51-894-5714 Received: 28 November 2018; Accepted: 15 December 2018; Published: 20 December 2018 Abstract: Doxorubicin, an anthracycline from Streptomyces peucetius, exhibits antitumor activity against various cancers. However, doxorubicin is cardiotoxic at cumulative doses, causing increases in intracellular reactive oxygen species in the heart. Spinochrome D (SpD) has a structure of 2,3,5,6,8-pentahydroxy-1,4-naphthoquinone and is a structural analogue of well-known sea urchin pigment echinochrome A. We previously reported that echinochrome A is cardioprotective against doxorubicin toxicity. In the present study, we assessed the cardioprotective effects of SpD against doxorubicin and determined the underlying mechanism. 1H-NMR-based metabolomics and mass spectrometry-based proteomics were utilized to characterize the metabolites and proteins induced by SpD in a human cardiomyocyte cell line (AC16) and human breast cancer cell line (MCF-7).
    [Show full text]
  • Spineless Spineless Rachael Kemp and Jonathan E
    Spineless Status and trends of the world’s invertebrates Edited by Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Spineless Spineless Status and trends of the world’s invertebrates of the world’s Status and trends Spineless Status and trends of the world’s invertebrates Edited by Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Disclaimer The designation of the geographic entities in this report, and the presentation of the material, do not imply the expressions of any opinion on the part of ZSL, IUCN or Wildscreen concerning the legal status of any country, territory, area, or its authorities, or concerning the delimitation of its frontiers or boundaries. Citation Collen B, Böhm M, Kemp R & Baillie JEM (2012) Spineless: status and trends of the world’s invertebrates. Zoological Society of London, United Kingdom ISBN 978-0-900881-68-8 Spineless: status and trends of the world’s invertebrates (paperback) 978-0-900881-70-1 Spineless: status and trends of the world’s invertebrates (online version) Editors Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Zoological Society of London Founded in 1826, the Zoological Society of London (ZSL) is an international scientifi c, conservation and educational charity: our key role is the conservation of animals and their habitats. www.zsl.org International Union for Conservation of Nature International Union for Conservation of Nature (IUCN) helps the world fi nd pragmatic solutions to our most pressing environment and development challenges. www.iucn.org Wildscreen Wildscreen is a UK-based charity, whose mission is to use the power of wildlife imagery to inspire the global community to discover, value and protect the natural world.
    [Show full text]
  • Ecology of Mesophotic Macroalgae and Halimeda Kanaloana Meadows in the Main Hawaiian Islands
    ECOLOGY OF MESOPHOTIC MACROALGAE AND HALIMEDA KANALOANA MEADOWS IN THE MAIN HAWAIIAN ISLANDS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BOTANY (ECOLOGY, EVOLUTION AND CONSERVATION BIOLOGY) AUGUST 2012 By Heather L. Spalding Dissertation Committee: Celia M. Smith, Chairperson Michael S. Foster Peter S. Vroom Cynthia L. Hunter Francis J. Sansone i © Copyright by Heather Lee Spalding 2012 All Rights Reserved ii DEDICATION This dissertation is dedicated to the infamous First Lady of Limu, Dr. Isabella Aiona Abbott. She was my inspiration for coming to Hawai‘i, and part of what made this place special to me. She helped me appreciate the intricacies of algal cross-sectioning, discover tela arachnoidea, and understand the value of good company (and red wine, of course). iii ACKNOWLEDGEMENTS I came to Hawai‘i with the intention of doing a nice little intertidal project on macroalgae, but I ended up at the end of the photic zone. Oh, well. This dissertation would not have been possible without the support of many individuals, and I am grateful to each of them. My committee has been very patient with me, and I appreciate their constant encouragement, gracious nature, and good humor. My gratitude goes to Celia Smith, Frank Sansone, Peter Vroom, Michael Foster, and Cindy Hunter for their time and dedication. Dr. Isabella Abbott and Larry Bausch were not able to finish their tenure on my committee, and I thank them for their efforts and contributions.
    [Show full text]
  • Sea Urchin): Basis for Future Policy Preservation and Conservation
    Int. J. Biosci. 2019 International Journal of Biosciences | IJB | ISSN: 2220-6655 (Print) 2222-5234 (Online) http://www.innspub.net Vol. 14, No. 4, p. 350-359, 2019 RESEARCH PAPER OPEN ACCESS Bioactive compounds proximate composition and cytotoxicity of Echinoidea (Sea Urchin): Basis for future policy preservation and conservation Genevieve U Garcia*1,2, Nenita D Palmes1, Oliva P Canencia1 1 Department of Science Education, University of Science and Technology of Southern Philippines, Cagayan de Oro City, Philippines ]2 Department of Education, Division of Cagayan de Oro City, Philippines Key words: Echinoidea, Proximate composition, Cytotoxicity, Preservation and conservation, Philippines http://dx.doi.org/10.12692/ijb/14.4.350-359 Article published on April 30, 2019 Abstract The presence of Echinoidea in marine ecosystem at the inter-tidal zone of the Philippines is abundant. The proximate composition and cytotoxicity of the combined spines, tests and gonads of the selected three species of sea urchin namely: Diadema setusom, Tripnuestes gratilla and Astropyga radiata greatly vary in their proximate composition. Specifically, the three-sample species are potential source of nutrients and minerals. The cytotoxic activity using brine shrimp lethality test differ in selected sea urchins. The test for cytotoxicity showed that LC50 is ˃1000 ppm which is non-toxic. The results confirmed samples non-toxicity since the species are edible and local folks eat and sell them as source of livelihood. Preservation and conservation of sea urchin species are necessary for it is one of the most significant marine invertebrates used as bioindicator and as source for livelihood and commercialization. * Corresponding Author: Genevieve U Garcia [email protected] 350 Garcia et al.
    [Show full text]
  • Echinodermata Echinodermata Стенка Тела Скелет И Его Производные Скелет
    Echinodermata Echinodermata Стенка тела Скелет и его производные Скелет Ophiocoma wendtii Lucent Technologies Lab, USA Visual system of the starfish Linckia laevigata (Garm, Nilsson, 2014) a) Linckia laevigata in its natural coral reef habitat at Akajima, Japan, where it feeds on detritus and algae. (b) As in other starfish species, the compound eye of L. laevigata is situated on the tip of each arm (arrowhead). It sits in the ambulaceral groove which continues to the top of the arm tip. (c) Lateral view of the compound eye, also called the optical cushion, which is sitting on the base of a modified tube foot. The eye has approximately 150 separate ommatidia with bright red screening pigment. (d ) Frontal view of the compound eye showing its bilateral symmetry. (e) The tip of the arm seen from below. The view of the compound eye is obscured by a double row of modified black tube feet (arrow). ( f ) The arm tip seen straight from above. Note that the eye is again obscured from view by a modified black tube foot (arrow). (g) The compound eye (arrowhead) seen from 458 above horizontal in a freely behaving animal. When the animal is active, the modified black tube feet spread out to allow vision. (h) If the animal is disturbed, it closes the ambulaceral groove (broken line) at the arm tip and withdraws the modified tube feet. The compound eye is then completely covered, leaving the animal blind. Morphology of the starfish eye (Garm, Nilsson, 2014) (a) LM of two ommatidia sectioned longitudinally. Each of the fully developed ommatidia is composed of 100–150 photoreceptors and about the same number of pigment cells (PC).
    [Show full text]
  • Echinodermata: Echinoidea) Alexander Ziegler*1, Cornelius Faber2 and Thomas Bartolomaeus3
    Frontiers in Zoology BioMed Central Research Open Access Comparative morphology of the axial complex and interdependence of internal organ systems in sea urchins (Echinodermata: Echinoidea) Alexander Ziegler*1, Cornelius Faber2 and Thomas Bartolomaeus3 Address: 1Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany, 2Institut für Klinische Radiologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität Münster, Waldeyerstraße 1, 48149 Münster, Germany and 3Institut für Evolutionsbiologie und Zooökologie, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 1, 53121 Bonn, Germany Email: Alexander Ziegler* - [email protected]; Cornelius Faber - [email protected]; Thomas Bartolomaeus - [email protected] * Corresponding author Published: 9 June 2009 Received: 4 December 2008 Accepted: 9 June 2009 Frontiers in Zoology 2009, 6:10 doi:10.1186/1742-9994-6-10 This article is available from: http://www.frontiersinzoology.com/content/6/1/10 © 2009 Ziegler et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The axial complex of echinoderms (Echinodermata) is composed of various primary and secondary body cavities that interact with each other. In sea urchins (Echinoidea), structural differences of the axial complex in "regular" and irregular species have been observed, but the reasons underlying these differences are not fully understood. In addition, a better knowledge of axial complex diversity could not only be useful for phylogenetic inferences, but improve also an understanding of the function of this enigmatic structure.
    [Show full text]
  • A Phylogenomic Resolution of the Sea Urchin Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/430595; this version posted September 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A phylogenomic resolution of the sea urchin tree of life Nicolás Mongiardino Koch ([email protected]) – Corresponding author Department of Geology and Geophysics, Yale University, New Haven CT, USA Simon E. Coppard ([email protected]) Department of Biology, Hamilton College, Clinton NY, USA. Smithsonian Tropical Research Institute, Balboa, Panama. Harilaos A. Lessios ([email protected]) Smithsonian Tropical Research Institute, Balboa, Panama. Derek E. G. Briggs ([email protected]) Department of Geology and Geophysics, Yale University, New Haven CT, USA. Peabody Museum of Natural History, Yale University, New Haven CT, USA. Rich Mooi ([email protected]) Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco CA, USA. Greg W. Rouse ([email protected]) Scripps Institution of Oceanography, UC San Diego, La Jolla CA, USA. bioRxiv preprint doi: https://doi.org/10.1101/430595; this version posted September 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Background: Echinoidea is a clade of marine animals including sea urchins, heart urchins, sand dollars and sea biscuits.
    [Show full text]
  • Sea Urchin Lytechin Us Variegatus in Outer Florida Bay
    MARINE ECOLOGY PROGRESS SERIES Published December 14 Mar Ecol Prog Ser Overgrazing of a large seagrass bed by the sea urchin Lytechin us variegatus in Outer Florida Bay 'Departrnent of Biology and the Southeast Environmental Research Center, Florida International University, University Park, Miami, Florida 33199, USA 'Florida Departrnent of Environmental Protection, Florida Marine Research Institute, 2796 Overseas Hwy, Suite 119, Marathon, Florida 33050, USA 3~ationalMarine Fisheries Service, Beaufort Laboratory, 101 Pivers Island, Beaufort, North Carolina 28516, USA 'Florida Department of Environmental Protection, Florida Marine Research Institute, 100 8ih Ave. SE. St. Petersburg, Florida 33701, USA 'U.S. Geological Survey, MS953 National Center, Reston, Virginia 20192, USA 'Dauphin Island Sea Lab and Department of Marine Sciences, University of South Alabama, 101 Bienville Blvd, PO Box 369-370, Mobile, Alabama 36528, USA ABSTRACT: Unusually dense aggregations of the sea urchin Lytechinus variegatus overgrazed at least 0.81 kmz of seagrass habitat in Outer Florida Bay (USA) between August 1997 and I\,Iay 1998. Initially, sea-urchin densities were as high as 364 sea urchins m-', but they steadily declined to within a range of 20 to 50 sea urchins m-2 by December 1998. Prior to this event, sea-urchin densities were <1 sea urchin m-2 in this area of Outer Florida Bay. Seagrasses in Outer Florida Bay consist primarily of man- atee grass Syringodium filiforme. of which 82% or 390 g dry weight rn-2 of total seagrass biornass and >95% of the short-shoot apical menstems were removed by sea-urchin grazing in our study area. Such extensive loss may severely limit recovery of this seagrass comrnunity by vegetative reproduction.
    [Show full text]
  • Status, Prospects and Potentials of Echinoid Sea Urchins in Malaysia
    International Journal of Chemical, Environmental & Biological Sciences (IJCEBS) Volume 4, Issue 1 (2016) ISSN 2320–4087 (Online) Status, Prospects and Potentials of Echinoid Sea Urchins in Malaysia Md. Shamim Parvez1, M. Aminur Rahman1* and Fatimah Md. Yusoff 1,2 used for movement, capturing food as well as attaching to Abstract—Among the bottom-dwelling invertebrates, sea substrates. A stinging jaw (or small pinchers), called the urchins have been considered as the high-valued new marine pedicellariae, is also used for protection and to clutch the food bioresource in Asia. They inhabit the depths of coral reefs and rocky items. The mouth of sea urchin is located on the underside of shores that are covered with coralline algae and seaweeds. They are the organism and consists of a 5-pointed jaw called “Aristotle's usually spherical in shape, and their whole body is covered by Lantern” [1, 2]. The internal organs are enclosed in a hard numerous thorns or spines that act as defense mechanism against shell or "test" composed of fused plates of calcium carbonate predators. The sea urchin gonad has been used as luxury food and folk medicine by the peoples of certain countries. For this reason, sea covered by a thin dermis and epidermis. The test is rigid, and urchin became an important product and fetches high price in divides into five ambulacral grooves separated by five international markets. It also plays an important role towards interambulacral areas. Each of these areas consists of two rows providing employment opportunity and income source to the coastal of plates, so the sea urchin test includes 20 rows of plates in communities in many Pacific island countries including Malaysia.
    [Show full text]