The Mechanisms of Mating in Pathogenic Fungi—A Plastic Trait
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolution and Application of Inteins in Candida Species: a Review
fmicb-07-01585 October 6, 2016 Time: 13:7 # 1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector REVIEW published: 10 October 2016 doi: 10.3389/fmicb.2016.01585 Evolution and Application of Inteins in Candida species: A Review José A. L. Fernandes1†, Tâmara H. R. Prandini2†, Maria da Conceição A. Castro1, Thales D. Arantes1,3, Juliana Giacobino2, Eduardo Bagagli2 and Raquel C. Theodoro1* 1 Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Brazil, 2 Department of Microbiology and Immunology, Institute of Biosciences, Universidade Estadual Paulista Julio de Mesquita Filho, Botucatu, Brazil, 3 Post-graduation Program in Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Brazil Inteins are invasive intervening sequences that perform an autocatalytic splicing from their host proteins. Among eukaryotes, these elements are present in many fungal species, including those considered opportunistic or primary pathogens, such as Candida spp. Here we reviewed and updated the list of Candida species containing inteins in the genes VMA, THRRS and GLT1 and pointed out the importance of these elements as molecular markers for molecular epidemiological researches and species- specific diagnosis, since the presence, as well as the size of these inteins, is polymorphic Edited by: among the different species. Although absent in Candida albicans, these elements are Joshua D. Nosanchuk, present in different sizes, in some environmental Candida spp. and also in most of the Albert Einstein College of Medicine, USA non-albicans Candida spp. considered emergent opportunistic pathogens. -
Evolution of Genetic Systems in Filamentous Ascomycetes
Evolution of Genetic Systems in Filamentous Ascomycetes Evolutie van genetische systemen in hyphenvormende zakjeszwammen 0000 0513 3836 Promotor: dr. R.F. Hoekstra hoogleraar in de populatie- en kwantitatieve genetica fjtfoiißi f ßin Maarten J. Nauta Evolution of Genetic Systems in Filamentous Ascomycetes Proefschrift ter verkrijging van de graad van doctor in de landbouw- en milieuwetenschappen op gezag van de rector magnificus, dr. C.M. Karssen, in het openbaar te verdedigen op woensdag 12januar i 1994 des namiddags te vier uur in de Aula van de Landbouwuniversiteit te Wageningen. 15 0 S(p^ZJ> These investigations were supported by the Netherlands Organization for Scientific Research (N.W.O.). BibUt/FHEEK LAMDbOirWUNIVERSITEJi. WAGE NINGE N CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG Nauta, Maarten J. Evolution of genetic systems in filamentous ascomycetes / Maarten J. Nauta. - [ S.l. : s.n.]. -111 . Thesis Wageningen. - With ref. - With summary in Dutch. ISBN 90-5485-199-6 Subject headings: population genetics / ascomycetes. omslagontwerp: Ernst van Cleef foto omslag: Barrages tussen verschillende stammen van Podospora anserina als gevolg van vegetatieve incompatibiliteit. (met dank aan Inge Haspels) aan mijn ouders Voorwoord Dit proefschrift is het resultaat van vier jaar onderzoek, verricht bij de vakgroep Erfelijkheidsleer van de Landbouwuniversiteit in Wageningen. In zekere zin valt zo'n proefschrift te vergelijken met een levend wezen. Uit de genetica is bekend dat de verschijningsvorm van elk levend wezen tot stand komt door een combinatie van erfelijke aanleg en invloeden uit de omgeving. Voor een proefschrift geldt eigenlijk hetzelfde: Zowel het werk van de auteur, als de bijdragen van zijn omgeving zijn onontbeerlijk om tot een verschijningsvorm te komen. -
Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions Http
Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions http://www.buzzle.com/articles/biology-terms-glossary-of-biology-terms-and- definitions.html#ZoologyGlossary Biology is the branch of science concerned with the study of life: structure, growth, functioning and evolution of living things. This discipline of science comprises three sub-disciplines that are botany (study of plants), Zoology (study of animals) and Microbiology (study of microorganisms). This vast subject of science involves the usage of myriads of biology terms, which are essential to be comprehended correctly. People involved in the science field encounter innumerable jargons during their study, research or work. Moreover, since science is a part of everybody's life, it is something that is important to all individuals. A Abdomen: Abdomen in mammals is the portion of the body which is located below the rib cage, and in arthropods below the thorax. It is the cavity that contains stomach, intestines, etc. Abscission: Abscission is a process of shedding or separating part of an organism from the rest of it. Common examples are that of, plant parts like leaves, fruits, flowers and bark being separated from the plant. Accidental: Accidental refers to the occurrences or existence of all those species that would not be found in a particular region under normal circumstances. Acclimation: Acclimation refers to the morphological and/or physiological changes experienced by various organisms to adapt or accustom themselves to a new climate or environment. Active Transport: The movement of cellular substances like ions or molecules by traveling across the membrane, towards a higher level of concentration while consuming energy. -
Tie-Up Cycles in Long-Term Mating. Part I: Theory
challenges Article Tie-Up Cycles in Long-Term Mating. Part I: Theory Lorenza Lucchi Basili 1,† and Pier Luigi Sacco 2,3,*,† 1 Independent Researcher, 20 Chestnut Street, Cambridge, MA 02139, USA; [email protected] 2 Department of Romance Languages and Literatures, Harvard University, Boylston Hall, Cambridge, MA 02138, USA 3 Department of Comparative Literature and Language Sciences, IULM University, via Carlo Bo, 1, Milan 20143, Italy * Correspondence: [email protected]; Tel.: +1-617-496-0486 † These authors contributed equally to this work. Academic Editor: Palmiro Poltronieri Received: 26 February 2016; Accepted: 26 April 2016; Published: 3 May 2016 Abstract: In this paper, we propose a new approach to couple formation and dynamics that abridges findings from sexual strategies theory and attachment theory to develop a framework where the sexual and emotional aspects of mating are considered in their strategic interaction. Our approach presents several testable implications, some of which find interesting correspondences in the existing literature. Our main result is that, according to our approach, there are six typical dynamic interaction patterns that are more or less conducive to the formation of a stable couple, and that set out an interesting typology for the analysis of real (as well as fictional, as we will see in the second part of the paper) mating behaviors and dynamics. Keywords: sexual strategies; emotional attachment; mating; couple formation and dynamics; Tie-Up; Active vs. Receptive Areas; frustration and reward; Tie-Up Cycle; flow inversion 1. Introduction The process of reproductive mating is a clear example of a complex socio-biological phenomenon, of paramount evolutionary importance. -
Sexual Selection in Fungi
Sexual selection in Fungi Bart P. S. Nieuwenhuis Thesis committee Thesis supervisor Prof. dr. R.F. Hoekstra Emeritus professor of Genetics (Population and Quantitative Genetics) Wageningen University Thesis co-supervisor Dr. D.K. Aanen Assistant professor at the Laboratory of Genetics Wageningen University Other members Prof. dr. J. B. Anderson, University of Toronto, Toronto, Canada Prof. dr. W. de Boer, NIOO, Wageningen and Wageningen University Prof. dr. P.G.L. Klinkhamer, Leiden University, Leiden Prof. dr. H.A.B. Wösten, Utrecht Univesity, Utrecht This research was conducted under the auspices of the C.T. de Wit Graduate School for Production Ecology and Resource Conservation (PE&RC) Sexual selection in Fungi Bart P. S. Nieuwenhuis Thesis submittted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 21 September 2012 at 4 p.m. in the Aula. Bart P. S. Nieuwenhuis Sexual selection in Fungi Thesis, Wageningen University, Wageningen, NL (2012) With references, with summaries in Dutch and English ISBN 978-94-6173-358-0 Contents Chapter 1 7 General introduction Chapter 2 17 Why mating types are not sexes Chapter 3 31 On the asymmetry of mating in the mushroom fungus Schizophyllum commune Chapter 4 49 Sexual selection in mushroom-forming basidiomycetes Chapter 5 59 Fungal fidelity: Nuclear divorce from a dikaryon by mating or monokaryon regeneration Chapter 6 69 Fungal nuclear arms race: experimental evolution for increased masculinity in a mushroom Chapter 7 89 Sexual selection in the fungal kingdom Chapter 8 109 Discussion: male and female fitness Bibliography 121 Summary 133 Dutch summary 137 Dankwoord 147 Curriculum vitea 153 Education statement 155 6 Chapter 1 General introduction Bart P. -
Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating. -
By Thesis for the Degree of Doctor of Philosophy
COMPARATIVE ANATOMY AND HISTOCHEMISTRY OF TIIE ASSOCIATION OF PUCCIiVIA POARUM WITH ITS ALTERNATE HOSTS By TALIB aWAID AL-KHESRAJI Department of Botany~ Universiiy of SheffieZd Thesis for the degree of Doctor of Philosophy JUNE 1981 Vol 1 IMAGING SERVICES NORTH Boston Spa, Wetherby West Yorkshire, lS23 7BQ www.bl.uk BEST COpy AVAILABLE. VARIABLE PRINT QUALITY TO MY PARENTS i Ca.1PARATIVE ANATCl1Y AND HISTOCHEMISTRY OF THE ASSOCIATION OF PUCCINIA POARUM WITH ITS ALTERNATE HOSTS Talib Owaid Al-Khesraji Depaptment of Botany, Univepsity of Sheffield The relationship of the macrocyclic rust fungus PUccinia poarum with its pycnial-aecial host, Tussilago fapfaPa, and its uredial-telial host, Poa ppatensis, has been investigated, using light microscopy, electron microscopy and micro-autoradiography. Aspects of the morp hology and ontogeny of spores and sari, which were previously disputed, have been clarified. Monokaryotic hyphae grow more densely in the intercellular spaces of Tussilago leaves than the dikaryotic intercellular hyphae on Poa. Although ultrastructurally sbnilar, monokaryotic hyphae differ from dikaryotic hyphae in their interaction with host cell walls, often growing embedded in wall material which may project into the host cells. The frequency of penetration of Poa mesophyll cells by haustoria of the dikaryon is greater than that of Tussilago cells by the relatively undifferentiated intracellular hyphae of the monokaryon. Intracellular hyphae differ from haustoria in their irregular growth, septation, lack of a neck-band or markedly constricted neck, the deposition of host wall-like material in the external matrix bounded by the invaginated host plasmalemma and in the association of callose reactions \vith intracellular hyphae and adjacent parts of host walls. -
Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina)
| YEASTBOOK GENOME ORGANIZATION AND INTEGRITY Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina) Bernard A. Dujon*,†,1 and Edward J. Louis‡,§ *Department Genomes and Genetics, Institut Pasteur, Centre National de la Recherche Scientifique UMR3525, 75724-CEDEX15 Paris, France, †University Pierre and Marie Curie UFR927, 75005 Paris, France, ‡Centre for Genetic Architecture of Complex Traits, and xDepartment of Genetics, University of Leicester, LE1 7RH, United Kingdom ORCID ID: 0000-0003-1157-3608 (E.J.L.) ABSTRACT Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs. -
Phylogenetic Classification of Life
Proc. Natl. Accad. Sci. USA Vol. 93, pp. 1071-1076, February 1996 Evolution Archaeal- eubacterial mergers in the origin of Eukarya: Phylogenetic classification of life (centriole-kinetosome DNA/Protoctista/kingdom classification/symbiogenesis/archaeprotist) LYNN MARGULIS Department of Biology, University of Massachusetts, Amherst, MA 01003-5810 Conitribluted by Lynnl Marglulis, September 15, 1995 ABSTRACT A symbiosis-based phylogeny leads to a con- these features evolved in their ancestors by inferable steps (4, sistent, useful classification system for all life. "Kingdoms" 20). rRNA gene sequences (Trichomonas, Coronympha, Giar- and "Domains" are replaced by biological names for the most dia; ref. 11) confirm these as descendants of anaerobic eu- inclusive taxa: Prokarya (bacteria) and Eukarya (symbiosis- karyotes that evolved prior to the "crown group" (12)-e.g., derived nucleated organisms). The earliest Eukarya, anaero- animals, fungi, or plants. bic mastigotes, hypothetically originated from permanent If eukaryotes began as motility symbioses between Ar- whole-cell fusion between members of Archaea (e.g., Thermo- chaea-e.g., Thermoplasma acidophilum-like and Eubacteria plasma-like organisms) and of Eubacteria (e.g., Spirochaeta- (Spirochaeta-, Spirosymplokos-, or Diplocalyx-like microbes; like organisms). Molecular biology, life-history, and fossil ref. 4) where cell-genetic integration led to the nucleus- record evidence support the reunification of bacteria as cytoskeletal system that defines eukaryotes (21)-then an Prokarya while -
Algal Sex Determination and the Evolution of Anisogamy James Umen, Susana Coelho
Algal Sex Determination and the Evolution of Anisogamy James Umen, Susana Coelho To cite this version: James Umen, Susana Coelho. Algal Sex Determination and the Evolution of Anisogamy. Annual Review of Microbiology, Annual Reviews, 2019, 73 (1), 10.1146/annurev-micro-020518-120011. hal- 02187088 HAL Id: hal-02187088 https://hal.sorbonne-universite.fr/hal-02187088 Submitted on 17 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annu. Rev. Microbiol. 2019. 73:X–X https://doi.org/10.1146/annurev-micro-020518-120011 Copyright © 2019 by Annual Reviews. All rights reserved Umen • Coelho www.annualreviews.org • Algal Sexes and Mating Systems Algal Sex Determination and the Evolution of Anisogamy James Umen1 and Susana Coelho2 1Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA; email: [email protected] 2Sorbonne Université, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France [**AU: Please write the entire affiliation in French or write it all in English, rather than a combination of English and French**] ; email: [email protected] Abstract Algae are photosynthetic eukaryotes whose taxonomic breadth covers a range of life histories, degrees of cellular and developmental complexity, and diverse patterns of sexual reproduction. -
Human Mating Strategies Human Mating Strategies
Human Mating Strategies Human Mating Strategies As descendants of a long line of successful maters, modern humans have inherited the mating strategies that led to their forebear’s success. These include long-term mating, short-term mating, and mixed mating strategies. This article presents empirical evi- dence supporting evolution-based hypotheses about the complexities of these mating strategies, which differ substantially for men and women. array of adaptations specifically dedicated to the David M. Buss, Professor, task of mating. Department of Psychology, Nowhere do people have an equal desire to mate University of Texas, Austin with all people. Everywhere, some people are pre- ferred as mates, others shunned. Desires are central to all facets of mating. They determine who we are attracted to, and who is attracted to us. They influ- ence which attraction tactics will be successful (those that fulfill desires) and which attraction tac- tics will fail (those that violate desires). Successful mate retention tactics involve continuing to provide resources that fulfill the desires of a mate. Failure to Perhaps no adaptive domain is more central to re- fulfill these desires causes breakup and divorce. At production than mating. Those in our evolutionary every step of the mating process, from mate selec- past who failed to mate failed to become ancestors. tion to mate expulsion, desires determine the Modern humans are all descendants of a long and ground rules. unbroken line of ancestors who succeeded in the complex and sometimes circuitous tasks involved in Sexual Selection and Parental Investment mating. As their descendants, modern humans have Although Charles Darwin (1859) recognized that inherited the adaptations that led to the success of survival was central to the evolutionary process, their ancestors. -
10-ELS-OXF Kurtzman1610423 CH002 7..20
Part II Importance of Yeasts Kurtzman 978-0-444-52149-1 00002 Kurtzman 978-0-444-52149-1 00002 Chapter 2 c0002 Yeasts Pathogenic to Humans Chester R. Cooper, Jr. regularly encounter the organisms described below. In fact, many s0010 1. INTRODUCTION TO THE MEDICALLY medical mycologists spend entire careers without direct clinical expo- IMPORTANT YEASTS sure to many of these fungi. Rather, the purpose of this review is to enlighten the non-medical mycologist as to the diversity of yeast and p0010 Prior to global emergence of the human immunodeficiency virus mold species regularly associated with human and animal disease (HIV), which is the causative agent of acquired immunodeficiency that also, at least in part, present a unicellular mode of growth in vivo. syndrome (AIDS), approximately 200 fungal pathogens were recog- The following descriptions present a concise overview of the key p0025 nized from among the more than 100,000 then-known fungal spe- biological and clinical features of these fungi. Where appropriate, refer- cies (Kwon-Chung and Bennett 1992, Rippon 1988). About 50 of ences to recent reviews of particular disease agents and their patholo- these species were regularly associated with fungal disease (myco- gies are provided. For a global perspective of fungal diseases, including sis). Since then, there has been a concurrent dramatic increase in in-depth clinical discussions of specific pathologies, diagnoses, and both the number of known fungal species and the incidence of treatments, the reader is referred to several outstanding and recently mycoses that they cause. Moreover, the spectrum of pathogenic fungi published texts (Anaissie et al.