Chapter 4: Strong Earthquake Motion Observations

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4: Strong Earthquake Motion Observations 339 CHAPTER 4: STRONG EARTHQUAKE MOTION OBSERVATIONS GENERAL ASPECTS OF STRONG-MOTION OBSERVATIONS DURING THE TANGSHAN EARTHQUAKE Peng Kezhong, Yu Shuangjiu and Guo Yuxue* The main shock accelerograms were recorded at most of the stations of the strong-motion accelerograph network in North China during the Tangshan earthquake of magnitude 7.8. Strong-motion records were also recorded at some of the stations during the Luanxian earth- quake of magnitude 7.1 and the Ninghe earthquake of magnitude 6.9. After the main shock of the Tangshan earthquake occurred some mobile observation stations were quickly deployed in Tangshan City and its nearby regions, and a number of near-source records from the aftershocks were obtained thereafter. I. Strong-Motion Accelerograph Network in North China After the 1966 Xingtai earthquake in Hebei Province a strong-motion accelerograph net- work of China was first established and developed slowly in North China. Prior to the July 28, 1976 Tangshan earthquake a total of 23 accelerographs had been installed. Among them, 18 accelerographs (Model RDZ1-12-66) were operated by the Institute of Engineering Mechanics, Academia Sinica (IEM), 3 accelerographs (Model RDZ1-12-66) were operated by the Institute of Earthquake Engineering, Chinese Academy of Building Research (IEE), one accelerograph (Model SG-4-12) by the Institute of Scientific Research, Ministry of Water Conservancy and Electric Power (ISR), and one accelerograph (Model SMAC-B2) by the Institute of Geophysics, State Seismological Bureau (IGP). After the Tangshan earth- quake of magnitude 7.8 another accelerograph was supplemented at Baliqiao in Tongxian County by IEE. The total of 24 accelerographs was deployed. The distribution of the strong- motion accelerograph stations in North China is shown in Figure 1. The basic information on stations of the network is given in Table 1. II. Instrumentation There were 3 types of strong-motion accelerographs used in the permanent network and the mobile stations: Models RDZ1-12-66, SG-4-12 and SMAC-B2. * Institute of Engineering Mechanics, State Seismological Bureau 340 (1) RDZ1-12-66 strong-motion accelerograph The RDZ1-12-66 is a multi-channel instrument with galvanometer registrations. It con- sists of one electromagnetic optical oscillograph of Model RDZ1, eight horizontal trans- ducers of Model RPS1, four vertical transducers of Model RZS1, two mechanical triggers of Model RCF1 and one protective support for the oscillograph (see Photos 1–4). They were designed by IEM and produced by the Beijing Geological Instrument Factory (Huang Zhen- ping et al., 1977). The RDZ1-12-66 is used with external batteries. Both the horizontal and vertical transducers were velocity sensing pendulum. While the coils of the transducer move in the magnetic field during an event, the current generated in the coils is directly proportional to the acceleration of the measured point and the current would drive the high-frequency galvanometer coupled with the transducer to record the acceleration. To connect the transducer with the galvanometer for a recording channel, a dual T-shaped network of resistance coupling shown in Fig. 2 is adopted. In this figure, Rs was the interior resistance of a sensor coil, R1 the damping resistance of the sensor, R2 an adjustable resistor for changing the sensitivity of the recording channel, rg is the interior resistance of a galvanometer coil, rd and R3 represent a matched resistance for adjusting the sensitivity of the recording channel and the damping resistor of the galvanometer respec- tively. The primary technical specifications of the transducer, galvanometer and trigger are given in Tables 2 to 4. The technical specifications of the accelerograph are as follows: 1. Flat frequency response: 0.5 to 35 Hz (Fig. 3). 2. Recording sensitivity: 0.5 to 10 gal/mm (with Model FC6-120 galvanometer), adjust- able. 5 to 100 gal/mm (with Model FC6-400 galvanometer), adjustable. 3. Triggering sensitivity: minimal triggering level of 1 gal, adjustable. 4. Start-up time: full operation within 0.2 to 0.25 Sec. 5. Optical arm length of oscillograph: 308.38 mm. 6. Recording medium: photographic paper, width of 200 mm, length of 20 m. 7. Paper speed: 2.1, 4.8, and 11.3 cm/s, selectable, paper speed variations less than 3% within 1 m. 8. Hold-on time: 2 to 3 Sec. Continuous running is possible when acceleration is larger than triggering level. 9. Timing mark: 20 ±0.1 Hz. 10. Power: DC 25 volts (nominal), rechargeable batteries. 11. Size of oscillograph: 490 ×358 ×353 mm. 341 12. Weight of oscillograph: 35 kilograms. 13. Operating temperature: 0°C to 40°C for oscillograph, −20°C to +40°C for transducer. (2) Model SG-4-12 strong-motion accelerograph** The SG-4-12 is a multi-channel galvanometer recording system designed to record strong earthquake motion. It consists of an electromagnetic optical oscillograph of Model SG-4-12, developed by the Institute of Scientific Research, Ministry of Water Conservancy and Elec- tric Power, and DJ651-B seismic detectors manufactured by the Xian Chemical Instrument Factory. The natural frequency of the sensor is about 26 Hz and the damping constant is 0.35 to 0.5. The sensor is considered as an acceleration transducer for recording strong ground motion, because the output current of the sensor is directly proportional to derivative of acceleration at a measured point. Integral galvanometers or low frequency galvanometers with the natural frequency, f2 , of 10 Hz and the damping constant of 0.15 to 0.2 were used to respond to the sensor's current and then to record the acceleration at the measured point. Two types of triggers were used in this accelerograph. One was the electromagnetic type and the other was the mechanical trigger. The former consisted of a DJ651-B sensor, an elec- tronic amplifier and a control circuit and the latter consisted of a horizontal pendulum, a ver- tical pendulum, a set of contact switches and a control circuit. The appearance of the SG-4-12 is shown in Photo 5. A resistance coupling network shown in Fig. 4 was used to couple a sensor with a galvanometer. In this figure, Rs is the interior resistance of the sensor coil, R1 is the damping resistance of the sensor, R2 is a vari- able resistor for changing the sensitivity, and rg is the interior resistance of a galvanometer. Rd is a matched resistance to adjust the damping of the galvanometer. The primary technical specifications of the sensor and the galvanometer for the SG-4-12 strong-motion accel- erograph are given in Table 5 and Table 6. The technical specifications of the SG-4-12 accelerograph are as follows: 1. Flat frequency response: 0.5 to 20 Hz. 2. Dynamic range: 1 to 200 gal. 3. Triggering sensitivity: from 1 gal, adjustable, for the mechanical trigger. Four levels (1, 2.5, 5, 10) are available for the electromagnetic trigger. 4. Hold-on time: 3 to 60 Sec., adjustable. 5. Optical arm length: 0.32 m. 6. Photographic paper: width of 120 mm, sensitivity of 140 DIN. ** The specifications of SG-4-12 is provided by Mr. Su Kezhong of ISR. 342 7. Paper speed: 5 cm/sec. 8. Number of channels: a total of 12, 10 channels for recording, 2 channels for timing marks. 9. Timing mark: 10 Hz. 10. Power : AC 220 volts; DC 12 or 24 volts. (3) Model SMAC-B2 strong-motion accelerograph The SMAC-B2 strong-motion accelerograph is a direct mechanical scratch recording sys- tem, which is manufactured by AKASHI SEISAKUSHO, LTD., Japan (Photo 6). Three torsional type accelerometers with the natural frequency of 7.14 Hz in an orthogo- nal position were fixed in the accelerograph. The air piston damper is used for critical damping. The recording system was operated by a mechanical spiral spring. Both the hori- zontal and vertical triggers were available: the former is a horizontal one controlled by a mechanical fall-ball system and the latter is a vertical electric pendulum. Its technical specifications are as follows: 1. Flat frequency response: 0 to 7 Hz. 2. Sensitivity: 12.5 gal/mm. 3. Dynamic range: 6 to 500 gal. 4. Timing mark: 1 Hz. 5. Recording speed: 10 mm/sec. 6. Recording medium: wax paper, width of 280 mm and length of 10 m. 7. Number of channels: a total of 4, 3 channels for recording, l channel for timing mark. 8. Triggering sensitivity: 100 gal. for the fall-ball type trigger; 10 gal. for the vertical pendulum starter, adjustable. 9. Single recording duration: 3 minutes, up to 5 times of recording. 10. Power: DC 6 volts. 11. Size: 540 ×540×370 mm. 12. Weight: 100 kilograms. 343 III. Strong-Motion Data Acquisition of the Tangshan Earthquake (1) Records from the main shock of magnitude 7.8 During the Tangshan earthquake of magnitude 7.8 a total of 58 well recorded accelera- tion traces were recorded at 7 stations (8 accelerographs) of the strong-motion network in North China: the Beijing Hotel Station (2 accelerographs), the Hujialou Building Station, the Miyun Reservoir Dam Station, the Sanlihe Building Station, the Guanting Reservoir Dam Station, the Fengcun Bridge Station and the Hongshan Ground Station (see Table 7). In addition, 6 accelerographs installed at the Friendship Hotel Station, the Fensiting Station, the Babaoshan Subway Station, the Baijiatan Station, the Tianjin Hospital Station and the Secondary Dam Station of Huangbizhuang were triggered, but records were not transferred due to some faults. The other 9 accelerographs were not triggered because of environmental reasons or the distance from the epicenter. (2) Records from the Luanxian earthquake of magnitude 7.1 and the Ninghe earthquake of magnitude 6.9 During the Luanxian earthquake of magnitude 7.1, which occurred at 18 h 45 m, July 28, 1976, 45 acceleration traces were recorded at 5 stations: the Beijing Diplomatic Apartment Station, the Hujialou Station, the Fengcun Bridge Station of Hebei Province, the Huangbiz- huang Reservoir Emergency Spillway Station and the Normal Spillway Station (Table 8).
Recommended publications
  • The 2008 Wenchuan Earthquake: Risk Management Lessons and Implications Ic Acknowledgements
    The 2008 Wenchuan Earthquake: Risk Management Lessons and Implications Ic ACKNOWLEDGEMENTS Authors Emily Paterson Domenico del Re Zifa Wang Editor Shelly Ericksen Graphic Designer Yaping Xie Contributors Joseph Sun, Pacific Gas and Electric Company Navin Peiris Robert Muir-Wood Image Sources Earthquake Engineering Field Investigation Team (EEFIT) Institute of Engineering Mechanics (IEM) Massachusetts Institute of Technology (MIT) National Aeronautics and Space Administration (NASA) National Space Organization (NSO) References Burchfiel, B.C., Chen, Z., Liu, Y. Royden, L.H., “Tectonics of the Longmen Shan and Adjacent Regoins, Central China,” International Geological Review, 37(8), edited by W.G. Ernst, B.J. Skinner, L.A. Taylor (1995). BusinessWeek,”China Quake Batters Energy Industry,” http://www.businessweek.com/globalbiz/content/may2008/ gb20080519_901796.htm, accessed September 2008. Densmore A.L., Ellis, M.A., Li, Y., Zhou, R., Hancock, G.S., and Richardson, N., “Active Tectonics of the Beichuan and Pengguan Faults at the Eastern Margin of the Tibetan Plateau,” Tectonics, 26, TC4005, doi:10.1029/2006TC001987 (2007). Embassy of the People’s Republic of China in the United States of America, “Quake Lakes Under Control, Situation Grim,” http://www.china-embassy.org/eng/gyzg/t458627.htm, accessed September 2008. Energy Bulletin, “China’s Renewable Energy Plans: Shaken, Not Stirred,” http://www.energybulletin.net/node/45778, accessed September 2008. Global Terrorism Analysis, “Energy Implications of the 2008 Sichuan Earthquake,” http://www.jamestown.org/terrorism/news/ article.php?articleid=2374284, accessed September 2008. World Energy Outlook: http://www.worldenergyoutlook.org/, accessed September 2008. World Health Organization, “China, Sichuan Earthquake.” http://www.wpro.who.int/sites/eha/disasters/emergency_reports/ chn_earthquake_latest.htm, accessed September 2008.
    [Show full text]
  • Lessons Learnt from the 512 Wenchuan Earthquake: Perception of Seismic Risks
    Australian Earthquake Engineering Society Conference AEES 2008, Ballarat, Victoria. Special Session on 512 Wenchuan Earthquake Lessons Learnt from the 512 Wenchuan Earthquake: Perception of Seismic Risks Hing-Ho Tsang Research Fellow, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China. Email: [email protected] Abstract On May 12, 2008, a devastating earthquake occurred in Sichuan Province of China depriving tens of thousands of lives and destroying homes of millions of people. In this article, the seismotectonic background and the seismicity of the regions are first introduced. The seismic hazard levels specified in the Chinese Code for Seismic Design of Buildings, GB 50011 – 2001, and issues concerning the perception of earthquake risks and the extensive damage to buildings in the affected regions are discussed. Keywords: Wenchuan Earthquake, Sichuan, China, seismic, hazard, risk, intensity 1. BRIEF BACKGROUND OF THE 512 WENCHUAN EARTHQUAKE At 06:28:01.42 UTC on May 12, 2008, a devastating earthquake occurred at the Wenchuan County in the Sichuan Province of China. On the moment magnitude scale, the earthquake was of Mw = 7.9 according to reports from the United States Geological Survey (USGS). On the surface wave magnitude scale, the earthquake was of Ms = 8.0 according to reports from the China Earthquake Administration (CEA). The epicentre of the earthquake was 80 km west-northwest of the provincial capital city of Chengdu (refer Figure 1(a)). The fault ruptured at a depth of about 19 km. There were over 200 aftershocks with magnitudes greater than 4.0 and 8 aftershocks with magnitude greater than 6.0 occurred in the area afterwards.
    [Show full text]
  • Characteristics of Foreshocks and Short Term Deformation in the Source Area of Major Earthquakes
    Characteristics of Foreshocks and Short Term Deformation in the Source Area of Major Earthquakes Peter Molnar Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, Massachusetts 02139 USGS CONTRACT NO. 14-08-0001-17759 Supported by the EARTHQUAKE HAZARDS REDUCTION PROGRAM OPEN-FILE NO.81-287 U.S. Geological Survey OPEN FILE REPORT This report was prepared under contract to the U.S. Geological Survey and has not been reviewed for conformity with USGS editorial standards and stratigraphic nomenclature. Opinions and conclusions expressed herein do not necessarily represent those of the USGS. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS. Appendix A A Study of the Haicheng Foreshock Sequence By Lucile Jones, Wang Biquan and Xu Shaoxie (English Translation of a Paper Published in Di Zhen Xue Bao (Journal of Seismology), 1980.) Abstract We have examined the locations and radiation patterns of the foreshocks to the 4 February 1978 Haicheng earthquake. Using four stations, the foreshocks were located relative to a master event. They occurred very close together, no more than 6 kilo­ meters apart. Nevertheless, there appear to have been too clusters of foreshock activity. The majority of events seem to have occurred in a cluster to the east of the master event along a NNE-SSW trend. Moreover, all eight foreshocks that we could locate and with a magnitude greater than 3.0 occurred in this group. The're also "appears to be a second cluster of foresfiocks located to the northwest of the first. Thus it seems possible that the majority of foreshocks did not occur on the rupture plane of the mainshock, which trends WNW, but on another plane nearly perpendicualr to the mainshock.
    [Show full text]
  • Shear-Wave Velocity–Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential
    Shear-Wave Velocity–Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential R. Kayen, M.ASCE ; R. E. S. Moss, M.ASCE ; E. M. Thompson, A.M.ASCE ; R. B. Seed, M.ASCE ; K. O. Cetin, M.ASCE ; A. Der Kiureghian, M.ASCE ; Y. Tanaka ; and K. Tokimatsu, M.ASCE Abstract: Shear-wave velocity (Vs) offers a means to determine the seismic resistance of soil to liquefaction by a fundamental soil property. This paper presents the results of an 11-year international project to gather new Vs site data and develop probabilistic correlations for seismic soil liquefaction occurrence. Toward that objective, shear-wave velocity test sites were identified, and measurements made for 301 new liquefaction field case histories in China, Japan, Taiwan, Greece, and the United States over a decade. The majority of these new case histories reoccupy those previously investigated by penetration testing. These new data are combined with previously published case histories to build a global catalog of 422 case histories of Vs liquefaction performance. Bayesian regression and structural reliability methods facilitate a probabilistic treatment of the Vs catalog for performance-based engineering applications. Where possible, uncertainties of the variables comprising both the seismic demand and the soil capacity were estimated and included in the analysis, resulting in greatly reduced overall model uncertainty relative to previous studies. The presented data set and probabilistic analysis also help resolve the ancillary issues of adjustment for soil fines content and magnitude scaling factors. Introduction correlating more directly with relative density, which has a strong effect on the cyclic behavior of saturated soil (Idriss and fi Of the several eld techniques routinely used to assess triggering of Boulanger 2008).
    [Show full text]
  • Using Stochastic Dynamic Programming to Support Water Resources Management in the Ziya River Basin, China
    Downloaded from orbit.dtu.dk on: Dec 31, 2019 Using Stochastic Dynamic Programming to Support Water Resources Management in the Ziya River Basin, China Davidsen, Claus; Cardenal, Silvio Javier Pereira; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer- Gottwein, Peter Published in: Journal of Water Resources Planning and Management Link to article, DOI: 10.1061/(ASCE)WR.1943-5452.0000482 Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Davidsen, C., Cardenal, S. J. P., Liu, S., Mo, X., Rosbjerg, D., & Bauer-Gottwein, P. (2015). Using Stochastic Dynamic Programming to Support Water Resources Management in the Ziya River Basin, China. Journal of Water Resources Planning and Management, 141(7), [04014086]. DOI: 10.1061/(ASCE)WR.1943- 5452.0000482 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Using Stochastic Dynamic Programming to Support Water Resources Management in the Ziya River Basin, China Claus Davidsen1; Silvio J.
    [Show full text]
  • Application of FWA-Artificial Fish Swarm Algorithm in the Location of Low-Carbon Cold Chain Logistics Distribution Center in Beijing-Tianjin-Hebei Metropolitan Area
    Hindawi Scientific Programming Volume 2021, Article ID 9945583, 10 pages https://doi.org/10.1155/2021/9945583 Research Article Application of FWA-Artificial Fish Swarm Algorithm in the Location of Low-Carbon Cold Chain Logistics Distribution Center in Beijing-Tianjin-Hebei Metropolitan Area Liyi Zhang ,1 Mingyue Fu ,2 Teng Fei ,1 and Xuhua Pan 1 1School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China 2School of Economics, Tianjin University of Commerce, Tianjin 300134, China Correspondence should be addressed to Xuhua Pan; [email protected] Received 29 March 2021; Accepted 7 July 2021; Published 2 August 2021 Academic Editor: Xiaobo Qu Copyright © 2021 Liyi Zhang et al. +is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Green development is the hot spot of cold chain logistics today. +erefore, this paper converts carbon emission into carbon emission cost, comprehensively considers cargo damage, refrigeration, carbon emission, time window, and other factors, and establishes the optimization model of location of low-carbon cold chain logistics in the Beijing-Tianjin-Hebei metropolitan area. Aiming at the problems of the fish swarm algorithm, this paper makes full use of the fireworks algorithm and proposes an improved fish swarm algorithm on the basis of the fireworks algorithm. By introducing the explosion, Gaussian mutation, mapping and selection operations of the fireworks algorithm, the local search ability and diversity of artificial fish are enhanced. Finally, the modified algorithm is applied to optimize the model, and the results show that the location scheme of low-carbon cold chain logistics in Beijing-Tianjin-Hebei metropolitan area with the lowest total cost can be obtained by using fireworks-artificial fish swarm algorithm.
    [Show full text]
  • Table of Codes for Each Court of Each Level
    Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115
    [Show full text]
  • Addition of Clopidogrel to Aspirin in 45 852 Patients with Acute Myocardial Infarction: Randomised Placebo-Controlled Trial
    Articles Addition of clopidogrel to aspirin in 45 852 patients with acute myocardial infarction: randomised placebo-controlled trial COMMIT (ClOpidogrel and Metoprolol in Myocardial Infarction Trial) collaborative group* Summary Background Despite improvements in the emergency treatment of myocardial infarction (MI), early mortality and Lancet 2005; 366: 1607–21 morbidity remain high. The antiplatelet agent clopidogrel adds to the benefit of aspirin in acute coronary See Comment page 1587 syndromes without ST-segment elevation, but its effects in patients with ST-elevation MI were unclear. *Collaborators and participating hospitals listed at end of paper Methods 45 852 patients admitted to 1250 hospitals within 24 h of suspected acute MI onset were randomly Correspondence to: allocated clopidogrel 75 mg daily (n=22 961) or matching placebo (n=22 891) in addition to aspirin 162 mg daily. Dr Zhengming Chen, Clinical Trial 93% had ST-segment elevation or bundle branch block, and 7% had ST-segment depression. Treatment was to Service Unit and Epidemiological Studies Unit (CTSU), Richard Doll continue until discharge or up to 4 weeks in hospital (mean 15 days in survivors) and 93% of patients completed Building, Old Road Campus, it. The two prespecified co-primary outcomes were: (1) the composite of death, reinfarction, or stroke; and Oxford OX3 7LF, UK (2) death from any cause during the scheduled treatment period. Comparisons were by intention to treat, and [email protected] used the log-rank method. This trial is registered with ClinicalTrials.gov, number NCT00222573. or Dr Lixin Jiang, Fuwai Hospital, Findings Allocation to clopidogrel produced a highly significant 9% (95% CI 3–14) proportional reduction in death, Beijing 100037, P R China [email protected] reinfarction, or stroke (2121 [9·2%] clopidogrel vs 2310 [10·1%] placebo; p=0·002), corresponding to nine (SE 3) fewer events per 1000 patients treated for about 2 weeks.
    [Show full text]
  • Laogai Handbook 劳改手册 2007-2008
    L A O G A I HANDBOOK 劳 改 手 册 2007 – 2008 The Laogai Research Foundation Washington, DC 2008 The Laogai Research Foundation, founded in 1992, is a non-profit, tax-exempt organization [501 (c) (3)] incorporated in the District of Columbia, USA. The Foundation’s purpose is to gather information on the Chinese Laogai - the most extensive system of forced labor camps in the world today – and disseminate this information to journalists, human rights activists, government officials and the general public. Directors: Harry Wu, Jeffrey Fiedler, Tienchi Martin-Liao LRF Board: Harry Wu, Jeffrey Fiedler, Tienchi Martin-Liao, Lodi Gyari Laogai Handbook 劳改手册 2007-2008 Copyright © The Laogai Research Foundation (LRF) All Rights Reserved. The Laogai Research Foundation 1109 M St. NW Washington, DC 20005 Tel: (202) 408-8300 / 8301 Fax: (202) 408-8302 E-mail: [email protected] Website: www.laogai.org ISBN 978-1-931550-25-3 Published by The Laogai Research Foundation, October 2008 Printed in Hong Kong US $35.00 Our Statement We have no right to forget those deprived of freedom and 我们没有权利忘却劳改营中失去自由及生命的人。 life in the Laogai. 我们在寻求真理, 希望这类残暴及非人道的行为早日 We are seeking the truth, with the hope that such horrible 消除并且永不再现。 and inhumane practices will soon cease to exist and will never recur. 在中国,民主与劳改不可能并存。 In China, democracy and the Laogai are incompatible. THE LAOGAI RESEARCH FOUNDATION Table of Contents Code Page Code Page Preface 前言 ...............................................................…1 23 Shandong Province 山东省.............................................. 377 Introduction 概述 .........................................................…4 24 Shanghai Municipality 上海市 .......................................... 407 Laogai Terms and Abbreviations 25 Shanxi Province 山西省 ................................................... 423 劳改单位及缩写............................................................28 26 Sichuan Province 四川省 ................................................
    [Show full text]
  • The People's Liberation Army's 37 Academic Institutions the People's
    The People’s Liberation Army’s 37 Academic Institutions Kenneth Allen • Mingzhi Chen Printed in the United States of America by the China Aerospace Studies Institute ISBN: 9798635621417 To request additional copies, please direct inquiries to Director, China Aerospace Studies Institute, Air University, 55 Lemay Plaza, Montgomery, AL 36112 Design by Heisey-Grove Design All photos licensed under the Creative Commons Attribution-Share Alike 4.0 International license, or under the Fair Use Doctrine under Section 107 of the Copyright Act for nonprofit educational and noncommercial use. All other graphics created by or for China Aerospace Studies Institute E-mail: [email protected] Web: http://www.airuniversity.af.mil/CASI Twitter: https://twitter.com/CASI_Research | @CASI_Research Facebook: https://www.facebook.com/CASI.Research.Org LinkedIn: https://www.linkedin.com/company/11049011 Disclaimer The views expressed in this academic research paper are those of the authors and do not necessarily reflect the official policy or position of the U.S. Government or the Department of Defense. In accordance with Air Force Instruction 51-303, Intellectual Property, Patents, Patent Related Matters, Trademarks and Copyrights; this work is the property of the U.S. Government. Limited Print and Electronic Distribution Rights Reproduction and printing is subject to the Copyright Act of 1976 and applicable treaties of the United States. This document and trademark(s) contained herein are protected by law. This publication is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal, academic, or governmental use only, as long as it is unaltered and complete however, it is requested that reproductions credit the author and China Aerospace Studies Institute (CASI).
    [Show full text]
  • Make a Living: Agriculture, Industry and Commerce in Eastern Hebei, 1870-1937 Fuming Wang Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1998 Make a living: agriculture, industry and commerce in Eastern Hebei, 1870-1937 Fuming Wang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, Asian History Commons, Economic History Commons, and the Other History Commons Recommended Citation Wang, Fuming, "Make a living: agriculture, industry and commerce in Eastern Hebei, 1870-1937 " (1998). Retrospective Theses and Dissertations. 11819. https://lib.dr.iastate.edu/rtd/11819 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly fi'om the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter &c&, while others may be fi-om any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afiect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Chapter 1: Civil Buildings
    1 CHAPTER 1: CIVIL BUILDINGS A SURVEY OF DAMAGE TO CIVIL BUILDINGS Xia Jingqian1, Tong Enchong2 and Zhou Bingzhang3 The Beijing-Tianjin-Tangshan region is situated in the northeastern part of the North China plain and is one of the densely populated and developed regions. During the Tangshan earth- quake civil buildings in this region suffered very severe damage; the damage to and collapse of many residential buildings resulted in great loss of life and property. I. Building Structures Before the Earthquake The Tangshan region includes Tangshan city, Qinhuangdao city and twelve counties, i.e. Fengrun, Fengnan, Luanxian, Luannan, Leting, Changli, Funing, Lulong, Qian-an, Qian-xi, Zunhua and Yutian, and the Baigezhuang Farming Reclamation area. The area of the Tangshan region is 16.5 thousand square kilometers. In Tangshan the area of civil buildings including self- constructed residences was 11.692 million square meters, being 73.7% of the total area of the buildings. The civil buildings included residential buildings of 8.941 million square meters, office buildings of 0.807 million square meters, school buildings of 0.463 million square meters, hospital buildings of 0.225 million square meters and other buildings (store and public buildings, etc.) of 1.256 million square meters. The civil buildings in Tangshan were mainly located in the city and east mining area. Besides, there were 5.483 million square meters of rural civil build- ings in the suburbs of Tangshan city. In other cities, counties and farming reclamation area in the Tangshan area there were 4.969 million units of rural civil building and the total area was about 8.076 million square meters of civil buildings in cities and towns (Table 1).
    [Show full text]