Chinese Experience with Post-Natural-Disaster Reconstruction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 2008 Wenchuan Earthquake: Risk Management Lessons and Implications Ic Acknowledgements
The 2008 Wenchuan Earthquake: Risk Management Lessons and Implications Ic ACKNOWLEDGEMENTS Authors Emily Paterson Domenico del Re Zifa Wang Editor Shelly Ericksen Graphic Designer Yaping Xie Contributors Joseph Sun, Pacific Gas and Electric Company Navin Peiris Robert Muir-Wood Image Sources Earthquake Engineering Field Investigation Team (EEFIT) Institute of Engineering Mechanics (IEM) Massachusetts Institute of Technology (MIT) National Aeronautics and Space Administration (NASA) National Space Organization (NSO) References Burchfiel, B.C., Chen, Z., Liu, Y. Royden, L.H., “Tectonics of the Longmen Shan and Adjacent Regoins, Central China,” International Geological Review, 37(8), edited by W.G. Ernst, B.J. Skinner, L.A. Taylor (1995). BusinessWeek,”China Quake Batters Energy Industry,” http://www.businessweek.com/globalbiz/content/may2008/ gb20080519_901796.htm, accessed September 2008. Densmore A.L., Ellis, M.A., Li, Y., Zhou, R., Hancock, G.S., and Richardson, N., “Active Tectonics of the Beichuan and Pengguan Faults at the Eastern Margin of the Tibetan Plateau,” Tectonics, 26, TC4005, doi:10.1029/2006TC001987 (2007). Embassy of the People’s Republic of China in the United States of America, “Quake Lakes Under Control, Situation Grim,” http://www.china-embassy.org/eng/gyzg/t458627.htm, accessed September 2008. Energy Bulletin, “China’s Renewable Energy Plans: Shaken, Not Stirred,” http://www.energybulletin.net/node/45778, accessed September 2008. Global Terrorism Analysis, “Energy Implications of the 2008 Sichuan Earthquake,” http://www.jamestown.org/terrorism/news/ article.php?articleid=2374284, accessed September 2008. World Energy Outlook: http://www.worldenergyoutlook.org/, accessed September 2008. World Health Organization, “China, Sichuan Earthquake.” http://www.wpro.who.int/sites/eha/disasters/emergency_reports/ chn_earthquake_latest.htm, accessed September 2008. -
Analysis and Prediction of Foundation Settlement of High-Rise Buildings Under Complex Geological Conditions
World Journal of Engineering and Technology, 2017, 5, 445-454 http://www.scirp.org/journal/wjet ISSN Online: 2331-4249 ISSN Print: 2331-4222 Analysis and Prediction of Foundation Settlement of High-Rise Buildings under Complex Geological Conditions Jihui Ding1*, Bingjun Li1, Erxia Du1, Weiyu Wang2, Tuo Zhao2 1College of Civil Engineering and Architecture, Hebei University, Baoding, China 2Heibei Academy of Building Research, Shijiazhuang, China How to cite this paper: Ding, J.H., Li, B.J., Abstract Du, E.X., Wang, W.Y. and Zhao, T. (2017) Analysis and Prediction of Foundation Set- Based on an example of a project in Tangshan, the high-rise buildings are tlement of High-Rise Buildings under Com- built in karst area and mined out affected area which is treated by high pres- plex Geological Conditions. World Journal sure grouting, and foundation is adopted the form of pile raft foundation. By of Engineering and Technology, 5, 445-454. https://doi.org/10.4236/wjet.2017.53039 long-term measured settlement of high-rise buildings, It is found that founda- tion settlement is linear increase with the increase of load before the building Received: June 19, 2017 is roof-sealed, and the settlement increases slowly after the building is Accepted: July 17, 2017 roof-sealed, and the curve tends to converge, and the foundation consolida- Published: July 20, 2017 tion is completed. The settlement of the foundation is about 80% - 84% of the Copyright © 2017 by authors and total settlement before the building is roof-sealed. Three layer BP neural net- Scientific Research Publishing Inc. -
Lessons Learnt from the 512 Wenchuan Earthquake: Perception of Seismic Risks
Australian Earthquake Engineering Society Conference AEES 2008, Ballarat, Victoria. Special Session on 512 Wenchuan Earthquake Lessons Learnt from the 512 Wenchuan Earthquake: Perception of Seismic Risks Hing-Ho Tsang Research Fellow, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China. Email: [email protected] Abstract On May 12, 2008, a devastating earthquake occurred in Sichuan Province of China depriving tens of thousands of lives and destroying homes of millions of people. In this article, the seismotectonic background and the seismicity of the regions are first introduced. The seismic hazard levels specified in the Chinese Code for Seismic Design of Buildings, GB 50011 – 2001, and issues concerning the perception of earthquake risks and the extensive damage to buildings in the affected regions are discussed. Keywords: Wenchuan Earthquake, Sichuan, China, seismic, hazard, risk, intensity 1. BRIEF BACKGROUND OF THE 512 WENCHUAN EARTHQUAKE At 06:28:01.42 UTC on May 12, 2008, a devastating earthquake occurred at the Wenchuan County in the Sichuan Province of China. On the moment magnitude scale, the earthquake was of Mw = 7.9 according to reports from the United States Geological Survey (USGS). On the surface wave magnitude scale, the earthquake was of Ms = 8.0 according to reports from the China Earthquake Administration (CEA). The epicentre of the earthquake was 80 km west-northwest of the provincial capital city of Chengdu (refer Figure 1(a)). The fault ruptured at a depth of about 19 km. There were over 200 aftershocks with magnitudes greater than 4.0 and 8 aftershocks with magnitude greater than 6.0 occurred in the area afterwards. -
Characteristics of Foreshocks and Short Term Deformation in the Source Area of Major Earthquakes
Characteristics of Foreshocks and Short Term Deformation in the Source Area of Major Earthquakes Peter Molnar Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, Massachusetts 02139 USGS CONTRACT NO. 14-08-0001-17759 Supported by the EARTHQUAKE HAZARDS REDUCTION PROGRAM OPEN-FILE NO.81-287 U.S. Geological Survey OPEN FILE REPORT This report was prepared under contract to the U.S. Geological Survey and has not been reviewed for conformity with USGS editorial standards and stratigraphic nomenclature. Opinions and conclusions expressed herein do not necessarily represent those of the USGS. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS. Appendix A A Study of the Haicheng Foreshock Sequence By Lucile Jones, Wang Biquan and Xu Shaoxie (English Translation of a Paper Published in Di Zhen Xue Bao (Journal of Seismology), 1980.) Abstract We have examined the locations and radiation patterns of the foreshocks to the 4 February 1978 Haicheng earthquake. Using four stations, the foreshocks were located relative to a master event. They occurred very close together, no more than 6 kilo meters apart. Nevertheless, there appear to have been too clusters of foreshock activity. The majority of events seem to have occurred in a cluster to the east of the master event along a NNE-SSW trend. Moreover, all eight foreshocks that we could locate and with a magnitude greater than 3.0 occurred in this group. The're also "appears to be a second cluster of foresfiocks located to the northwest of the first. Thus it seems possible that the majority of foreshocks did not occur on the rupture plane of the mainshock, which trends WNW, but on another plane nearly perpendicualr to the mainshock. -
Shear-Wave Velocity–Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential
Shear-Wave Velocity–Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential R. Kayen, M.ASCE ; R. E. S. Moss, M.ASCE ; E. M. Thompson, A.M.ASCE ; R. B. Seed, M.ASCE ; K. O. Cetin, M.ASCE ; A. Der Kiureghian, M.ASCE ; Y. Tanaka ; and K. Tokimatsu, M.ASCE Abstract: Shear-wave velocity (Vs) offers a means to determine the seismic resistance of soil to liquefaction by a fundamental soil property. This paper presents the results of an 11-year international project to gather new Vs site data and develop probabilistic correlations for seismic soil liquefaction occurrence. Toward that objective, shear-wave velocity test sites were identified, and measurements made for 301 new liquefaction field case histories in China, Japan, Taiwan, Greece, and the United States over a decade. The majority of these new case histories reoccupy those previously investigated by penetration testing. These new data are combined with previously published case histories to build a global catalog of 422 case histories of Vs liquefaction performance. Bayesian regression and structural reliability methods facilitate a probabilistic treatment of the Vs catalog for performance-based engineering applications. Where possible, uncertainties of the variables comprising both the seismic demand and the soil capacity were estimated and included in the analysis, resulting in greatly reduced overall model uncertainty relative to previous studies. The presented data set and probabilistic analysis also help resolve the ancillary issues of adjustment for soil fines content and magnitude scaling factors. Introduction correlating more directly with relative density, which has a strong effect on the cyclic behavior of saturated soil (Idriss and fi Of the several eld techniques routinely used to assess triggering of Boulanger 2008). -
Table of Codes for Each Court of Each Level
Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115 -
Active Tectonics and Intracontinental Earthquakes in China: the Kinematics and Geodynamics
The Geological Society of America Special Paper 425 2007 Active tectonics and intracontinental earthquakes in China: The kinematics and geodynamics Mian Liu Youqing Yang Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211, USA Zhengkang Shen State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China Shimin Wang Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211, USA Min Wang Institute of Earthquake Science, China Earthquake Administration, Beijing 100036, China Yongge Wan School of Disaster Prevention Techniques, Yanjiao, Beijing 101601, China ABSTRACT China is a country of intense intracontinental seismicity. Most earthquakes in west- ern China occur within the diffuse Indo-Eurasian plate-boundary zone, which extends thousands of kilometers into Asia. Earthquakes in eastern China mainly occur within the North China block, which is part of the Archean Sino-Korean craton that has been thermally rejuvenated since late Mesozoic. Here, we summarize neotectonic and geo- detic results of crustal kinematics and explore their implications for geodynamics and seismicity using numerical modeling. Quaternary fault movements and global position- ing system (GPS) measurements indicate a strong infl uence of the Indo-Asian colli- sion on crustal motion in continental China. Using a spherical three-dimensional (3-D) fi nite-element model, we show that the effects of the collisional plate-boundary force are largely limited to western China, whereas gravitational spreading of the Tibetan Plateau has a broad impact on crustal deformation in much of Asia. The intense seis- micity in the North China block, and the lack of seismicity in the South China block, may be explained primarily by the tectonic boundary conditions that produce high devi- atoric stresses within the North China block but allow the South China block to move coherently as a rigid block. -
CHINA VANKE CO., LTD.* 萬科企業股份有限公司 (A Joint Stock Company Incorporated in the People’S Republic of China with Limited Liability) (Stock Code: 2202)
Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement. CHINA VANKE CO., LTD.* 萬科企業股份有限公司 (A joint stock company incorporated in the People’s Republic of China with limited liability) (Stock Code: 2202) 2019 ANNUAL RESULTS ANNOUNCEMENT The board of directors (the “Board”) of China Vanke Co., Ltd.* (the “Company”) is pleased to announce the audited results of the Company and its subsidiaries for the year ended 31 December 2019. This announcement, containing the full text of the 2019 Annual Report of the Company, complies with the relevant requirements of the Rules Governing the Listing of Securities on The Stock Exchange of Hong Kong Limited in relation to information to accompany preliminary announcement of annual results. Printed version of the Company’s 2019 Annual Report will be delivered to the H-Share Holders of the Company and available for viewing on the websites of The Stock Exchange of Hong Kong Limited (www.hkexnews.hk) and of the Company (www.vanke.com) in April 2020. Both the Chinese and English versions of this results announcement are available on the websites of the Company (www.vanke.com) and The Stock Exchange of Hong Kong Limited (www.hkexnews.hk). In the event of any discrepancies in interpretations between the English version and Chinese version, the Chinese version shall prevail, except for the financial report prepared in accordance with International Financial Reporting Standards, of which the English version shall prevail. -
Chapter 1: Civil Buildings
1 CHAPTER 1: CIVIL BUILDINGS A SURVEY OF DAMAGE TO CIVIL BUILDINGS Xia Jingqian1, Tong Enchong2 and Zhou Bingzhang3 The Beijing-Tianjin-Tangshan region is situated in the northeastern part of the North China plain and is one of the densely populated and developed regions. During the Tangshan earth- quake civil buildings in this region suffered very severe damage; the damage to and collapse of many residential buildings resulted in great loss of life and property. I. Building Structures Before the Earthquake The Tangshan region includes Tangshan city, Qinhuangdao city and twelve counties, i.e. Fengrun, Fengnan, Luanxian, Luannan, Leting, Changli, Funing, Lulong, Qian-an, Qian-xi, Zunhua and Yutian, and the Baigezhuang Farming Reclamation area. The area of the Tangshan region is 16.5 thousand square kilometers. In Tangshan the area of civil buildings including self- constructed residences was 11.692 million square meters, being 73.7% of the total area of the buildings. The civil buildings included residential buildings of 8.941 million square meters, office buildings of 0.807 million square meters, school buildings of 0.463 million square meters, hospital buildings of 0.225 million square meters and other buildings (store and public buildings, etc.) of 1.256 million square meters. The civil buildings in Tangshan were mainly located in the city and east mining area. Besides, there were 5.483 million square meters of rural civil build- ings in the suburbs of Tangshan city. In other cities, counties and farming reclamation area in the Tangshan area there were 4.969 million units of rural civil building and the total area was about 8.076 million square meters of civil buildings in cities and towns (Table 1). -
Earthquake and Poverty with Chinese Characteristics Wenchuan Earthquake Affected Communities Ten Years After the Disaster
UNIVERSITY OF OSLO Earthquake and poverty with Chinese characteristics Wenchuan earthquake affected communities ten years after the disaster Dragana Grulovic Asia and Middle East Studies/Chinese Society and Politics KIN4593 – Master’s Thesis in Chinese Society and Politics (30 credits) Department of Culture Studies and Oriental Languages Spring 2019 Earthquake and poverty with Chinese characteristics Wenchuan earthquake affected communities ten years after the disaster © Dragana Grulovic 2019 Earthquake and poverty with Chinese characteristics - Wenchuan earthquake affected communities ten years after the disaster Dragana Grulovic https://www.duo.uio.no Print: Webergs Print Abstract In May 2008, China was struck by a massive earthquake that killed closed to 70,000 people. Communities were torn to the ground, and the economic losses were enormous. Ten years have passed since the massive forces took place, and communities and lives have been rebuilt, with some preceding their pre-disaster economic levels. This study applies survey data to estimate the poverty rates in the Wenchuan earthquake affected communities ten years after the disaster. I find that in 2018, the poverty incidence was 3% in the overall area, as compared to 9% before the earthquake. Of the total of 198 sampled communities, 27 reported having no government- designated poor people. However, 23 communities have a poverty prevalence of 10% or higher. These communities have few characteristics in common in terms of demographic structure and access to public services. About half of the communities are located in government-designated poor counties, while the rest are not. Altogether, the poverty situation in the Wenchuan earthquake affected area reflects the complexity of poverty in China. -
Pathways to Earthquake Resilience in China
Report Pathways to earthquake resilience in China October 2015 Overseas Development Institute 203 Blackfriars Road London SE1 8NJ Tel. +44 (0) 20 7922 0300 Fax. +44 (0) 20 7922 0399 E-mail: [email protected] www.odi.org www.odi.org/facebook www.odi.org/twitter Readers are encouraged to reproduce material from ODI Reports for their own publications, as long as they are not being sold commercially. As copyright holder, ODI requests due acknowledgement and a copy of the publication. For online use, we ask readers to link to the original resource on the ODI website. The views presented in this paper are those of the author(s) and do not necessarily represent the views of ODI. © Overseas Development Institute 2015. This work is licensed under a Creative Commons Attribution-NonCommercial Licence (CC BY-NC 3.0). ISSN: 2052-7209 Cover photo: Photo by GDS, Children receiving the GDS disaster risk reduction kit, Shaanxi Province, China Contents Acknowledgements 9 About the authors 9 Glossary of terms 11 Acronyms 11 1. Introduction 13 John Young 2. Earthquake disaster risk reduction policies and programmes in China 16 Cui Ke, Timothy Sim and Lena Dominelli 3. Current knowledge on seismic hazards in Shaanxi Province 23 By Feng Xijie, Richard Walker and Philip England 4. Community-based approaches to disaster risk reduction in China 30 Lena Dominelli, Timothy Sim and Cui Ke 5. Case study: World Vision’s community disaster response plan in Ranjia village 42 William Weizhong Chen, Ning Li and Ling Zhang 6. Case study: Gender Development Solution’s disaster risk reduction in primary education 46 Zhao Bin 7. -
382944 401.Pdf
Case 12-27488 Doc 401 Filed 01/31/13 Entered 01/31/13 10:21:40 Desc Main Document Page 1 of 35 Case 12-27488 Doc 401 Filed 01/31/13 Entered 01/31/13 10:21:40 Desc Main Document Page 2 of 35 Case 12-27488 Doc 401 Filed 01/31/13 Entered 01/31/13 10:21:40 Desc Main Document Page 3 of 35 Peregrine FinancialCase Group, 12-27488 Inc. - U.S. Mail Doc 401 Filed 01/31/13 Entered 01/31/13 10:21:40 Desc MainServed 1/25/2013 Document Page 4 of 35 3T TRADE GROUP, LLC AARON BEYDOUN AARON PARKS 1555 UNIVERSITY BLVD S 26151 LILA LANE 25 PACIFICA APT 5409 MOBILE, AL 36609 DEARBORN HEIGHTS, MI 48127 IRVINE, CA 92648 ABG TRADING ACCOUNTING FEE ACCOUNT-CANNON ACE INVESTMENT STRATEGISTS, LLC 141 W. JACKSON BLVD. 9301 WILSHIRE BLVD., SUITE 515 8609 WESTWOOD CENTER DRIVE CHICAGO, IL 60604 BEVERLY HILLS, CA 90210 #168 ACUVEST ACUVEST INC ADAM SZATKOWSKI 28581 FRONT STREET SUITE 100 28581 FRONT STREET SUITE 100 855 E. 22ND STREET TEMECULA, CA 92590 TEMECULA, CA 92590 LOMBARD IL 60148 ADESA DE CV ADLER 747 DBA FASTMKT AFB, LLC CTA FEE CALZ. SAN PEDRO 112 DESP. #37 2700 W. COAST HWY #130 12300 WILSHIRE BLVD. 2ND FLOOR COL. MIRAVALLE NEWPORT BEACH, CA 92633 LOS ANGELES, CA 90025 AGDAIAN, ARMAN AIDON PENN AIFEN LIU 18603 ASUNCIAN STREET RENMINNAN ROAD SHENFANG LEVEL 9 UNIT 3 BLOCK 2 SHANGDU TIMES SQUARE PORTER RANCH, CA 91326 SHANZHEN GUANGDONG 518000 AN YANG HENAN 455000 CHINA CHINA AINSTIEN TECHNOLOGIES PRIVATE LIMITED AISHIKH FINANCIAL SERVICES AKIVA ANACHOVICH 301-302 ASHWARATH AVENUE NEAR INFRONT OF FACULTY OF ENGINEERING ACHUZAT BAIT CHINAY BAUGH OFF .C.G.