The 6Th Mass Extinction –An Alarming News! Shrabani Barun Department of Zoology, Asansol Girl’S College, Asansol

Total Page:16

File Type:pdf, Size:1020Kb

The 6Th Mass Extinction –An Alarming News! Shrabani Barun Department of Zoology, Asansol Girl’S College, Asansol The 6th mass extinction –an alarming news! Shrabani Barun Department Of Zoology, Asansol Girl’s College, Asansol What is mass extinction? The extinction of a large number of species with in a relatively short period of geogical time known as mass extinction. What is back ground extinction? The extinction of species is inevitable in the evolutionary history of species. It is an ongoing natural occurance. The regular extinction of species through natural process known as back ground extinction ➢ The earth has only experienced five mass extinctions in its 4.5 billion year history. ➢ About 99.9% of all species that ever existed on earth are now extinct. ➢ The earth is on the verge of a sixth mass extinction is extremely alarming news. Triggers of mass extinction:- Bolides impacts: The end-cretaceous mass extinction at 65 Mya is largely believed to have been caused by asteroid impact on earth with other indirect impact like stratospheric ozone depletion, nitric acid formation, anoxia, fire and destruction of food chain. It is believed to be the trigger of the dinosaur extinction. Volcanic eruption: Volcanic ash on entering into earth’s atmosphere block sunlight and heat radiation. It affect directly on primary production and entire food web. Plate tectonics: Movement of the continents into some configuration can cause or contribute to extinctions in several ways: by initiating or ending ice ages, by changing ocean and wind currents and thus altering climate etc. Opening vs closing of equatorial Ocean passages Sea level fluctuation related to glaciations & de-glaciation: Glaciation binds water and lowers sea levels. Life adapted to warm temperature and continental shelf during high sea level become hard to survive and go extinct. Reverse situation would be noticed during the period of de-glaciation. After melting it creates a hostile condition for life due to release of chemicals, metals, ions and gases. Anoxia in oceans & atmosphere: During Turonian time huge scale volcanic deposition of iron in oceans resulted in algal boom which after decomposition resulted an anoxic condition in water and death of biota. Global cooling: It is one of the primary cause of extinction on earth .Cooling could be the result of biological factors, geological factors or an exploding comet. Gamma-ray bursts from some nearby supernova explosions: Ordovisian mass extinction is believed to have been caused by such gamma–ray burst. Past five extinction events :- Period Extinction Date Possible causes Holocene extinction 10,000 BCE Holocene Humans event — Ongoing Cretaceous–Paleocene Bolide impact at Chicxulub site at Paleocene 66 Mya extinction event Yucatan Peninsula in Mexico. Triassic–Jurassic Volcanic eruption, increased CO2 Jurassic 201 Mya extinction event concentration, anoxia. Volcanism, biggest mass Permian–Triassic Triassic 252 Mya extinction, death of 96%of all extinction event species. Late Devonian Devonian 375-360 Mya Bolide impact extinction Ordovician–Silurian Global cooling and sea level Ordovician 450-440 Mya extinction events Gamma-ray burst. All genera "Well-defined" genera Trend line "Big Five" mass extinctions Other mass extinctions Million years ago Thousands of genera Patterns in frequency Extinction Mediated by human:- The sixth extinction started & is continuing in two extinction spasm, both mediated by human beings. Stage 1- Started about 50,000 years ago when humans started dispersal out of Africa. As they came in contact with various species on their migration path, human beings left a trial of killings of native biota. Stage 2- It was initiated about 13,000 years ago with the beginning of agriculture. The discovery of life saving drugs and more assured food supply helped in exponential rise of human population. Extrinsic Drivers of Extinction:- • Habitat loss: One of the biggest drivers of habitat loss on earth is deforestation. It is estimated that 70% of the earth’s land animals and plants live in forest ecosystem. Loss of habitat poses one of the greatest threats to species biodiversity. • Pollution : Contamination from industry, runoff from farms, trash from land fills, airborne pollutants all have adverse effects on wild life. • Invasive species : Invasive species have caused hundreds of extinction by competing with native species for food and other resources, predation, alteration of habitat. In many cases natural selection favors the invasive species and the native species goes extinct eg - phytopthora cinnamon, Lantana camera, Aedes albopictus, Lates niloticus, Indian Myna bird (Acridotheres tristis) domestic cat (Felis catus) . • Climate change : The burning of fossil fuels release green house gases into our atmosphere that intensify the earth’s natural green house effect. The global average temperature has increased by more than 1.4⁰F over the last century causing sea level rise, more intense weather patterns and climatic shift. Extinction of amphibians in Costa Rica is due to a disease caused by a chytrid fungi (Batrachochytrium dendrobatidis) – which has aggrevated by climate change. Eg Golden toad of Costa Rica extinct since around 1989. Amphibians are now most endangered vertebrate group having existed for more than 300 million years through three other mass extinctions. The worldwide decline of corals is also due to recent climate change. The corals are highly sensitive to sea surface temperature. When the temperature increases the symbiotic zooxanthellae algae photosynthesizes at a greater rate and produces more oxygen which through series of metabolic steps produces toxic. In order to survive corals eject the algae, losing colour and source of nourishment. Large scale coral bleeching was observed in Indonesia during EL Nino event of 1980s. Golden toad Brain coral • Ocean Acidification: Higher levels of CO2 in sea water make it acidic which in turn affects calcification. Since the beginning of the industrial revolution, surface water pH has decreased by 0.1 pH units-30% increase in ocean acidity. Coral reefs may be the first ecosystem to go extinct in the Anthropocene. Many reefs are in decline due to the effects of ocean acidification. • Biotic Homogenization: It is the process by which species invasions and extinctions increase the genetic, taxonomic or functional similarity of two or more locations over a specified time interval. • Overkill: Several rhinoceros species are on the edge of extinction due to demand for their horns. The baiji river dolphin was declared functionally extinct in 2006. It was the first cetacean to go extinct due to human activities. Overfishing, habitat destruction, boat traffic, dam building and pollution all likely played a role in the species demise. Fate of Indian one- horned rhinoceros in Assam Baiji river dolphin Present rate of extinction:- The rate of extinction has increased many folds over the background rate at Holocene times. Such as – ❖ The current rate of amphibian extinction is 211 times the rate of their back ground extinction and if all the threatened species go extinct, the rate would be as high as 25000 to 45000 times greater. ❖ Global Coral monitoring network reports that 20% of global coral reefs are degraded to a state that is beyond recovery ❖ IUCN (2009) estimated that between 10,000-20,000 freshwater species are either extinct or at threatened with extinction. This number is so high that it is comparable to extinction rate observed at transitions between geological epochs like pleistocene-to-holocene. ❖ IUCN (2009) Red List of Threatened species (version 2010.4) contains 55,926 species and 33% of these (18,351) are known to be threatened species. Evolutionary importance of extinction :- ✓ Loss of large number of species in mass extinction results in vacating many different niches. ✓ This provides opportunities for new species to evolve in those vacant niches. ✓ All mass extinction events were followed by diversification of biodiversity. ✓ The rise of mammals following extinction of dinosaurs and diversification of angiosperms in vacated niches of gymnosperms. ✓ The extinction of reef builders at end Ordovician extinction event helped to release huge amount of calcium from the reefs into the oceans. ✓ The development of species with bony structure in Devonian was made possible due to abundant supply of this calcium. • Extinction itself promotes biotic interchange such as competition for food & space –“The struggle for existence” – which promote evolution. • It sometimes accelerated the evolution of life on earth. The evolutionary response to mass extinction is slow on human time scales, difficult to predict owing to contingencies of post extinction conditions, including the identity and evolutionary dynamics of the survivors and geographically heterogenous. Evidence we have started an Anthropocene:- 1. Increased levels of climate warming CO2 in the atmosphere at the fastest rate for 66m years, with fossil fuel burning pushing levels from 280 ppm before the industrial revolution to 400ppm and rising today. 2. Put too much plastic in our water ways and oceans which leave identifiable fossil records for future generation to discover. 3. Double the nitrogen and phosphorus in our soils in the past century with our fertilizer use. 4. Left a permanent marker in sediment and glacial ice with air borne particles such as black carbon from fossil fuel burning. 5. Pused extinction rates of animals and plants far above the long term average. The earth is on course to see 75% of species become extinct in the next few centuries if current trends continues. Possible Ways to Stop the 6th Mass Extinction: ❖ Stop burning fossil fuels: Burning fossil fuels and chopping down rainforests is heating up the atmosphere. ❖ ‘Extinction crisis is real’- spread the words to people. ❖ Stop overfishing: Overfishing has wiped out 90% of the big fish from the sea and caused near extinction of many species. So eat fish from only healthy fisheries. Some researchers suggest that by 2050 there could be more plastic than fish in the ocean by weight. ❖ Less consumption of meat: If lands now used to grow crops for livestock were instead used to grow crops eaten directly by people there would be 50%-70% more calories for human need.
Recommended publications
  • Mammalian Tolerance to Humans Is Predicted by Body Mass: Evidence from Long
    1 Title: Mammalian tolerance to humans is predicted by body mass: evidence from long- 2 term archives 3 4 Running Head: Body mass predicts mammalian decline 5 6 Jennifer J. Crees1,2* 7 8 Samuel T. Turvey1 9 10 Robin Freeman1 11 12 Chris Carbone1 13 14 1Institute of Zoology, Zoological Society of London, Regent’s Park, London, NW1 4RY, UK 15 2Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 16 5BD, UK 17 18 *Email: [email protected] 19 20 21 22 23 24 25 1 26 Abstract 27 Humans are implicated as a major driver of species extinctions from the Late Pleistocene to 28 the present. However, our predictive understanding of human-caused extinction remains poor 29 due to the restricted temporal and spatial scales at which this process is typically assessed, 30 and the risks of bias due to “extinction filters” resulting from a poor understanding of past 31 species declines. We develop a novel continent-wide dataset containing country-level last- 32 occurrence records for 30 European terrestrial mammals across the Holocene (c.11,500 years 33 to present), an epoch of relative climatic stability that captures major transitions in human 34 demography. We analyze regional extirpations against a high-resolution database of human 35 population density (HPD) estimates to identify species-specific tolerances to changing HPD 36 through the Holocene. Mammalian thresholds to HPD scale strongly with body mass, with 37 larger-bodied mammals experiencing regional population losses at lower HPDs than smaller- 38 bodied mammals. Our analysis enables us to identify levels of tolerance to HPD for different 39 species, and therefore has wide applicability for determining biotic vulnerability to human 40 impacts.
    [Show full text]
  • Millennial-Scale Faunal Record Reveals Differential Resilience of European
    View metadata, citation and similar papersDownloaded at core.ac.uk from http://rspb.royalsocietypublishing.org/ on August 11, 2016 brought to you by CORE provided by UCL Discovery Millennial-scale faunal record reveals rspb.royalsocietypublishing.org differential resilience of European large mammals to human impacts across the Holocene Research Jennifer J. Crees1, Chris Carbone1, Robert S. Sommer2, Norbert Benecke3 Cite this article: Crees JJ, Carbone C, Sommer and Samuel T. Turvey1 RS, Benecke N, Turvey ST. 2016 Millennial-scale faunal record reveals differential resilience of 1Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, UK European large mammals to human impacts 2Department of Landscape Ecology, Institute for Natural Resource Conservation, University of Kiel, across the Holocene. Proc. R. Soc. B 283: Olshausenstrasse 75, 24118 Kiel, Germany 3Department of Natural Sciences, German Archaeological Institute, Im Dol 2-6, Berlin 14195, Germany 20152152. http://dx.doi.org/10.1098/rspb.2015.2152 The use of short-term indicators for understanding patterns and processes of biodiversity loss can mask longer-term faunal responses to human pressures. We use an extensive database of approximately 18 700 mammalian zooarchaeo- logical records for the last 11 700 years across Europe to reconstruct spatio- Received: 7 September 2015 temporal dynamics of Holocene range change for 15 large-bodied mammal Accepted: 26 February 2016 species. European mammals experienced protracted, non-congruent range losses, with significant declines starting in some species approximately 3000 years ago and continuing to the present, and with the timing, duration and mag- nitude of declines varying individually between species. Some European mammals became globally extinct during the Holocene, whereas others experi- Subject Areas: enced limited or no significant range change.
    [Show full text]
  • Anthropogenic Causation and Prevention Relating to The
    ;;;;;;;;;;;;;;;;;;;;;; XIJDITPDJFUZIBTEFSJWFEUIFCBTJTPGJUTBHSJDVMUVSFBOE Anthropogenic NFEJDJOF .ZFST ɨFëSTUSFBTPOIJHIMJHIUTUIFDVMUVSBMJNQPSUBODF Causation and PGOBUVSFɨFFYJTUFODFPGPSHBOJTNTBSFBOJOUFHSBMQBSU PGIVNBODVMUVSFTNBOZìPSBBOEGBVOBBSFFTTFOUJBMUP Prevention Relating to IVNBOMJWFMJIPPET USBEJUJPOT BSU BOEBFTUIFUJDBMMZQMFBTJOH naturalFOWJSPONFOUTɨFJEFBUIBUUIFiPCTFSWBUJPOBOE the Holocene Extinction DPOUFNQMBUJPOwPGUIFOBUVSBMXPSMEIBTFTTFOUJBMMZTIBQFE NBOZBTQFDUTPGIVNBODJWJMJ[BUJPOJNQMJFTUIBUMPTTPGOBUVSF Jesse S. Browning XJMMJOUVSOIBWFBEFUSJNFOUBMJNQBDUPO)VNBOJUZ +FQTPO English 225 BOE$BOOFZ ɨJTFTUBCMJTIFTPOFSFBTPOXIZIVNBOT WBMVFDPOTFSWBUJPOPGOBUVSF Introduction 4FDPOE JUJTVOFUIJDBMGPSIVNBOCFJOHTUPESJWFPUIFS ɨFUVNVMUVPVTTUBUFPGUIFCJPTQIFSFJTMBSHFMZBUUSJCVUBCMF TQFDJFTUPFYUJODUJPOɨJTCFMJFGJNQMJFTUIBUUIFIVNBO UPBOUISPQPHFOJDJOQVUBOETFWFSBMBTQFDUTPGUIJTDPNQMFY DBQBDJUZGPSDPNQBTTJPO BOEUIFQSPQFOTJUZGPSQFPQMFUPCF TJUVBUJPOBSFXPSUIZPGDPOTJEFSBUJPOɨFBJNPGUIJTQBQFSJT DPNQBTTJPOBUFUPXBSETPUIFSPSHBOJTNT JTPOFPGUIFiUPPMTw UPGVSUIFSVOEFSTUBOEUIFMPTTPGCJPEJWFSTJUZUIBUJTDVSSFOUMZ UIBUDPOTFSWBUJPOJTUTPGUFOVTFJOUIFOBNFPGDPOTFSWBUJPO UBLJOHQMBDF0QJOJPOTUFOEUPEJêFSSFHBSEJOHUIFSFMBUJWF $POTFSWBUJPOJTUTGPDVTFêPSUTPOXIBUBSFDPOTJEFSFE JNQPSUBODFPGJTTVFTPGTVDINBHOJUVEFɨFDVSSFOUMPTT iDIBSJTNBUJDwDSFBUVSFT$IBSJTNBUJDDSFBUVSFTBSFUIPTFTQFDJFT PGCJPEJWFSTJUZJTFWPMVUJPOBSJMZJNQPSUBOUBTJUJTDVSSFOUMZ DPOTJEFSFECZNBOZUPCFDVUF DVEEMZ PSCFBVUJGVMBOJNBMT JNQBDUJOHUIFUSFOEPGMJGFPO&BSUI TVDIBT1BOEBT 5JHFST BOE1PMBS#FBST FUD *OPSEFSUPBDIJFWFBCFUUFSVOEFSTUBOEJOHPGTBJEJTTVFJU
    [Show full text]
  • Characterising the Anthropocene: Ecological Degradation in Italian Twenty-First Century Literary Writing
    Characterising the Anthropocene: Ecological Degradation in Italian Twenty-First Century Literary Writing by Alessandro Macilenti A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in Italian Literature. Victoria University of Wellington 2015 Abstract The twenty-first century has witnessed the exacerbation of ecological issues that began to manifest themselves in the mid-twentieth century. It has become increasingly clear that the current environmental crisis poses an unprecedented existential threat to civilization as well as to Homo sapiens itself. Whereas the physical and social sciences have been defining the now inevitable transition to a different (and more inhospitable) Earth, the humanities have yet to assert their role as a transformative force within the context of global environmental change. Turning abstract issues into narrative form, literary writing can increase awareness of environmental issues as well as have a deep emotive influence on its readership. To showcase this type of writing as well as the methodological frameworks that best highlights the social and ethical relevance of such texts alongside their literary value, I have selected the following twenty-first century Italian literary works: Roberto Saviano’s Gomorra, Kai Zen’s Delta blues, Wu Ming’s Previsioni del tempo, Simona Vinci’s Rovina, Giancarlo di Cataldo’s Fuoco!, Laura Pugno’s Sirene, and Alessandra Montrucchio’s E poi la sete, all published between 2006 and 2011. The main goal of this study is to demonstrate how these works offer an invaluable opportunity to communicate meaningfully and accessibly the discomforting truths of global environmental change, including ecomafia, waste trafficking, illegal building, arson, ozone depletion, global warming and the dysfunctional relationship between humanity and the biosphere.
    [Show full text]
  • The Sixth Great Extinction Donations Events "Soon a Millennium Will End
    The Rewilding Institute, Dave Foreman, continental conservation Home | Contact | The EcoWild Program | Around the Campfire About Us Fellows The Pleistocene-Holocene Event: Mission Vision The Sixth Great Extinction Donations Events "Soon a millennium will end. With it will pass four billion years of News evolutionary exuberance. Yes, some species will survive, particularly the smaller, tenacious ones living in places far too dry and cold for us to farm or graze. Yet we Resources must face the fact that the Cenozoic, the Age of Mammals which has been in retreat since the catastrophic extinctions of the late Pleistocene is over, and that the Anthropozoic or Catastrophozoic has begun." --Michael Soulè (1996) [Extinction is the gravest conservation problem of our era. Indeed, it is the gravest problem humans face. The following discussion is adapted from Chapters 1, 2, and 4 of Dave Foreman’s Rewilding North America.] Click Here For Full PDF Report... or read report below... Many of our reports are in Adobe Acrobat PDF Format. If you don't already have one, the free Acrobat Reader can be downloaded by clicking this link. The Crisis The most important—and gloomy—scientific discovery of the twentieth century was the extinction crisis. During the 1970s, field biologists grew more and more worried by population drops in thousands of species and by the loss of ecosystems of all kinds around the world. Tropical rainforests were falling to saw and torch. Wetlands were being drained for agriculture. Coral reefs were dying from god knows what. Ocean fish stocks were crashing. Elephants, rhinos, gorillas, tigers, polar bears, and other “charismatic megafauna” were being slaughtered.
    [Show full text]
  • Mammalian Tolerance to Humans Is Predicted by Body Mass: Evidence from Long-Term Archives
    Title Mammalian tolerance to humans is predicted by body mass: evidence from long-term archives. Authors Crees, JJ; Turvey, ST; Freeman, R; Carbone, C Date Submitted 2019-06-24 Article type : Articles Title: Mammalian tolerance to humans is predicted by body mass: evidence from long-term archives Running Head: Body mass predicts mammalian decline Jennifer J. Crees1,2* Article Samuel T. Turvey1 Robin Freeman1 Chris Carbone1 1Institute of Zoology, Zoological Society of London, Regent’s Park, London, NW1 4RY, UK 2Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as Accepted doi: 10.1002/ecy.2783 This article is protected by copyright. All rights reserved. *Email: [email protected] Abstract Humans are implicated as a major driver of species extinctions from the Late Pleistocene to the present. However, our predictive understanding of human-caused extinction remains poor due to the restricted temporal and spatial scales at which this process is typically assessed, and the risks of bias due to “extinction filters” resulting from a poor understanding of past species declines. We develop a novel continent-wide dataset containing country-level last-occurrence records for 30 European terrestrial mammals across the Holocene (c.11,500 years to present), an epoch of relative climatic stability that captures major transitions in human demography. We analyze regional extirpations against a high-resolution database of human population density (HPD) estimates to identify species- Article specific tolerances to changing HPD through the Holocene.
    [Show full text]
  • Archaeology, Environmental Justice, and Climate Change on Islands of the Caribbean and Southwestern Indian Ocean
    SPECIAL FEATURE: PERSPECTIVE Archaeology, environmental justice, and climate change on islands of the Caribbean and SPECIAL FEATURE: PERSPECTIVE southwestern Indian Ocean Kristina Douglassa,b,1 and Jago Cooperc Edited by Daniel H. Sandweiss, University of Maine, Orono, ME, and accepted by Editorial Board Member Dolores R. Piperno December 11, 2019 (received for review August 15, 2019) Climate change impacts island communities all over the world. Sea-level rise, an increase in the frequency and intensity of severe weather events, and changes in distribution and health of marine organisms are among the most significant processes affecting island communities worldwide. On islands of the Caribbean and southwestern Indian Ocean (SWIO), however, today’s climate change impacts are magnified by historical environmental injustice and colonial legacies, which have heightened the vulnerability of human and other biotic communities. For some islands, archaeological and paleoecological research offers an important re- cord of precolonial climate change and its interplay with human lives and landscapes. The archaeological record suggests strategies and mechanisms that can inform discussions of resilience in the face of climate change. We detail climate-related challenges facing island Caribbean and SWIO communities using archae- ological and paleoecological evidence for past climate change and human response and argue that these cannot be successfully addressed without an understanding of the processes that have, over time, disrupted livelihoods, reshaped
    [Show full text]
  • Pyrodiversity and the Anthropocene: the Role of Fire in the Broad Spectrum Revolution
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/304073030 Pyrodiversity and the anthropocene: the role of fire in the broad spectrum revolution Article in Evolutionary Anthropology Issues News and Reviews · May 2016 DOI: 10.1002/evan.21482 CITATIONS READS 6 178 3 authors, including: Douglas Bird Rebecca Bliege Bird Pennsylvania State University Pennsylvania State University 67 PUBLICATIONS 2,217 CITATIONS 53 PUBLICATIONS 2,840 CITATIONS SEE PROFILE SEE PROFILE All content following this page was uploaded by Rebecca Bliege Bird on 11 July 2016. The user has requested enhancement of the downloaded file. Evolutionary Anthropology 25:105–116 (2016) ARTICLE Pyrodiversity and the Anthropocene: the Role of Fire in the Broad Spectrum Revolution DOUGLAS W. BIRD, REBECCA BLIEGE BIRD, AND BRIAN F. CODDING The Anthropocene colloquially refers to a global regime of human-caused environ- Binford10 was among the first to mental modification of earth systems associated with profound changes in patterns draw on Boserup to argue that diversi- of human mobility, as well as settlement and resource use compared with prior eras. fication in hunted resources, food Some have argued that the processes generating the Anthropocene are mainly asso- processing, and storage facilities may ciated with population growth and technological innovation, and thus began only in result from an intensified use of the the late Holocene under conditions of dense sedentism and industrial agriculture.1 environment that significantly pre- However, it now seems clear that the roots of the Anthropocene lie in complex proc- dates agriculture. Flannery’s11 hypo- esses of intensification that significantly predate transitions to agriculture.2,3 What thesis to account for such ‘‘broad intensification is remains less clear.
    [Show full text]
  • Bias, Incompleteness, and the “Known Unknowns” in the Holocene Faunal Record
    Submitted to Phil. Trans. R. Soc. B - Issue Bias, incompleteness, and the “known unknowns” in the Holocene faunal record Journal: Philosophical Transactions B Manuscript ID RSTB-2019-0216.R2 Article Type:ForResearch Review Only Date Submitted by the n/a Author: Complete List of Authors: Crees, Jennifer; Natural History Museum, Earth Sciences Collen, Ben; University College London, Centre for Biodiversity and Environment Research Turvey, Samuel; Zoological Society of London, Institute of Zoology Issue Code (this should have already been entered but FOSSIL please contact the Editorial Office if it is not present): Subject: Ecology < BIOLOGY Keywords: Bias, Holocene, Mammals, Extinction, Zooarchaeology, Fossil record http://mc.manuscriptcentral.com/issue-ptrsb Page 1 of 43 Submitted to Phil. Trans. R. Soc. B - Issue 1 2 3 Author-supplied statements 4 5 6 Relevant information will appear here if provided. 7 8 Ethics 9 10 Does your article include research that required ethical approval or permits?: 11 This article does not present research with ethical considerations 12 13 Statement (if applicable): 14 CUST_IF_YES_ETHICS :No data available. 15 16 17 Data 18 19 It is a condition of publication that data, code and materials supporting your paper are made publicly 20 available. Does your paper present new data?: 21 Yes For Review Only 22 23 Statement (if applicable): 24 25 The datasets supporting this paper are available in the 26 supplementary materials. 27 28 Conflict of interest 29 30 I/We declare we have no competing interests 31 32 Statement (if applicable): 33 CUST_STATE_CONFLICT :No data available. 34 35 36 Authors’ contributions 37 38 This paper has multiple authors and our individual contributions were as below 39 40 Statement (if applicable): 41 J.J.C.
    [Show full text]
  • Ancient DNA Reveals Late Survival of Mammoth and Horse in Interior Alaska
    Ancient DNA reveals late survival of mammoth and horse in interior Alaska James Hailea, Duane G. Froeseb, Ross D. E. MacPheec, Richard G. Robertsd, Lee J. Arnoldd,1, Alberto V. Reyesb, Morten Rasmussena, Rasmus Nielsene, Barry W. Brookf, Simon Robinsonb, Martina Demurod, M. Thomas P. Gilberta, Kasper Munche, Jeremy J. Austing, Alan Cooperg, Ian Barnesh, Per Mo¨ lleri, and Eske Willersleva,2 aCentre for GeoGenetics, University of Copenhagen, Copenhagen 2100, Denmark; bDepartment of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada; cDivision of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024; dCentre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW 2522, Australia; eDepartment of Integrative Biology, University of California, Berkeley, CA 94720; fThe Environment Institute, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia; gAustralian Centre for Ancient DNA, University of Adelaide, Adelaide, SA 5005, Australia; hSchool of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom; and iGeoBiosphere Science Centre, Department of Geology/Quaternary Sciences, Lund University, S-223 62 Lund, Sweden Communicated by P. Buford Price, University of California, Berkeley, CA, October 31, 2009 (received for review June 30, 2009) Causes of late Quaternary extinctions of large mammals the possibility of ‘‘ghost ranges’’ of unknown duration). Known (‘‘megafauna’’) continue to be debated, especially for continental as the Signor–Lipps effect (SLE), such sampling bias is an losses, because spatial and temporal patterns of extinction are inevitable feature of the structure of any paleontological data set poorly known.
    [Show full text]
  • February 27, 2017, Anthropocene Newsletter #2
    OMNI ANTHROPOCENE NEWSLETTER #2 http://jamesrichardbennett.blogspot.com/2017/02/anthropocene-newsletter-2- february-27.html COMPILED BY DICK BENNETT FOR A CULTURE OF PEACE, JUSTICE, AND ECOLOGY http://omnicenter.org/donate/ OMNI ANTHROPOCENE NEWSLETTER #1, January 23, 2016. http://jamesrichardbennett.blogspot.com/2016/08/anthropocene-newsletter-1.html Part I: The dominant economic system is leading our civilization to great disasters, and will produce planetary catastrophe if radical correctives are not enacted soon. Part II: We must change the economic system thoroughly, and we can, not by partial, stopgap reforms, but by changing to a system providing protection of the earth for future generations and substantive equality for all. Contents, OMNI Anthropocene Newsletter #2 THE CATASTROPHE Gerald Sloan, “Outer Space as a Gated Community” Part One: How Could We Have Known? Dick’s Timeline of Climate Research and Publication Gerald Sloan, “Termite Dreams” Dick’s Review of Kolbert’s The 6th Extinction THE RESISTANCE Part Two: Resistance and Reconstitution Dawson’s Extinction vs. Kolbert’s The 6th Extinction Angus, Facing the Anthropocene Chapters: 10: “Accelerating into the Anthropocene,” 1945-73; 11: US Class Society: Mitigation vs. Adaptation; 12: System Change for Human Needs; 13: Change Power and Privilege, Cochabamba People’s Agreement, the Movement We Need Illth, the Anthropocene and US Capitalism, Militarism, and Empire Williams, Chris. Ecology and Socialism Burkett and Foster, Marx and the Earth Dick, Twelve Mechanisms for Breaking the Chains of US Capitalism OUTER SPACE AS A GATED COMMUNITY by Gerald Sloan Forsythia and japonica are in full bloom but a fifty-degree plunge in temperature is in the forecast, "unseasonal" a criminal euphemism for what we've done to nature, our species terminally unaware of vegetable intelligence or what to make of a "100-year drought" or flood which happen annually.
    [Show full text]
  • The Sixth Extinction: an Unnatural History
    The Sixth Extinction: An Unnatural History The Sixth Extinction: An Unnatural History is a 2014 non- The Sixth Extinction: An fiction book written by Elizabeth Kolbert and published by Henry Unnatural History Holt and Company. The book argues that the Earth is in the midst of a modern, man-made, sixth extinction. In the book, Kolbert chronicles previous mass extinction events, and compares them to the accelerated, widespread extinctions during our present time. She also describes specific species extinguished by humans, as well as the ecologies surrounding prehistoric and near-present extinction events. The author received the Pulitzer Prize for General Non-Fiction for the book in 2015.[1] The target audience is the general reader, and scientific descriptions are rendered in understandable prose. The writing blends explanations of her treks to remote areas with interviews of scientists, researchers, and guides, without advocating a position, in pursuit of objectivity. Hence, the sixth mass extinction theme is applied to flora and fauna existing in diverse habitats, such as the Panamanian rainforest, the Great Barrier Reef, the Andes, Bikini Atoll, city zoos, and the author's own backyard. The book also applies this theme to a number of other Author Elizabeth Kolbert habitats and organisms throughout the world. After researching Country United States · United the current mainstream view of the relevant peer reviewed Kingdom science, Kolbert estimates flora and fauna loss by the end of the 21st century to be between 20 and 50 percent "of
    [Show full text]