Mammalian Extinction in Ancient Egypt, Similarities with the Southern Levant

Total Page:16

File Type:pdf, Size:1020Kb

Mammalian Extinction in Ancient Egypt, Similarities with the Southern Levant LETTER Mammalian extinction in ancient Egypt, similarities with the southern Levant Yeakel et al. (1) find that wild mammal ex- taxa turnover and extinction was related in a way commensal and benefit from human tinction in ancient Egypt during the Holo- mainly to anthropogenic effects. Similarly impact. Gazelle can subsist in open agricultural cene was nonrandom and coincided with to Egypt (1), direct hunting and habitat de- areas, whereas the carnivores are attracted to abrupt climatic changes and a local cultural struction were the major causes of animal human refuse. Moreover, the elimination of collapse. The authors provide compelling ev- extinction in the southern Levant (3). larger mammals may have also reduced compe- idence that the deterioration of the natural The timing of extinction of a number of tition within members of these guilds, further Egyptian ecosystem gradually progressed dur- specific taxa in Egypt and in the southern improving the survival of the resilient ones. ing the Holocene. The extinction patterns Levant is similar. In both ecosystems, the a,1 a b provided vividly show that decreasing pred- first wave of faunal extinction occurred at Guy Bar-Oz , Ella Tsahar , Ido Izhaki , c ator and prey (ungulates) diversity mirror the time of peak geopolitical vulnerability and Simcha Lev-Yadun increased desertification, human population and a human demographic expansion. In aZinman Institute of Archaeology and growth, and political instability. We see strong the southern Levant it occurred during the bDepartment of Evolutionary and ’ ecological logic in Yeakel et al. s(1)scenario end of the second mid-first millennium B.C.E. Environmental Biology, University of Haifa, and point to the advantages of conducting and in Egypt during the second-first millen- Mount Carmel, Haifa 3498838, Israel; and detailed comparisons of local extinction data nium B.C.E. The first herbivores to become cDepartment of Biology and Environment, to illuminate particularities and to better fine- locally extinct in both regions were those Faculty of Natural Sciences, University of tune broader hypotheses concerning Holo- large-bodied species that were on the verge – cene extinctions. of their distribution range. It is only during Haifa Oranim, Tivon 3600600, Israel Similar patterns of wild mammalian ex- thelast150ythatthesecondmajorextinction tinction occurred in many parts of the ancient wave has occurred (with the arrival of effi- 1 Yeakel JD, et al. (2014) Collapse of an ecological network in world(2),includingthosewehaverecently cient firearms). This more recent occurrence re- Ancient Egypt. Proc Natl Acad Sci USA 111(40):14472–14477. reported for the adjacent, but ecologically dif- sulted in a disproportionally fast extinction rate 2 Martin PS, Klein RG (1984) Quaternary Extinctions: A Prehistoric ferent, southern Levant (3). Like in Egypt, of most prey and predator species (>10 kg). Revolution (Univ of Arizona Press, Tucson, AZ). – 3 Tsahar E, Izhaki I, Lev-Yadun S, Bar-Oz G (2009) Distribution and HoloceneextinctioninthesouthernLevant The 19th 20th century extinction was the extinction of ungulates during the Holocene of the southern Levant. occurred mainly in extinction cascades. The most fatal for the majority of wild mamma- PLoS ONE 4(4):e5316. ’ 4 Bar-Matthews M, Ayalon A (1997) Late Quarternary paleoclimate southern Levant s solid zooarchaeological da- lian taxa in both ecosystems (5). in the Eastern Mediterranean region from stable isotope analysis of tabase enabled demonstrating the time and Interestingly, we can see that similar taxa speleothems at Soreq Cave, Israel. Quat Res 47(2):155–168. pace of ungulate extinction. We have shown escaped extinction and survived to this date 5 Yom-Tov Y, Mendelssohn H (1988) Changes of the distribution and abundance of vertebrates during the 20th (3) that large-bodied mammalian herbivores in both ecosystems. These groups include century in Israel. The Zoogeography of Israel,edsYom-TovY, (Hippopotamus,aurochs,andhartebeest)were opportunistic ungulate (e.g., gazelle and ibex) Tchernov E (Dr. W. Junk Publishers, Dordrecht, The Netherlands), the first to disappear, whereas several species and carnivore (fox, golden jackal, and hyena), pp 515–548. resilient to environmental changes and to hu- taxa that are less sensitive to environmental man activity have survived to date in both changes, some of which inhabit the desert, Author contributions: G.B.-O., E.T., I.I., and S.L.-Y. wrote the paper. ecosystems (1, 3). Because the southern Levant a less populated habitat. Hence, these taxa The authors declare no conflict of interest. climate was relatively stable throughout the were less exposed to the multitudes of human 1To whom correspondence should be addressed. Email: guybar@ Holocene (4), we suggested (3) that animal impacts. Most of these surviving species are research.haifa.ac.il. E238 | PNAS | January 20, 2015 | vol. 112 | no. 3 www.pnas.org/cgi/doi/10.1073/pnas.1422133112 Downloaded by guest on September 26, 2021.
Recommended publications
  • Annual Mass Drownings of the Serengeti Wildebeest Migration Influence Nutrient Cycling and Storage in the Mara River
    Annual mass drownings of the Serengeti wildebeest migration influence nutrient cycling and storage in the Mara River Amanda L. Subaluskya,b,1, Christopher L. Duttona,b, Emma J. Rosib, and David M. Posta aDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511; and bCary Institute of Ecosystem Studies, Millbrook, NY 12545 Edited by James A. Estes, University of California, Santa Cruz, CA, and approved May 16, 2017 (received for review September 8, 2016) The annual migration of ∼1.2 million wildebeest (Connochaetes taur- hundreds to thousands of bison drowning in rivers of the western inus) through the Serengeti Mara Ecosystem is the largest remaining United States in the late 18th and early 19th centuries when overland migration in the world. One of the most iconic portions of large bison herds were still intact (16, 17). River basins that no their migration is crossing of the Mara River, during which thousands longer contain terrestrial migrations may have lost the annual drown annually. These mass drownings have been noted, but their input of resources from mass drownings, which may fundamen- frequency, size, and impact on aquatic ecosystems have not been tally alter how those river ecosystems function now compared quantified. Here, we estimate the frequency and size of mass drown- with the past. The more well-studied annual migrations of ings in the Mara River and model the fate of carcass nutrients through anadromous fishes and subsequent carcass inputs have been > the river ecosystem. Mass drownings ( 100 individuals) occurred in at shown to be important in rivers (18, 19), but equivalent exami- least 13 of the past 15 y; on average, 6,250 carcasses and 1,100 tons of nation of the influence of terrestrial migrations is lacking.
    [Show full text]
  • Human Pressure Threaten Swayne's Hartebeest to Point of Local
    Research Article Volume 8:1,2020 Journal of Biodiversity and Endangered DOI: 10.24105/2332-2543.2020.8.239 Species ISSN: 2332-2543 Open Access Human Pressure Threaten Swayne’s Hartebeest to Point of Local Extinction from the Savannah Plains of Nech Sar National Park, South Rift Valley, Ethiopia Simon Shibru1*, Karen Vancampenhout2, Jozef Deckers2 and Herwig Leirs3 1Department of Biology, Arba Minch University, Arba Minch, Ethiopia 2Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200E, B-3001 Leuven, Belgium 3Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium Abstract We investigated the population size of the endemic and endangered Swayne’s Hartebeest (Alcelaphus buselaphus swaynei) in Nech Sar National Park from 2012 to 2014 and document the major threats why the species is on the verge of local extinction. The park was once known for its abundant density of Swayne’s Hartebeest. We used direct total count methods for the census. We administered semi-structured interviews and open-ended questionnaires with senior scouts who are a member of the local communities. Historical records were obtained to evaluate the population trends of the animals since 1974. The density of the animal decreased from 65 in 1974 to 1 individual per 100 km2 in 2014 with a decline of 98.5% in the past 40 years. The respondents agreed that the conservation status of the park was in its worst condition ever now with only 2 Swayne’s Hartebeest left, with a rapid decline from 4 individuals in 2012 and 12 individuals in 2009. Mainly hunting and habitat loss, but also unsuitable season of reproduction and shortage of forage as minor factors were identified as threats for the local extinction of the Swayne’s Hartebeests.
    [Show full text]
  • Slow-Onset Processes and Resulting Loss and Damage
    Publication Series ADDRESSING LOSS AND DAMAGE FROM SLOW-ONSET PROCESSES Slow-onset Processes and Resulting Loss and Damage – An introduction Table of contents L 4 22 ist of a bbre Summary of Loss and damage via tio key facts and due to slow-onset ns definitions processes AR4 IPCC Fourth Assessment Report 6 22 What is loss and damage? Introduction AR5 IPCC Fifth Assessment Report COP Conference of the Parties to the 23 United Nations Framework Convention on 9 What losses and damages IMPRINT Climate Change can result from slow-onset Slow-onset ENDA Environment Development Action Energy, processes? Authors Environment and Development Programme processes and their Laura Schäfer, Pia Jorks, Emmanuel Seck, Energy key characteristics 26 Oumou Koulibaly, Aliou Diouf ESL Extreme Sea Level What losses and damages Contributors GDP Gross Domestic Product 9 can result from sea level rise? Idy Niang, Bounama Dieye, Omar Sow, Vera GMSL Global mean sea level What is a slow-onset process? Künzel, Rixa Schwarz, Erin Roberts, Roxana 31 Baldrich, Nathalie Koffi Nguessan GMSLR Global mean sea level rise 10 IOM International Organization on Migration What are key characteristics Loss and damage Editing Adam Goulston – Scize Group LLC of slow-onset processes? in Senegal due to IPCC Intergovernmental Panel on Climate Change sea level rise Layout and graphics LECZ Low-elevation coastal zone 14 Karin Roth – Wissen in Worten OCHA Office for the Coordination of Humanitarian Affairs What are other relevant January 2021 terms for the terminology on 35 RCP Representative
    [Show full text]
  • Desertification and Agriculture
    BRIEFING Desertification and agriculture SUMMARY Desertification is a land degradation process that occurs in drylands. It affects the land's capacity to supply ecosystem services, such as producing food or hosting biodiversity, to mention the most well-known ones. Its drivers are related to both human activity and the climate, and depend on the specific context. More than 1 billion people in some 100 countries face some level of risk related to the effects of desertification. Climate change can further increase the risk of desertification for those regions of the world that may change into drylands for climatic reasons. Desertification is reversible, but that requires proper indicators to send out alerts about the potential risk of desertification while there is still time and scope for remedial action. However, issues related to the availability and comparability of data across various regions of the world pose big challenges when it comes to measuring and monitoring desertification processes. The United Nations Convention to Combat Desertification and the UN sustainable development goals provide a global framework for assessing desertification. The 2018 World Atlas of Desertification introduced the concept of 'convergence of evidence' to identify areas where multiple pressures cause land change processes relevant to land degradation, of which desertification is a striking example. Desertification involves many environmental and socio-economic aspects. It has many causes and triggers many consequences. A major cause is unsustainable agriculture, a major consequence is the threat to food production. To fully comprehend this two-way relationship requires to understand how agriculture affects land quality, what risks land degradation poses for agricultural production and to what extent a change in agricultural practices can reverse the trend.
    [Show full text]
  • What Are the Major Causes of Desertification?
    What Are the Major Causesof Desertification? ‘Climatic variations’ and ‘Human activities’ can be regarded as relationship with development pressure on land by human the two main causes of desertification. activities which are one of the principal causes of Climatic variations: Climate change, drought, moisture loss on a desertification. The table below shows the population in global level drylands by each continent and as a percentage of the global Human activities: These include overgrazing, deforestation and population of the continent. It reveals a high ratio especially in removal of the natural vegetation cover(by taking too much fuel Africa and Asia. wood), agricultural activities in the vulnerable ecosystems of There is a vicious circle by which when many people live in arid and semi-arid areas, which are thus strained beyond their the dryland areas, they put pressure on vulnerable land by their capacity. These activities are triggered by population growth, the agricultural practices and through their daily activities, and as a impact of the market economy, and poverty. result, they cause further land degradation. Population levels of the vulnerable drylands have a close 2 ▼ Main Causes of Soil Degradation by Region in Susceptible Drylands and Other Areas Degraded Land Area in the Dryland: 1,035.2 million ha 0.9% 0.3% 18.4% 41.5% 7.7 % Europe 11.4% 34.8% North 99.4 America million ha 32.1% 79.5 million ha 39.1% Asia 52.1% 5.4 26.1% 370.3 % million ha 11.5% 33.1% 30.1% South 16.9% 14.7% America 79.1 million ha 4.8% 5.5 40.7% Africa
    [Show full text]
  • Mammalian Tolerance to Humans Is Predicted by Body Mass: Evidence from Long
    1 Title: Mammalian tolerance to humans is predicted by body mass: evidence from long- 2 term archives 3 4 Running Head: Body mass predicts mammalian decline 5 6 Jennifer J. Crees1,2* 7 8 Samuel T. Turvey1 9 10 Robin Freeman1 11 12 Chris Carbone1 13 14 1Institute of Zoology, Zoological Society of London, Regent’s Park, London, NW1 4RY, UK 15 2Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 16 5BD, UK 17 18 *Email: [email protected] 19 20 21 22 23 24 25 1 26 Abstract 27 Humans are implicated as a major driver of species extinctions from the Late Pleistocene to 28 the present. However, our predictive understanding of human-caused extinction remains poor 29 due to the restricted temporal and spatial scales at which this process is typically assessed, 30 and the risks of bias due to “extinction filters” resulting from a poor understanding of past 31 species declines. We develop a novel continent-wide dataset containing country-level last- 32 occurrence records for 30 European terrestrial mammals across the Holocene (c.11,500 years 33 to present), an epoch of relative climatic stability that captures major transitions in human 34 demography. We analyze regional extirpations against a high-resolution database of human 35 population density (HPD) estimates to identify species-specific tolerances to changing HPD 36 through the Holocene. Mammalian thresholds to HPD scale strongly with body mass, with 37 larger-bodied mammals experiencing regional population losses at lower HPDs than smaller- 38 bodied mammals. Our analysis enables us to identify levels of tolerance to HPD for different 39 species, and therefore has wide applicability for determining biotic vulnerability to human 40 impacts.
    [Show full text]
  • Millennial-Scale Faunal Record Reveals Differential Resilience of European
    View metadata, citation and similar papersDownloaded at core.ac.uk from http://rspb.royalsocietypublishing.org/ on August 11, 2016 brought to you by CORE provided by UCL Discovery Millennial-scale faunal record reveals rspb.royalsocietypublishing.org differential resilience of European large mammals to human impacts across the Holocene Research Jennifer J. Crees1, Chris Carbone1, Robert S. Sommer2, Norbert Benecke3 Cite this article: Crees JJ, Carbone C, Sommer and Samuel T. Turvey1 RS, Benecke N, Turvey ST. 2016 Millennial-scale faunal record reveals differential resilience of 1Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, UK European large mammals to human impacts 2Department of Landscape Ecology, Institute for Natural Resource Conservation, University of Kiel, across the Holocene. Proc. R. Soc. B 283: Olshausenstrasse 75, 24118 Kiel, Germany 3Department of Natural Sciences, German Archaeological Institute, Im Dol 2-6, Berlin 14195, Germany 20152152. http://dx.doi.org/10.1098/rspb.2015.2152 The use of short-term indicators for understanding patterns and processes of biodiversity loss can mask longer-term faunal responses to human pressures. We use an extensive database of approximately 18 700 mammalian zooarchaeo- logical records for the last 11 700 years across Europe to reconstruct spatio- Received: 7 September 2015 temporal dynamics of Holocene range change for 15 large-bodied mammal Accepted: 26 February 2016 species. European mammals experienced protracted, non-congruent range losses, with significant declines starting in some species approximately 3000 years ago and continuing to the present, and with the timing, duration and mag- nitude of declines varying individually between species. Some European mammals became globally extinct during the Holocene, whereas others experi- Subject Areas: enced limited or no significant range change.
    [Show full text]
  • The Hippopotamus 4
    lesson The Hippopotamus 4 Before You Read Look at the picture. Read the sentences. Check (✔) True, False, or Don’t Know. True False Don’t Know 1. The hippopotamus is big. 2. It lives in the snow and ice. 3. It has wings and a tail. 15 Lesson 4: The Hippopotamus 4 The Hippopotamus The hippopotamus, or hippo, lives in the hot part of Africa. It is a mammal. That is, its babies are born alive, and they drink milk from the mother’s body. The hippopotamus is a large animal. It weighs four big tons. Its stomach is seven meters long, and it eats only plants. It is a mammal, but it spends a lot of time in the water. During the day, it sleeps beside a river or a lake. at the side of Sometimes it wakes up. Then it goes under the water to get some plants for food. It can close its nose and stay under water for ten minutes. Its ears, eyes, and nose are high up on its head. It can stay with its body under the water and only its ears, eyes, and nose above the water. over Then it can breathe the air. At night, the hippo walks on the land and looks for food. It never goes very far from the water. A baby hippo often stands on its mother’s back. The mother looks for food underwater. The baby rides on her back above the water. 16 Unit 1: Animals a Vocabulary Put the right word in each blank. The sentences are from the text.
    [Show full text]
  • The Effect of Species Associations on the Diversity and Coexistence of African Ungulates
    The effect of species associations on the diversity and coexistence of African ungulates. By Nancy Barker For Professor Kolasa BIO306H1 – Tropical Ecology University of Toronto Wednesday, August 24th, 2005 Abstract: The effects of species associations on species diversity and coexistence were investigated in East Africa. The frequency and group sizes of African ungulates were observed and analyzed to determine for differences in species associations based on their density and distribution, as well as their associations with other species. Associations between species were determined to be nonrandom and seen to affect the demographics of associating herds. Such associations mirrored in other studies were shown to be the result of interspecific competition, habitat preferences and predation pressure which increases the potential for coexistence between species. This suggests a potentially important role in the regulation of species diversity by ecological dynamics in species rich communities. In the face of today’s biodiversity crisis, such understanding of species associations and how they are regulated may have huge implications for conservation. Introduction: known with the famous Darwin’s finches of the Galapagos Islands. However, there are many other Sympatric coexistence of organisms within a guilds with what seems to be extensive community poses several questions for ecologists. overlapping in their resources, such as the grazing High levels of species association occur with high herds in Africa which eat common and widely species packing, as is seen within the Selous game dispersed foods. Sinclair (Sinclair, 1979 as cited in reserve of Tanzania in east Africa. Sinclair (1985) Sinclair, 1985) has found that this seemingly notes that mixed herds are frequently seen in east extensive overlap among these herds have also Africa and Connor and Simberloff (1979) have undergone niche separation.
    [Show full text]
  • Assessing Climate Change's Contribution to Global Catastrophic
    Assessing Climate Change’s Contribution to Global Catastrophic Risk Simon Beard,1,2 Lauren Holt,1 Shahar Avin,1 Asaf Tzachor,1 Luke Kemp,1,3 Seán Ó hÉigeartaigh,1,4 Phil Torres, and Haydn Belfield1 5 A growing number of people and organizations have claimed climate change is an imminent threat to human civilization and survival but there is currently no way to verify such claims. This paper considers what is already known about this risk and describes new ways of assessing it. First, it reviews existing assessments of climate change’s contribution to global catastrophic risk and their limitations. It then introduces new conceptual and evaluative tools, being developed by scholars of global catastrophic risk that could help to overcome these limitations. These connect global catastrophic risk to planetary boundary concepts, classify its key features, and place global catastrophes in a broader policy context. While not yet constituting a comprehensive risk assessment; applying these tools can yield new insights and suggest plausible models of how climate change could cause a global catastrophe. Climate Change; Global Catastrophic Risk; Planetary Boundaries; Food Security; Conflict “Understanding the long-term consequences of nuclear war is not a problem amenable to experimental verification – at least not more than once" Carl Sagan (1983) With these words, Carl Sagan opened one of the most influential papers ever written on the possibility of a global catastrophe. “Nuclear war and climatic catastrophe: Some policy implications” set out a clear and credible mechanism by which nuclear war might lead to human extinction or global civilization collapse by triggering a nuclear winter.
    [Show full text]
  • Anthropogenic Causation and Prevention Relating to The
    ;;;;;;;;;;;;;;;;;;;;;; XIJDITPDJFUZIBTEFSJWFEUIFCBTJTPGJUTBHSJDVMUVSFBOE Anthropogenic NFEJDJOF .ZFST ɨFëSTUSFBTPOIJHIMJHIUTUIFDVMUVSBMJNQPSUBODF Causation and PGOBUVSFɨFFYJTUFODFPGPSHBOJTNTBSFBOJOUFHSBMQBSU PGIVNBODVMUVSFTNBOZìPSBBOEGBVOBBSFFTTFOUJBMUP Prevention Relating to IVNBOMJWFMJIPPET USBEJUJPOT BSU BOEBFTUIFUJDBMMZQMFBTJOH naturalFOWJSPONFOUTɨFJEFBUIBUUIFiPCTFSWBUJPOBOE the Holocene Extinction DPOUFNQMBUJPOwPGUIFOBUVSBMXPSMEIBTFTTFOUJBMMZTIBQFE NBOZBTQFDUTPGIVNBODJWJMJ[BUJPOJNQMJFTUIBUMPTTPGOBUVSF Jesse S. Browning XJMMJOUVSOIBWFBEFUSJNFOUBMJNQBDUPO)VNBOJUZ +FQTPO English 225 BOE$BOOFZ ɨJTFTUBCMJTIFTPOFSFBTPOXIZIVNBOT WBMVFDPOTFSWBUJPOPGOBUVSF Introduction 4FDPOE JUJTVOFUIJDBMGPSIVNBOCFJOHTUPESJWFPUIFS ɨFUVNVMUVPVTTUBUFPGUIFCJPTQIFSFJTMBSHFMZBUUSJCVUBCMF TQFDJFTUPFYUJODUJPOɨJTCFMJFGJNQMJFTUIBUUIFIVNBO UPBOUISPQPHFOJDJOQVUBOETFWFSBMBTQFDUTPGUIJTDPNQMFY DBQBDJUZGPSDPNQBTTJPO BOEUIFQSPQFOTJUZGPSQFPQMFUPCF TJUVBUJPOBSFXPSUIZPGDPOTJEFSBUJPOɨFBJNPGUIJTQBQFSJT DPNQBTTJPOBUFUPXBSETPUIFSPSHBOJTNT JTPOFPGUIFiUPPMTw UPGVSUIFSVOEFSTUBOEUIFMPTTPGCJPEJWFSTJUZUIBUJTDVSSFOUMZ UIBUDPOTFSWBUJPOJTUTPGUFOVTFJOUIFOBNFPGDPOTFSWBUJPO UBLJOHQMBDF0QJOJPOTUFOEUPEJêFSSFHBSEJOHUIFSFMBUJWF $POTFSWBUJPOJTUTGPDVTFêPSUTPOXIBUBSFDPOTJEFSFE JNQPSUBODFPGJTTVFTPGTVDINBHOJUVEFɨFDVSSFOUMPTT iDIBSJTNBUJDwDSFBUVSFT$IBSJTNBUJDDSFBUVSFTBSFUIPTFTQFDJFT PGCJPEJWFSTJUZJTFWPMVUJPOBSJMZJNQPSUBOUBTJUJTDVSSFOUMZ DPOTJEFSFECZNBOZUPCFDVUF DVEEMZ PSCFBVUJGVMBOJNBMT JNQBDUJOHUIFUSFOEPGMJGFPO&BSUI TVDIBT1BOEBT 5JHFST BOE1PMBS#FBST FUD *OPSEFSUPBDIJFWFBCFUUFSVOEFSTUBOEJOHPGTBJEJTTVFJU
    [Show full text]
  • Characterising the Anthropocene: Ecological Degradation in Italian Twenty-First Century Literary Writing
    Characterising the Anthropocene: Ecological Degradation in Italian Twenty-First Century Literary Writing by Alessandro Macilenti A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in Italian Literature. Victoria University of Wellington 2015 Abstract The twenty-first century has witnessed the exacerbation of ecological issues that began to manifest themselves in the mid-twentieth century. It has become increasingly clear that the current environmental crisis poses an unprecedented existential threat to civilization as well as to Homo sapiens itself. Whereas the physical and social sciences have been defining the now inevitable transition to a different (and more inhospitable) Earth, the humanities have yet to assert their role as a transformative force within the context of global environmental change. Turning abstract issues into narrative form, literary writing can increase awareness of environmental issues as well as have a deep emotive influence on its readership. To showcase this type of writing as well as the methodological frameworks that best highlights the social and ethical relevance of such texts alongside their literary value, I have selected the following twenty-first century Italian literary works: Roberto Saviano’s Gomorra, Kai Zen’s Delta blues, Wu Ming’s Previsioni del tempo, Simona Vinci’s Rovina, Giancarlo di Cataldo’s Fuoco!, Laura Pugno’s Sirene, and Alessandra Montrucchio’s E poi la sete, all published between 2006 and 2011. The main goal of this study is to demonstrate how these works offer an invaluable opportunity to communicate meaningfully and accessibly the discomforting truths of global environmental change, including ecomafia, waste trafficking, illegal building, arson, ozone depletion, global warming and the dysfunctional relationship between humanity and the biosphere.
    [Show full text]