Making Sense: Weakly Electric Fish Modulate Sensory Feedback

Total Page:16

File Type:pdf, Size:1020Kb

Making Sense: Weakly Electric Fish Modulate Sensory Feedback MAKING SENSE: WEAKLY ELECTRIC FISH MODULATE SENSORY FEEDBACK VIA SOCIAL BEHAVIOR AND MOVEMENT by Sarah A. Stamper A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland June, 2012 © 2012 Sarah Stamper All Rights Reserved Abstract Animals rely on sensory information for the control of their behavior. Understanding this process requires a detailed description of the sensory feedback that they receive, which is often determined by an animal’s proximity to conspecifics and its own movement within the environment. This dissertation examines the role of social behavior and movement for the modulation of electrosensory feedback in weakly electric fish. We made observations of weakly electric fish in their natural habitats and found that some species of fish, which typically have more complex social behaviors, are most often found in groups. These same species will preferentially approach a refuge with a social signal in the laboratory. As a result of social grouping these fish receive continuous electrosensory oscillations (amplitude and phase modulations) caused by the interactions from the electric fields of each individual. Interestingly, both social grouping and movement can produce higher order modulations (termed ‘envelopes’), which can have lower frequency content than the first order modulations. Curiously, we did not observe low frequency envelopes in the majority of our samples. To determine why that might be the case we tested the behavioral responses of weakly electric fish to envelope stimuli in controlled laboratory experiments. We found that Eigenmannia will increase or decrease their electric organ discharge (EOD) frequency in response to social envelope stimuli, termed the Social Envelope Response (SER). The strength of the SER was dependent on the initial envelope frequency and the stimulus amplitude, whereby lower frequency envelopes and higher stimulus amplitudes resulted in the strongest EOD changes. As a consequence of ii the EOD change the envelope frequency during the course of a trial was increased, suggesting that the SER may be a mechanism for avoiding low frequency social envelopes. These results may explain our field results that showed weakly electric fish do not typically produce low-frequency envelopes in natural social groups. These fish are not only processing electrosensory information from their social behavior but are also simultaneously process electrosensory information from their own movement and the movement of nearby objects in their environment. To investigate the relationship between movement and the modulation of sensory feedback we tested the ability of Eigenmannia to track a moving refuge under varied sensory conditions by changing the illumination (vision) and conductivity (electroreception) across trials. When the fish relied solely on electrosensory information during tracking they performed additional movements that consisted of whole-body oscillations and tail bends, which may be used to shape electrosensory feedback. Our results indicate that weakly electric fish continuously process two streams of information, one derived from social interactions and the other from movement, which are used for the independent control of the fish’s electric organ and the fish’s locomotor system. In addition, both social behavior and movement can be used to modulate electrosensory feedback. Future studies should examine sensory processing in the context of the animal’s social behavior and their movement within the environment, as it can categorically change the signals that the animal is receiving. Candidate: Sarah A. Stamper Readers: Gregory F. Ball, Amy J. Bastian, Noah J. Cowan, Eric S. Fortune (Advisor) and Rüdiger Krahe iii This thesis is dedicated to the fish: Martini, Tequila, Whiskey, Mojito, Sangria, Brandy & Sweetie iv Acknowledgements Although writing this dissertation really only happened in the last few months it was the culmination of years and years of work. And I don’t just mean the work I did writing it—the real work isn’t evident in these pages. This dissertation simply would not have been possible without a village of people on the sidelines who supported and encouraged me along the way. So, I’ll just start at the beginning. I would like to thank my parents who started loving me the minute I came out as a screaming, crying mess and have continued to do so even though not much has changed. My parents taught me to work hard, whether it was schoolwork or bargain shopping. Of course, both of these skills turn out to be essential for surviving graduate school. My parents also made efforts to encourage my interest in science by letting me play with ‘toys’ such as microscopes, chemistry sets, sea monkeys, and ant farms. And I can’t forget my favorite of all time, the “Diggin’ Up Dinosaurs” archeology set they bought me even though it was abundantly clear I’d never have enough patience for that! They also kept buying me critter after critter—fish (Cleo and Monstro), hamsters (Teddy, Rascal, Twinkie, and Sausage), hermit crabs (#1-4), a bird (Clyde), a turtle (Lilly Pad), a cat (Kitty Kitty Katra) and dogs (Lollipup, Max, and Lil Moo)—which instilled in me my love of animals and subsequently the study of animal behavior. So I would like to formally thank my parents for encouraging my interests even though it sometimes meant my mom had to pull slugs out of my throat or my dad had to stay up all night with me catching lightning bugs. I was also quite fortunate to have a series of great teachers throughout my early education. I would like to thank my 3rd grade teacher Mrs. Gaylin for not reporting me to v the authorities when I turned in my assignment called “It’s Sad But True” a picture book detailing the demise of all my aforementioned critters. That was a close call, and I think she was only slightly more certain that I was destined to become a scientist rather than a serial killer. I was also lucky to have Dr. DaRif as my 10th grade chemistry teacher. He sponsored my science fair project on blood splatter (back before CSI was all the rage), and again, correctly interpreted the topic of this project to indicate that I was scientifically curious and not necessarily a developing psychopath. In addition, Mrs. Robinson and Mrs. Barber, who taught keyboard and yearbook, respectively, ended up teaching me skills that have turned out to be instrumental in my career, especially with regards to the preparation of manuscripts, talks, and conference posters. Then I went to New College where I was fortunate enough to be advised by Dr. Gordon Bauer. Gordon was the exact right level of tough (except that time he threatened to break my kneecaps) paired with unwavering encouragement and support. He went out of his way to find research opportunities for me and gave me my early introduction to research with exotic creatures. I absolutely agree with his assertion that his formal title should read “Dr. Gordon B. Bauer, BFD” because I simply wouldn’t be where I am today without him. So let’s fast-forward to my time spent in graduate school at Hopkins. I’ve only been here 3.5 years but there was a small army’s worth of people that helped me get through the program. I am grateful to Lauren Jones for her friendship and ensuring that I occasionally eat balanced meals. I’d like to thank Dr. Amy Shelton who is incredibly helpful with respect to almost everything but especially my occasional stress-induced breakdowns. Dr. Steve Yantis, Dr. Peter Holland and Dr. Michela Gallagher provided me vi frequent and invaluable feedback on my progress as a graduate student. I should also thank Dr. Justin Halberda, who offered guidance that was transformative to the way I approach teaching. I would especially like to thank Dr. Gregory Ball, who practically adopted me as his advisee and has always made time to meet with me regarding all the major departmental requirements and pretty much anything else I wanted to talk about. Importantly, Greg also facilitated my newfound appreciation of Belgium beer. I would like to thank the graduate students and postdocs, and particularly Judith Asem, Steve Chang, Farrah Madison, Jeff Mayse, Melvin Rouse and Tyler Stevenson. I would also like to thank the members of the LiMBS Lab with special thanks to Manu Madhav, Eatai Roth and Eric Tytell who were a tremendous help not only with regards to my research but also my personal sanity (or insanity) in the lab. There are also so many things that wouldn’t have been possible without an awesome administration staff, especially Laura Dalrymple, Julie Feldmeyer, Lindsay Licari, Jen Newman, Hope Stein, and Jesse Warford. I also owe the biggest thank you possible to Jim Garmon, who kept my research afloat (sometimes literally) by building everything I needed. And finally, I would like to thank Melvin Bullock, who was always happy to have a quick chat (and kept me from being run over) as I crossed San Martin Drive. This was a nice end to my day after having just spent 14 hours in a basement staring at fish. Speaking of fish, for the last three years I’ve done my research on weakly electric fish, as evidenced by the topics in this dissertation. What you might not know is that the electric fish community is the absolute nicest and most helpful scientific community imaginable. I sincerely thank all the current and former electric fish PIs, post-docs, and graduate students, especially Dr. Len Maler, Dr. Maurice Chacron, and Dr. Rüdiger vii Krahe who have all provided invaluable feedback on just about every single one of my research projects. I owe an enormous debt of gratitude to my advisor Dr. Eric Fortune and my co- advisor Dr.
Recommended publications
  • CRISPR/Cas9 Genome Editing in Weakly Electric Fish
    Journal of Visualized Experiments www.jove.com Video Article Silencing the Spark: CRISPR/Cas9 Genome Editing in Weakly Electric Fish Savvas J. Constantinou1, Linh Nguyen2, Frank Kirschbaum2, Vielka L. Salazar3, Jason R. Gallant1 1 Department of Integrative Biology, Michigan State University 2 Faculty of Life Sciences, Unit of Biology and Ecology of Fishes, Humboldt University 3 Department of Biology, Cape Breton University Correspondence to: Jason R. Gallant at [email protected] URL: https://www.jove.com/video/60253 DOI: doi:10.3791/60253 Keywords: Biology, Issue 152, CRISPR/Cas9, electric fish, single cell microinjection, scn4aa, electric organ discharge, genome modification, mormyrid, gymnotiform Date Published: 10/27/2019 Citation: Constantinou, S.J., Nguyen, L., Kirschbaum, F., Salazar, V.L., Gallant, J.R. Silencing the Spark: CRISPR/Cas9 Genome Editing in Weakly Electric Fish. J. Vis. Exp. (152), e60253, doi:10.3791/60253 (2019). Abstract Electroreception and electrogenesis have changed in the evolutionary history of vertebrates. There is a striking degree of convergence in these independently derived phenotypes, which share a common genetic architecture. This is perhaps best exemplified by the numerous convergent features of gymnotiforms and mormyrids, two species-rich teleost clades that produce and detect weak electric fields and are called weakly electric fish. In the 50 years since the discovery that weakly electric fish use electricity to sense their surroundings and communicate, a growing community of scientists has gained tremendous insights into evolution of development, systems and circuits neuroscience, cellular physiology, ecology, evolutionary biology, and behavior. More recently, there has been a proliferation of genomic resources for electric fish.
    [Show full text]
  • Brachyhypopomus Bullocki, a New Species of Electric Knifefish
    ISSN 0097-3157 PROCEEDINGS OF THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA 158: 183-192 APRIL 2009 Brachyhypopomus bullocki, a new species of electric knifefish (Gymnotiformes: Hypopomidae) from northern South America JOHN P. SULLIVAN Department of Ichthyology, The Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103-1195, USA, Email: [email protected] CARL D. HOPKINS Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853-2702, USA, Email: [email protected] ABSTRACT.—We describe the new species Brachyhypopomus bullocki (Gymnotiformes: Hypopomidae) from the río Orinoco basin of Colombia and Venezuela as well as the Takutu River/rio Branco-rio Negro basin of Guyana and Brazil. Among its congeners, B. bullocki most closely resembles Brachyhypopomus brevirostris (Steindachner, 1868) in possessing an elongated caudal filament which may reach up to 45% TL in reproductive males, in having wide, evenly spaced saddles of pigment over the dorsum connecting to lateral bands of pigment along the abdominal flanks, and in having a mesocoracoid bone. This new species is distinguished from B. brevirostris and other members of the genus by a large eye (15.5–19.2% of head length), a short abdomen usually with 12 pre-caudal vertebrae, and poorly ossified third and fourth branchiostegal rays that are enlarged distally, producing a bulbous appearance of the opercular region. The electric organ discharge waveform of B. bullocki is biphasic, 0.9–1.6 milliseconds in duration, and the pulse rate varies from 20–80 Hz. RESUMEN.— Se describe la nueva especie Brachyhypopomus bullocki (Gymnotiformes: Hypopomidae) de la cuenca del río Orinoco de Colombia y Venezuela, como así también de la cuenca del Río Takutu/Rio Branco-Rio Negro de Guyana y Brasil.
    [Show full text]
  • M.A. Maciver's Dissertation
    The computational neuroethology of weakly electric fish body modeling, motion analysis, and sensory signal estimation R s R s C R s i C s 1 Z = + X prey + + s 1/ Rp 1/ Xp 1/ Zs −ρ ρ E ⋅r 1 p / w δφ(r) = fish a3 3 + ρ ρ r 1 2 p / w − t − t = 1/ v + + − 1/ v + vt vt−1e g(1 mt )(1 e ) nt − t = 1/ w wt wt−1e = − st H(vt wt ) = + ∆ ⋅ wt wt w st Malcolm Angus MacIver THE COMPUTATIONAL NEUROETHOLOGY OF WEAKLY ELECTRIC FISH: BODY MODELING, MOTION ANALYSIS, AND SENSORY SIGNAL ESTIMATION BY MALCOLM ANGUS MACIVER B.Sc., University of Toronto, 1991 M.A., University of Toronto, 1992 THESIS Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Neuroscience in the Graduate College of the University of Illinois at Urbana-Champaign, 2001 Urbana, Illinois c Copyright by Malcolm Angus MacIver, 2001 ABSTRACT Animals actively influence the content and quality of sensory information they acquire through the positioning of peripheral sensory surfaces. Investigation of how the body and brain work together for sensory acquisition is hindered by 1) the limited number of techniques for tracking sensory surfaces, few of which provide data on the position of the entire body surface, and by 2) our inability to measure the thousands of sensory afferents stimulated during behav- ior. I present research on sensory acquisition in weakly electric fish of the genus Apteronotus, where I overcame the first barrier by developing a markerless tracking system and have de- ployed a computational approach toward overcoming the second barrier.
    [Show full text]
  • Convergent Evolution of Weakly Electric Fishes from Floodplain Habitats in Africa and South America
    Environmental Biology of Fishes 49: 175–186, 1997. 1997 Kluwer Academic Publishers. Printed in the Netherlands. Convergent evolution of weakly electric fishes from floodplain habitats in Africa and South America Kirk O. Winemiller & Alphonse Adite Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843, U.S.A. Received 19.7.1995 Accepted 27.5.1996 Key words: diet, electrogenesis, electroreception, foraging, morphology, niche, Venezuela, Zambia Synopsis An assemblage of seven gymnotiform fishes in Venezuela was compared with an assemblage of six mormyri- form fishes in Zambia to test the assumption of convergent evolution in the two groups of very distantly related, weakly electric, noctournal fishes. Both assemblages occur in strongly seasonal floodplain habitats, but the upper Zambezi floodplain in Zambia covers a much larger area. The two assemblages had broad diet overlap but relatively narrow overlap of morphological attributes associated with feeding. The gymnotiform assemblage had greater morphological variation, but mormyriforms had more dietary variation. There was ample evidence of evolutionary convergence based on both morphology and diet, and this was despite the fact that species pairwise morphological similarity and dietary similarity were uncorrelated in this dataset. For the most part, the two groups have diversified in a convergent fashion within the confines of their broader niche as nocturnal invertebrate feeders. Both assemblages contain midwater planktivores, microphagous vegetation- dwellers, macrophagous benthic foragers, and long-snouted benthic probers. The gymnotiform assemblage has one piscivore, a niche not represented in the upper Zambezi mormyriform assemblage, but present in the form of Mormyrops deliciousus in the lower Zambezi and many other regions of Africa.
    [Show full text]
  • On the Species of Gymnorhamphichthys Ellis, 1912, Translucent Sand‐Dwelling Gymnotid Fishes from South America (Pisces, Cypriniformes, Gymnotoidei) H
    This article was downloaded by: [MNHN Muséum National D'Histoire Naturelle] On: 08 May 2013, At: 01:36 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Studies on Neotropical Fauna and Environment Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/nnfe20 On the species of Gymnorhamphichthys Ellis, 1912, translucent sand‐dwelling Gymnotid fishes from South America (Pisces, Cypriniformes, Gymnotoidei) H. Nijssen a , I. J. H. Isbrücker b & J. Géry c a Curator of Fishes, Dept. of Ichthyology, Zoologisch Museum, Plantage Middenlaan 53, Amsterdam, The Netherlands b Dept. of Ichthyology, Zoologisch Museum, Plantage Middenlaan 53, Amsterdam, The Netherlands c Argentonesse, Castels, Saint‐Cyprien, France Published online: 21 Nov 2008. To cite this article: H. Nijssen , I. J. H. Isbrücker & J. Géry (1976): On the species of Gymnorhamphichthys Ellis, 1912, translucent sand‐dwelling Gymnotid fishes from South America (Pisces, Cypriniformes, Gymnotoidei), Studies on Neotropical Fauna and Environment, 11:1-2, 37-63 To link to this article: http://dx.doi.org/10.1080/01650527609360496 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms- and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date.
    [Show full text]
  • Curriculum Vitae
    Zakon, H.H. 1 CURRICULUM VITAE Harold H. Zakon Section of Neurobiology phone: (512)-471-0194, -3440 The University of Texas fax: (512)-471-9651 Austin, TX 78712 E-mail: [email protected] EDUCATION 1981-1983: Postdoctoral fellow, Scripps Institution of Oceanography, University of California, San Diego, Lab. of Dr. T.H. Bullock. 1974-1981: Ph.D. in Neurobiology and Behavior, Cornell University, Ithaca, NY. 1968-1972: B. S. with High Honors, Marlboro College, Marlboro, VT. PROFESSIONAL EXPERIENCE 2001-- Adjunct Professor, Marine Biological Laboratory, Woods Hole, MA. 1999-2006 Chairman, Section of Neurobiology, The University of Texas at Austin. 1998-- Professor, Section of Neurobiology, The University of Texas, Austin. 1994-1998 Professor, Dept. of Zoology, The University of Texas, Austin. 1988-1993: Assoc. Professor, Dept. of Zoology, The University of Texas, Austin. 1983-1988: Assist. Professor, Dept. of Zoology, The University of Texas, Austin. 1981-1983: Postdoctoral fellow at The University of California, San Diego, Calif. 1974-1981: Teaching and Research Assist., Graduate Program at Cornell. 1972-1974: Research Assist., Dept. Psychiatric Research, Harvard Medical School, Cambridge, MA. PROFESSIONAL SOCIETIES Society for Neuroscience; International Society for Neuroethology; Association for Research in Otolaryngology; American Association for the Advancement of Science; International Brain Research Organization, Society for Behavioral Neuroendocrinology. PROFESSIONAL SERVICE Reviewer for: Animal Behavior; Brain, Behavior & Evolution; Brain Research; Comparative Physiology & Biochemistry; BMC Neuroscience; Current Biology; General & Comparative Endocrinology; FEBS Letters; Genes, Brain & Behavior; Hearing Research; Hormones and Behavior; J. Biological Chemistry.; J. Comparative Neurology; J. Comparative Physiology A; J. Experimental Biology; J. Molecular Evolution; J. Neurobiology; J. Neurophysiology; J.
    [Show full text]
  • What Can Vigilance Tell Us About Fear?
    Beauchamp, Guy (2017) What can vigilance tell us about fear?. Animal Sentience 15(1) DOI: 10.51291/2377-7478.1203 This article has appeared in the journal Animal Sentience, a peer-reviewed journal on animal cognition and feeling. It has been made open access, free for all, by WellBeing International and deposited in the WBI Studies Repository. For more information, please contact [email protected]. Animal Sentience 2017.015: Beauchamp on Fear & Vigilance Call for Commentary: Animal Sentience publishes Open Peer Commentary on all accepted target articles. Target articles are peer-reviewed. Commentaries are editorially reviewed. There are submitted commentaries as well as invited commentaries. Commentaries appear as soon as they have been reviewed, revised and accepted. Target article authors may respond to their commentaries individually or in a joint response to multiple commentaries. Instructions: http://animalstudiesrepository.org/animsent/guidelines.html What can vigilance tell us about fear? Guy Beauchamp Independent Researcher, Canada Abstract: Animal vigilance is concerned with the monitoring of potential threats caused by predators and conspecifics. Researchers have argued that threats are part of a landscape of fear tracking the level of risk posed by predators and conspecifics. Vigilance, which is expected to vary with the level of risk, could thus be used as a measure of fear. Here, I explore the relationship between vigilance and fear caused by predators and conspecifics. The joint occurrence of vigilance and other physiological responses to fear, such as increased heart rate and stress hormone release, would bolster the idea that vigilance can be a useful marker of fear. While there is some support for a positive relationship between vigilance and physiological correlates of fear, a common theme in much of the empirical research is that vigilance and physiological correlates of fear are often uncoupled.
    [Show full text]
  • The Life of Apteronotus Rostratus in the Wild
    The Life of Apteronotus rostratus, a Panamanian Species of Weakly Electric Fish: A Field Study Jan Gogarten McGill University Panamá Field Study Semester 2008 Independent Project - ENVR 451 Host Laboratories: Eldredge Bermingham [email protected] Smithsonian Tropical Research Institute Apartado Postal 0843-03092 Balboa, Ancon, Republic of Panama Rüdiger Krahe [email protected] McGill University - Department of Biology 1205 Docteur Penfield Montreal, Quebec H3A 1B1 Gogarten 2 TABLE OF CONTENTS I. Executive Summary i. English p. 3 ii. Español p. 4 II. Host Information p. 5 III. Introduction p. 6 - 11 IV. Methodology p. 11 - 18 V. Results p. 18 - 30 VI. Discussion p. 31– 33 VII. Limitations and Problems p. 33 VIII. Acknowledgements/Reconocimientos p. 34 IX. Bibliography p. 35-36 X. Appendix i. Budget p. 37 ii. Chronogram of Activities p. 38-39 Gogarten 3 I. EXECUTIVE SUMMARY ENGLISH: This study sought to provide insight into the life of Apteronotus rostratus, a species of weakly electric fish encountered in the rivers of Panama. Weakly electric fish have had their ability to actively generate electricity to sense their environment extensively studied in the laboratory, but little is known about their lives in the wild. A suitable study site was found at Piriati, in the Bayano region, where numerous Apteronotus rostratus were found in the river on an initial field outing. In order to fill the knowledge void about Apteronotus rostratus in the wild, four 200m transects were conducted in the Piriati river, and the location, habitat and frequency of every individual was taken (for a total of 240 Apteronotus rostratus sampled).
    [Show full text]
  • The Evolution of Echolocation for Predation
    Symp. zool. Soc. Land. (1993) No. 65: 39-63 The evolution of echolocation for predation J. R. SPEAKMAN DepartmentofZoowgy University of Aberdeen Aberdeen AB9 2TN, UK Synopsis Active detection of food items by echolocation has some obvious advantages over passive detection, since it affords independence from ambient light and sound levels. For predatory animals, however, echolocation would also appear to have a significant disadvanrage-i-the echolocation calls might alert prey to the predator's presence. Surprisingly, therefore, all but two of the different groups of vertebrates that have evolved echolocation are predatory. Despite the diversity of predatory taxa in which echolocation has evolved it is still a relatively uncommon form of perception. It has been suggested that a major constraint on the evolution of echolocation is its high energy cost, due to rapid attenuation of sound in air. The cost of producing echolocation calls has been measured in insectivorous bats, whilst hanging at rest. These measures confirm that echolocation is extremely costly. However, bats normally echolocate in flight which also has a high cost. How bats cope with the high cost of echolocation, when it is combined with flight, is therefore of extreme interest. Measures of the energy cost of flight of small echolocating bats ggest that the cost is no greater than that for non-echolocating birds and bats. The son for this apparent economy is that the same muscles which flap the wings also tilate the lungs, and produce the pulse of breath which generates the echolocation For a bat in flight, therefore, the additional cost of echolocating is very low, sr for a bat on the ground, and presumably other terrestrial vertebrates, the cost ry high.
    [Show full text]
  • New Species Discoveries in the Amazon 2014-15
    WORKINGWORKING TOGETHERTOGETHER TO TO SHARE SCIENTIFICSCIENTIFIC DISCOVERIESDISCOVERIES UPDATE AND COMPILATION OF THE LIST UNTOLD TREASURES: NEW SPECIES DISCOVERIES IN THE AMAZON 2014-15 WWF is one of the world’s largest and most experienced independent conservation organisations, WWF Living Amazon Initiative Instituto de Desenvolvimento Sustentável with over five million supporters and a global network active in more than 100 countries. WWF’s Mamirauá (Mamirauá Institute of Leader mission is to stop the degradation of the planet’s natural environment and to build a future Sustainable Development) Sandra Charity in which humans live in harmony with nature, by conserving the world’s biological diversity, General director ensuring that the use of renewable natural resources is sustainable, and promoting the reduction Communication coordinator Helder Lima de Queiroz of pollution and wasteful consumption. Denise Oliveira Administrative director Consultant in communication WWF-Brazil is a Brazilian NGO, part of an international network, and committed to the Joyce de Souza conservation of nature within a Brazilian social and economic context, seeking to strengthen Mariana Gutiérrez the environmental movement and to engage society in nature conservation. In August 2016, the Technical scientific director organization celebrated 20 years of conservation work in the country. WWF Amazon regional coordination João Valsecchi do Amaral Management and development director The Instituto de Desenvolvimento Sustentável Mamirauá (IDSM – Mamirauá Coordinator Isabel Soares de Sousa Institute for Sustainable Development) was established in April 1999. It is a civil society Tarsicio Granizo organization that is supported and supervised by the Ministry of Science, Technology, Innovation, and Communications, and is one of Brazil’s major research centres.
    [Show full text]
  • Evidence for Mutual Allocation of Social Attention Through Interactive Signaling in a Mormyrid Weakly Electric Fish
    Evidence for mutual allocation of social attention through interactive signaling in a mormyrid weakly electric fish Martin Worma,1, Tim Landgrafb, Julia Prumea, Hai Nguyenb, Frank Kirschbaumc, and Gerhard von der Emdea aInstitut für Zoologie, Neuroethologie/Sensorische Ökologie, Universität Bonn, 53115 Bonn, Germany; bInstitut für Informatik, Fachbereich Informatik und Mathematik, Freie Universität Berlin, 14195 Berlin, Germany; and cBiologie und Ökologie der Fische, Lebenswissenschaftliche Fakultät, Humboldt-Universität-zu Berlin, 10115 Berlin, Germany Edited by John G. Hildebrand, University of Arizona, Tucson, AZ, and approved May 16, 2018 (received for review January 26, 2018) Mormyrid weakly electric fish produce electric organ discharges responses from a conspecific. We solved both problems by using (EODs) for active electrolocation and electrocommunication. These a freely moving robotic fish capable of emitting either predefined pulses are emitted with variable interdischarge intervals (IDIs) or dynamic sequences of playback EODs in an interactive be- resulting in temporal discharge patterns and interactive signaling havioral experiment with single individuals of the weakly electric episodes with nearby conspecifics. However, unequivocal assign- fish Mormyrus rume proboscirostris. ment of interactive signaling to a specific behavioral context has Robotic fish have been successfully employed to investigate the proven to be challenging. Using an ethorobotical approach, we features determining attraction between individual fish (14–16), as confronted single individuals of weakly electric Mormyrus rume well as collective decision making and internal dynamics in groups – proboscirostris with a mobile fish robot capable of interacting of fish in shoals (17 22). Similar experiments have demonstrated both physically, on arbitrary trajectories, as well as electrically, that mormyrids are attracted to a mobile fish replica playing back by generating echo responses through playback of species- electric signals (23, 24).
    [Show full text]
  • Diversity and Phylogeny of Neotropical Electric Fishes (Gymnotiformes)
    Name /sv04/24236_u11 12/08/04 03:33PM Plate # 0-Composite pg 360 # 1 13 Diversity and Phylogeny of Neotropical Electric Fishes (Gymnotiformes) James S. Albert and William G.R. Crampton 1. Introduction to Gymnotiform Diversity The evolutionary radiations of Neotropical electric fishes (Gymnotiformes) pro- vide unique materials for studies on the evolution of specialized sensory systems and the diversification of animals species in tropical ecosystems (Hopkins and Heiligenberg 1978; Heiligenberg 1980; Heiligenberg and Bastian 1986; Moller 1995a; Crampton 1998a; Stoddard 1999; Albert 2001, 2002). The teleost order Gymnotiformes is a clade of ostariophysan fishes most closely related to cat- fishes (Siluriformes), with which they share the presence of a passive electro- sensory system (Fink and Fink 1981, 1996; Finger 1986). Gymnotiformes also possess a combined electrogenic–electroreceptive system that is employed for both active electrolocation, the detection of nearby objects that distort the self- generated electric field, and also electrocommunication, the signaling of identity or behavioral states and intentions to other fishes (Carr and Maler 1986). Active electroreception allows gymnotiforms to communicate, navigate, forage, and ori- ent themselves relative to the substrate at night and in dark, sediment-laden waters, and contributes to their ecological success in Neotropical aquatic eco- systems (Crampton and Albert 2005). The species-specific electric signals of gymnotiform fishes allow investigations of behavior and ecology that are simply unavailable in other groups. Because these signals are used in both navigation and mate recognition (i.e., prezygotic reproductive isolation) they play central roles in the evolutionary diversification and ecological specialization of species, as well as the accumulation of species into local and regional assem- blages.
    [Show full text]