The Evolution of Echolocation for Predation

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Echolocation for Predation Symp. zool. Soc. Land. (1993) No. 65: 39-63 The evolution of echolocation for predation J. R. SPEAKMAN DepartmentofZoowgy University of Aberdeen Aberdeen AB9 2TN, UK Synopsis Active detection of food items by echolocation has some obvious advantages over passive detection, since it affords independence from ambient light and sound levels. For predatory animals, however, echolocation would also appear to have a significant disadvanrage-i-the echolocation calls might alert prey to the predator's presence. Surprisingly, therefore, all but two of the different groups of vertebrates that have evolved echolocation are predatory. Despite the diversity of predatory taxa in which echolocation has evolved it is still a relatively uncommon form of perception. It has been suggested that a major constraint on the evolution of echolocation is its high energy cost, due to rapid attenuation of sound in air. The cost of producing echolocation calls has been measured in insectivorous bats, whilst hanging at rest. These measures confirm that echolocation is extremely costly. However, bats normally echolocate in flight which also has a high cost. How bats cope with the high cost of echolocation, when it is combined with flight, is therefore of extreme interest. Measures of the energy cost of flight of small echolocating bats ggest that the cost is no greater than that for non-echolocating birds and bats. The son for this apparent economy is that the same muscles which flap the wings also tilate the lungs, and produce the pulse of breath which generates the echolocation For a bat in flight, therefore, the additional cost of echolocating is very low, sr for a bat on the ground, and presumably other terrestrial vertebrates, the cost ry high. The release from the energetic constraint may explain the proliferation cholocation systems amongst flying predators and their paucity amongst trial predators. This model for the evolution of echolocation has some 'cant probiems-s-norably the absence of echolocation amongst predatory birds fruit bats. Possible solutions to these problems include the lack of an advantage iurnal predators and phylogenetic constraints in both the ventilatory and tual systems of these animals. ~Jversity of echolocators al systems can be divided into two fundamentally different Copyrlghr © 1993 lhe Zoological SocietJ of London All r-ightsof reproduction in any form reserved 40 evolution of echolocation for predation 41 categories. There are passive systems, where the animal passively receive Ie 1. Major taxonomic groups in which echolocation has evolved, their inputs of sensory information. This is the system that we use, and it is also cipal prey, and an indication of whether echolocation is used for prey detection used by most other animals. Alternatively, an animal may actively sense its dentation environment. Using this latter type of system the animal does not wai Detection of passively until there is an input of sensory information, but rather create Prey prey Reference that input itself. Two different active sensory systems have evolved. The fir method involves the production of bio-electricity. By generating a potential mals Cetacea-toothed whales Fish Yes Norris et al. (1961) difference between one end of its body and the other, the animal produces and dolphins an electric field around itself. When objects, which differ in their resistivity Phocidae-e-seals Fish ?Yes Renouf & Davis (1982) Sales & Pye (1974) to the environment, come into this field, they affect the flow of current, and Tenrecidae-i-renrecs Invertebrates ? Soriddae-shrew Invertebrates ?No Forsman & Malmquist can therefore be actively detected by the animal. Since air is a good electrical (1988) insulator this method can only evolve in water, and it has been found i Rodenria-s-rat Omnivorous No J. W. Anderson (1954) No Roberts (1975) several species of fish (e.g. Gymnarchus spp.: Machin & Lissmann 196 Megachiropteran bats Fruit -Rousettus which live mostly in turbid water. Probably the most widespread and w< Microchiropreran bats Diverse diets Griffin (1958) known method of active perception, however, is the system of produci including: sounds and perceiving the environment by interpreting the returnin Insects Yes Fish Yes echoes---ealled echolocation (Griffin 1958). Small mammals Sometimes Active systems of perception have one major advantage over passivi Amphibia ?Yes systems: they allow the animal a substantial degree of independence fro Reptiles ?Yes Fruit/Nectar ?No variations in the amount of passive information that is available from t environment. A useful analogy in this context is to consider the advantag Insects No Novick (1959) of possessing a torch when walking around in complete darkness. T Insects No Griffin (1953) independence from the level of ambient illumination that a torch confers is clear advantage. Despite the benefits of active systems of perception, a serious disadvantage atory animals, exploiting a wide variety of different prey species may be imposed on predators which employ the system to detect prey: the ugh not necessarily using echolocation to detect their prey). Most of signal generated by the predator might alert the prey to the predator' redators that have evolved echolocation feed either on fish or on presence and allow it to avoid capture (Suthers & Wenstrup 1987) ts. There are very few echolocating predators that feed on mammals, Retaining the analogy of using a torch, in a group of people at night, the on¢ es or amphibians, and none that feed on birds. In part these trends who carries the torch is not only the one who can see most easily, but also ct the temporal separation of the activity times of different groups. For the one that is most easily seen. Furthermore, predatory animals must often pie, the birds are almost exclusively diurnal. Probably echolocation detect their prey from relatively large distances. Studies of the attenuation of not evolved in diurnal predators that prey on birds because possessing the information content of sound signals propagated in air suggest that the location confers little or no advantage on predators that are seeking loss of information increases exponentially as distance over which the sign in daylight, when there is a lot of passive information present (see also is transmitted increases (Griffin 1971; Lawrence & Simmons 1982). Sin below). non-predatory animals can commonly approach their food much m n contrast to the birds, many small mammals and tropical reptiles and closely than predators, there would appear to be a valid argument t phibians are nocturnal. Some of these fall prey to echolocating echolocation should have evolved more frequently amongst non-predato rochiropteran bats. Most nocturnal predatory bats preying on these animals than amongst predators. imals, however, do not use echolocation to search for prey. It is possible Yet examination of the groups of animals where echolocation has evolvi the problem of alerting the prey pf the predator's presence has been an (Table 1) reveals that of the seven major taxa which include species th rtant influence on the evolution of echolocation in predators specializing have evolved echolocation (Sales & Pye 1974), all but two of them, t these groups of animals. Small mammals in particular are very sensitive fruit-bat (Rousettus spp.) and rats (Rattus spp.) are predominant high-frequency sounds, and use ultrasound calls for communication 42 J. R. Speakman The evolution of echolocation for predation 43 (Sales & Pye 1974). Detailed examinations of the behaviours of echolocating bats when feeding on these prey support this hypothesis. Some echolocating The energetic constraint hypothesis bats feed predominantly on small mammals and amphibians, but appear to Dawkins (1986) suggested that the paucity of echolocating species is use echolocation primarily to orientate themselves in the environment. principally a consequence of the very high cost of producing an echolocation Trachops cirrhosus, the New World frog-eating bat, locates its major prey signal of practical use over any effective distance. Suthers & Wenstrup from the singing calls of the males (Tuttle & Ryan 1981), and, although it (1987) also indicated that the energy costs of echolocation might have been may occasionally echolocate during the approach to the prey (Barclay et al. an important factor influencing the secondary reduction in use of 1981) this does not appear to be necessary for successful prey capture. The echolocation in some bats. This high cost normally outweighs the benefit pallid bat (Anthrozous pallidus), which occasionally feeds on small in terms of increased rewards and hence the system is rarely favoured in mammals, relies heavily on passive sound cues to locate its prey (Bell 1982). selective terms. There are several lines of evidence supporting this The secondary reduction in the use of echolocation by bats when feeding on hypothesis. First, a simple consideration of the physics of sound propagation these vertebrate prey, in the wild, strongly suggests that alerting the prey of reveals that a sound signal will decline rapidly in intensity as it spreads out the predator's presence has been an important constraint on the development in the environment. The reflected echo from an object a certain distance of echolocation in the predatory animals which specialize on these prey away will in theory have an intensity that is a function of twice the distance species. In support of this hypothesis, Fiedler (1979) found experimentally to that object squared, if it is perfectly reflected. More often in practice the in the laboratory that the false vampire bat Megaderma lyra would always echo intensity is found to fall as the cube or even fourth power of distance use echolocation to detect dead mice, but reduced its use of echolocation (Morse 1948). Therefore to obtain an echo with sufficient intensity the when presented with live mice as prey, and almost half the approaches to original signal must be very loud. prey were completely silent. This is particularly the case in air, where the conductivity for sound is Echolocation appears to have developed most frequently among predators very poor.
Recommended publications
  • Dating Placentalia: Morphological Clocks Fail to Close the Molecular-Fossil Gap
    Puttick, M. N., Thomas, G. H., & Benton, M. J. (2016). Dating placentalia: Morphological clocks fail to close the molecular-fossil gap. Evolution, 70(4), 873-886. https://doi.org/10.1111/evo.12907 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/evo.12907 Link to publication record in Explore Bristol Research PDF-document © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ ORIGINAL ARTICLE doi:10.1111/evo.12907 Dating placentalia: Morphological clocks fail to close the molecular fossil gap Mark N. Puttick,1,2 Gavin H. Thomas,3 and Michael J. Benton1 1School of Earth Sciences, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol, BS8 1TQ, United Kingdom 2E-mail: [email protected] 3Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom Received January 31, 2015 Accepted March 7, 2016 Dating the origin of Placentalia has been a contentious issue for biologists and paleontologists.
    [Show full text]
  • M.A. Maciver's Dissertation
    The computational neuroethology of weakly electric fish body modeling, motion analysis, and sensory signal estimation R s R s C R s i C s 1 Z = + X prey + + s 1/ Rp 1/ Xp 1/ Zs −ρ ρ E ⋅r 1 p / w δφ(r) = fish a3 3 + ρ ρ r 1 2 p / w − t − t = 1/ v + + − 1/ v + vt vt−1e g(1 mt )(1 e ) nt − t = 1/ w wt wt−1e = − st H(vt wt ) = + ∆ ⋅ wt wt w st Malcolm Angus MacIver THE COMPUTATIONAL NEUROETHOLOGY OF WEAKLY ELECTRIC FISH: BODY MODELING, MOTION ANALYSIS, AND SENSORY SIGNAL ESTIMATION BY MALCOLM ANGUS MACIVER B.Sc., University of Toronto, 1991 M.A., University of Toronto, 1992 THESIS Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Neuroscience in the Graduate College of the University of Illinois at Urbana-Champaign, 2001 Urbana, Illinois c Copyright by Malcolm Angus MacIver, 2001 ABSTRACT Animals actively influence the content and quality of sensory information they acquire through the positioning of peripheral sensory surfaces. Investigation of how the body and brain work together for sensory acquisition is hindered by 1) the limited number of techniques for tracking sensory surfaces, few of which provide data on the position of the entire body surface, and by 2) our inability to measure the thousands of sensory afferents stimulated during behav- ior. I present research on sensory acquisition in weakly electric fish of the genus Apteronotus, where I overcame the first barrier by developing a markerless tracking system and have de- ployed a computational approach toward overcoming the second barrier.
    [Show full text]
  • Mammalian Species 117
    MAMMALIANSPECIES No. 117, pp. 14, 5 figs. Rhynchocyon chrysopygus. BY Galen B. Rathbun Published 8 June 1979 by the American Society of Mammalogists Rhynchocyon Peters, 1847 cyon chrysopygus apparently does not occur in the gallery forests of the Tana River, in the ground-water forest at Witu, or in the Rhynchocyon Peters, 1W7:36, type species Rhynchocyon cirnei dry bushlands between the Galana and Tana rivers. This ele- Peters by monotypy. phant-shrew's habitat is being cleared for exotic forest plantations Rhir~onaxThomas, 1918:370, type species Rh~nchoc~onchr~so- and agriculture all along the coast, resulting in a discontinuous pygus Gunther. and reduced distribution. It will re-occupy fallow agricultural land that is allowed to become overgrown with dense bush (Rathbun, CONTEXT AND CONTENT. Order Macroscelidea, Fam- ily Macroscelididae, Subfamily Rhynch~c~oninae.Corbet and unpublished data)' Hanks (1968) recognized three allopatric species of Rhynchocyon FOSSIL RECORD. As far as is known, the Macrosceli- (figure 1) for which they wrote the following key: didae have always been endemic to Africa (Patterson, 1%5). But- ler and Hopwood (1957) described Rhynchocyon clarki from the 1 Rump straw-colored, contrasting sharply with surround- early Miocene beds of Songhor, Kenya (near Lake Victoria). Ad- ing rufous pelage ----------.-------.-------R. chrysopygus ditional Miocene material from Rusinga Island, Kenya, has been Rump not straw-colored ---------.------.-------------------2 referred to this extinct form (Patterson, 1%5), which was smaller 2(1) Rump and posterior half of back with a pattern of dark than the extant species of Rhynchocyon. R. clarki contributes lines or spots on a yellowish-brown or rufous ground; significantly to the forest related fossil mammal fauna from Ru- top of head without a rufous tinge ._._._....._._R.
    [Show full text]
  • Richard Dawkins, Bracketted V2.Wps
    For all the many years that have passed away Matthew Lee Knowles 2010/11 (all the bracketed text extracted from ‘The Ancestor’s Tale’ by Richard Dawkins ) (and that is a myth too) (and in this context it always is man rather than woman) (although it baffles me why anybody regards this as an explanation for anything, given that the problem so swiftly regresses to the larger one of explaining the existence of the equally fine-tuned and improbable premeditator) (last long enough to make black holes, for instance) (though it often is) (the number of surviving species at the time of observation) (in the main a good book, so I shall not name and shame it) (a human species, probably ancestral to us) (boreal means northern) (and no less) (it is a intriguingly unfamiliar thought that there is always one such species) (including humans) (exactly in most cases, almost exactly in the rest) (it didn’t fossilise) (all but one of the other lineages went extinct) (quite a lot deeper into the past, and probably no longer in Africa) (most of) (or women) (or more) (petrified gum from trees) (as they tediously do) (or sixteen) (or hexadecimal) (see the Elephant Bird’s Tale) (especially microfossils) (see plate one) (tree rings) (carbon fourteen) (uranium-thorium-lead) (potassium-argon) (which I can sing) (or blossom, depending upon your taste) (unless, as has been recently suggested, their knotted strings were used for language as well as for counting) (the next copying ‘generation’) (it is the French hard c in comme) (American children call it ‘telephone’)
    [Show full text]
  • The First Record of Anourosorex (Insectivora, Soricidae) from Western Myanmar, with Special Reference to Identification and Karyological Characters
    Bull. Natl. Mus. Nat. Sci., Ser. A, 40(2), pp. 105–109, May 22, 2014 The First Record of Anourosorex (Insectivora, Soricidae) from Western Myanmar, with Special Reference to Identification and Karyological Characters Shin-ichiro Kawada1, Nozomi Kurihara1, Noriko Tominaga2 and Hideki Endo3 1 Department of Zoology, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan E-mail: [email protected] 2 Adachi Study Center, The Open University of Japan, 5–13–5 Senju, Adachi-ku, Tokyo 120–0034, Japan 3 The University Museum, The University of Tokyo, 7–3–1 Hongo, Bunkyo, Tokyo 113–0033, Japan (Received 3 March 2014; accepted 26 March 2014) Abstract We collected six mole shrews in Tiddim Town of Chin State, western Myanmar. They were captured in a human-modified artificial environment, although mole shrews usually inhabit forests. External and skull measurements indicated that the species was Anourosorex assamensis, previously known only as an endemic species of the Assam region of India. This is the first record of this species from Myanmar. Karyological examination revealed the species was diploid with a fundamental autosomal number of 2n=50 and NFa=96. These numbers correspond to the Taiwanese species A. yamashinai, but several differences were apparent in chromosomal morphology and the position of secondary chromosomal constrictions. The karyological information suggests A. assamensis is a full species separate from A. squamipes in China. Key words : Mole shrew, Anourosorex assamensis, morphological identification, karyotype. karyotypes, and should therefore be considered Introduction separate species. After that, Hutterer (2005) Mole shrews, the genus Anourosorex Milne- reclassified all four Anourosorex as four distinct Edwards, 1872, are semifossorial shrews known species based on size differences.
    [Show full text]
  • Morphological Diversity in Tenrecs (Afrosoricida, Tenrecidae)
    Morphological diversity in tenrecs (Afrosoricida, Tenrecidae): comparing tenrec skull diversity to their closest relatives Sive Finlay and Natalie Cooper School of Natural Sciences, Trinity College Dublin, Dublin, Ireland Trinity Centre for Biodiversity Research, Trinity College Dublin, Dublin, Ireland ABSTRACT It is important to quantify patterns of morphological diversity to enhance our un- derstanding of variation in ecological and evolutionary traits. Here, we present a quantitative analysis of morphological diversity in a family of small mammals, the tenrecs (Afrosoricida, Tenrecidae). Tenrecs are often cited as an example of an ex- ceptionally morphologically diverse group. However, this assumption has not been tested quantitatively. We use geometric morphometric analyses of skull shape to test whether tenrecs are more morphologically diverse than their closest relatives, the golden moles (Afrosoricida, Chrysochloridae). Tenrecs occupy a wider range of ecological niches than golden moles so we predict that they will be more morpho- logically diverse. Contrary to our expectations, we find that tenrec skulls are only more morphologically diverse than golden moles when measured in lateral view. Furthermore, similarities among the species-rich Microgale tenrec genus appear to mask higher morphological diversity in the rest of the family. These results reveal new insights into the morphological diversity of tenrecs and highlight the impor- tance of using quantitative methods to test qualitative assumptions about patterns of morphological diversity. Submitted 29 January 2015 Subjects Evolutionary Studies, Zoology Accepted 13 April 2015 Keywords Golden moles, Geometric morphometrics, Disparity, Morphology Published 30 April 2015 Corresponding author Natalie Cooper, [email protected] INTRODUCTION Academic editor Analysing patterns of morphological diversity (the variation in physical form Foote, Laura Wilson 1997) has important implications for our understanding of ecological and evolutionary Additional Information and traits.
    [Show full text]
  • Dating Placentalia: Morphological Clocks Fail to Close the Molecular Fossil Gap
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE ORIGINAL ARTICLE provided by White Rose Research Online doi:10.1111/evo.12907 Dating placentalia: Morphological clocks fail to close the molecular fossil gap Mark N. Puttick,1,2 Gavin H. Thomas,3 and Michael J. Benton1 1School of Earth Sciences, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol, BS8 1TQ, United Kingdom 2E-mail: [email protected] 3Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom Received January 31, 2015 Accepted March 7, 2016 Dating the origin of Placentalia has been a contentious issue for biologists and paleontologists. Although it is likely that crown- group placentals originated in the Late Cretaceous, nearly all molecular clock estimates point to a deeper Cretaceous origin. An approach with the potential to reconcile this discrepancy could be the application of a morphological clock. This would permit the direct incorporation of fossil data in node dating, and would break long internal branches of the tree, so leading to improved estimates of node ages. Here, we use a large morphological dataset and the tip-calibration approach of MrBayes. We find that the estimated date for the origin of crown mammals is much older, 130–145 million years ago (Ma), than fossil and molecular clock data (80–90 Ma). Our results suggest that tip calibration may result in estimated dates that are more ancient than those obtained from other sources of data. This can be partially overcome by constraining the ages of internal nodes on the tree; however, when this was applied to our dataset, the estimated dates were still substantially more ancient than expected.
    [Show full text]
  • Eutheria (Placental Mammals)
    Eutheria (Placental Introductory article Mammals) Article Contents . Introduction J David Archibald, San Diego State University, San Diego, California, USA . Basic Design . Taxonomic and Ecological Diversity Eutheria includes one of three major clades of mammals, the extant members of which are . Fossil History and Distribution referred to as placentals. Phylogeny Introduction have supernumerary teeth (e.g. some whales, armadillos, Eutheria (or Placentalia) is the most taxonomically diverse etc.), in extant placentals the number of teeth is at most of three branches or clades of mammals, the other two three upper and lower incisors, one upper and lower being Metatheria (or Marsupialia) and Prototheria (or canine, four upper and lower premolars, and three upper Monotremata). When named by Gill in 1872, Eutheria and lower molars. Except for one fewer upper molar, a included both marsupials and placentals. It was Huxley in domestic dog retains this pattern. Compared to reptiles, 1880 that recognized Eutheria basically as used today to mammals have fewer skull bones through fusion and loss, include only placentals. McKenna and Bell in their although bones are variously emphasized in each of the Classification of Mammals, published in 1997, chose to three major mammalian taxa. use Placentalia rather than Eutheria to avoid the confusion Physiologically, mammals are all endotherms of varying of what taxa should be included in Eutheria. Others such as degrees of efficiency. They are also homeothermic with a Rougier have used Eutheria and Placentalia in the sense relatively high resting temperature. These characteristics used here. Placentalia includes all extant placentals and are also found in birds, but because of anatomical their most recent common ancestor.
    [Show full text]
  • Condylura (Mammalia, Talpidae) Reloaded: New Insights About the Fossil Representatives of the Genus
    Palaeontologia Electronica palaeo-electronica.org Condylura (Mammalia, Talpidae) reloaded: New insights about the fossil representatives of the genus Gabriele Sansalone, Tassos Kotsakis, and Paolo Piras ABSTRACT The star nosed mole, Condylura cristata, due to its morphological and behavioural peculiarities, has been deeply investigated by different authors. By contrast, very little is known about the phylogenetic relationships, evolution and diversity of the fossil members of this genus. In the present study we provide new insights about the fossil specimens ascribed to Condylura taking into account systematic, palaeobiogeographi- cal and palaeoecological aspects. Further, we provide a re-description of a fossil Con- dylura from the middle Miocene of Kazakhstan. We confirm that the Kazakh fossil belongs to the genus Condylura, based on humeral morphological features, and we discuss its implications and impact on the phylogenetic scenario and ecology of this peculiar talpid genus. This specimen represents the earliest record of the genus, thus suggesting an Eurasiatic origin instead of the most commonly accepted scenario of a North American one. The presence of both plesiomorphic and apomorphic characters in Condylura strongly supports the hypothesis that this genus could be considered as sister clade of Talpinae. Gabriele Sansalone. Roma Tre University of Rome, Dept. of Sciences, L.S. Murialdo, 1 – 00146 Rome, Italy/Center for evolutionary ecology, C.da Fonte Lappone, Pesche, Italy/Form, Evolution and Anatomy Research Laboratory, Zoology, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, Australia [email protected] Tassos Kotsakis. Roma Tre University of Rome, Dept. of Sciences, L.S. Murialdo, 1 – 00146 Rome, Italy/ Center for evolutionary ecology, C.da Fonte Lappone, Pesche, Italy [email protected] Paolo Piras.
    [Show full text]
  • Classification and Biology of Japanese Insectivora (Mammalia) : ⅱ
    Title CLASSIFICATION AND BIOLOGY OF JAPANESE INSECTIVORA (MAMMALIA) : Ⅱ. Biological Aspects Author(s) Abe, Hisashi Citation Journal of the Faculty of Agriculture, Hokkaido University, 55(4), 429-458 Issue Date 1968-05 Doc URL http://hdl.handle.net/2115/12830 Type bulletin (article) File Information 55(4)_p429-458.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP CLASSIFICATION AND BIOLOGY OF JAPANESE INSECTIVORA (MAMMALIA) II. Biological Aspects Hisashi ABE (Natural History Museum, Faculty of Agriculture Hokkaido Uni\'ersity, Sapporo) Recei\'ed December ri, 1967 As a continuation of the first paper of this work (1) dealing with the variation and classification of the Japanese insectivores, the present paper com­ prises the ecological accounts of their habitat, food habits, population structure and reproductive activity. The material and method are accordingly the same as in the former paper. (1) Sorcx lIJzguicuiatlis DOHSO:\' and Sorex C(lecuticllS saez'lIs TIIOMAS Habitat. Sorc.x llllguicuiatlis (big-clawed shrew) is common in grassy meadows and shrublands ranging from lowlands to low mountain regions; it is less abundant in woods of mature forest type with little undergrowth. Sorex caecutiens saevus (ezo shinto shrew) is most abundant in the shrub­ lands and the woods of mountain regions (Table 1). In the woods it is not so abundant as in the shrublands, but still distinctly predominates over the big-clawed shrew. The ezo shinto shrew is scarcely seen in grassy meadows where the big-clawed shrevy is dominant. TABLE 1. Differences of occurrence between the two speCIes of SoreL in various vegetations Type of vegetation S.
    [Show full text]
  • Evolution of Brains and Behavior for Optimal Foraging: a Tale of Two Predators
    Evolution of brains and behavior for optimal foraging: A tale of two predators Kenneth C. Catania1 Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235 Edited by John C. Avise, University of California, Irvine, CA, and approved April 4, 2012 (received for review February 16, 2012) Star-nosed moles and tentacled snakes have exceptional mechano- touch organ among mammals. Another extension of the research sensory systems that illustrate a number of general features of to include comparative and developmental studies provides nervous system organization and evolution. Star-nosed moles use compelling evidence for how the star evolved (11, 12). the star for active touch—rapidly scanning the environment with Recent investigations of aquatic tentacled snakes reveal a very the nasal rays. The star has the densest concentration of mechanor- different use for sensory appendages (13). Rather than serving eceptors described for any mammal, with a central tactile fovea active touch, the snake’s tentacles seem to act as fish-detecting magnified in anatomically visible neocortical modules. The somato- motion sensors. However, the most interesting finding from the sensory system parallels visual system organization, illustrating tentacled snake is its remarkable ability to use fish escape re- general features of high-resolution sensory representations. Star- sponses to its advantage (14, 15). nosed moles are the fastest mammalian foragers, able to identify The details of how and why each species evolved appendages and eat small prey in 120 ms. Optimal foraging theory suggests that are very different, but the lessons from investigating their biology the star evolved for profitably exploiting small invertebrates in are similar.
    [Show full text]
  • Evidence for Mutual Allocation of Social Attention Through Interactive Signaling in a Mormyrid Weakly Electric Fish
    Evidence for mutual allocation of social attention through interactive signaling in a mormyrid weakly electric fish Martin Worma,1, Tim Landgrafb, Julia Prumea, Hai Nguyenb, Frank Kirschbaumc, and Gerhard von der Emdea aInstitut für Zoologie, Neuroethologie/Sensorische Ökologie, Universität Bonn, 53115 Bonn, Germany; bInstitut für Informatik, Fachbereich Informatik und Mathematik, Freie Universität Berlin, 14195 Berlin, Germany; and cBiologie und Ökologie der Fische, Lebenswissenschaftliche Fakultät, Humboldt-Universität-zu Berlin, 10115 Berlin, Germany Edited by John G. Hildebrand, University of Arizona, Tucson, AZ, and approved May 16, 2018 (received for review January 26, 2018) Mormyrid weakly electric fish produce electric organ discharges responses from a conspecific. We solved both problems by using (EODs) for active electrolocation and electrocommunication. These a freely moving robotic fish capable of emitting either predefined pulses are emitted with variable interdischarge intervals (IDIs) or dynamic sequences of playback EODs in an interactive be- resulting in temporal discharge patterns and interactive signaling havioral experiment with single individuals of the weakly electric episodes with nearby conspecifics. However, unequivocal assign- fish Mormyrus rume proboscirostris. ment of interactive signaling to a specific behavioral context has Robotic fish have been successfully employed to investigate the proven to be challenging. Using an ethorobotical approach, we features determining attraction between individual fish (14–16), as confronted single individuals of weakly electric Mormyrus rume well as collective decision making and internal dynamics in groups – proboscirostris with a mobile fish robot capable of interacting of fish in shoals (17 22). Similar experiments have demonstrated both physically, on arbitrary trajectories, as well as electrically, that mormyrids are attracted to a mobile fish replica playing back by generating echo responses through playback of species- electric signals (23, 24).
    [Show full text]