Genetics of RA Susceptibility, What Comes Next?

Total Page:16

File Type:pdf, Size:1020Kb

Genetics of RA Susceptibility, What Comes Next? Rheumatoid arthritis RMD Open: first published as 10.1136/rmdopen-2014-000028 on 15 April 2015. Downloaded from REVIEW Genetics of RA susceptibility, what comes next? James Ding, Stephen Eyre, Jane Worthington To cite: Ding J, Eyre S, ABSTRACT on average, four genes, thus the remaining Worthington J. Genetics of Summary: Genome-wide association studies (GWASs) challenge is to identify for each locus the RA susceptibility, have been used to great effect to identify genetic RMD functional variant(s), the genes on which they what comes next?. susceptibility loci for complex disease. A series of fi Open 2015;1:e000028. act and the speci c cell type in which dysregu- GWAS and meta-analyses have informed the discovery doi:10.1136/rmdopen-2014- lation contributes to disease susceptibility. of over 100 loci for rheumatoid arthritis (RA). In 000028 In addition to providing insights into RA common with findings in other autoimmune diseases the lead signals for the majority of these loci do not pathogenesis, understanding genetic suscep- ▸ Prepublication history for map to known gene sequences. In order to realise the tibility at this level has the potential to this paper is available online. benefit of investment in GWAS studies it is vital we impact on both drug discovery and the To view these files please optimal implementation of established ther- visit the journal online determine how disease associated alleles function to (http://dx.doi.org/10.1136/ influence disease processes. This is leading to rapid apies through a greater understanding of rmdopen-2014-000028). development in our knowledge as to the function of disease heterogeneity. Thus far, functional non-coding regions of the genome. Here we consider studies to further characterise implicated Received 10 February 2015 possible functional mechanisms for intergenic RA- genetic regions in disease have focused Revised 25 March 2015 associated variants which lie within lncRNA sequences. Accepted 28 March 2015 almost exclusively on associated variants in protein-coding genes, however, these account for only a small minority of associated loci. Rheumatoid arthritis (RA) is a polygenic Evidence suggests that for RA and many autoimmune disease that is characterised by other complex diseases the majority of asso- chronic inflammation of the synovial joints, ciated variants map outside protein coding and associated with the presence of antici- regions. http://rmdopen.bmj.com/ trullinated protein antibodies (ACPA). For over 40 years it has been well established that there is a strong association between suscepti- INTERGENIC RA LOCI bility to RA and human leucocyte antigen In contrast to monogenic traits, an enrich- (HLA) DRB1 alleles that share a consensus ment analysis performed using data from sequence, known as the ‘shared epitope’.1 over 100 GWAS publications has shown that Spanning position 70–74 of the β subunit of SNPs associated with complex traits are inter- the HLA DR molecule, this association genic and do not map to protein sequences.6 on September 24, 2021 by guest. Protected copyright. accounts for approximately 40% of the Traditionally, the functional implications of genetic component of susceptibility of RA, intergenic RA loci have been attributed to and has recently been refined following the nearest protein-coding gene known to imputation of amino acid sequences from have immunological relevance. This assump- high-density single nucleotide polymorphism tion, that genetic polymorphisms alter the (SNP) data.2 It is only since the introduction expression of neighbouring genes by affect- Arthritis Research UK Centre of SNP-based genome-wide association ing cis-regulatory elements, such as enhan- for Genetics and Genomics, studies (GWAS) in 2007 that an extensive list cers and promoters, has been demonstrated Centre for Musculoskeletal of additional genetic risk loci, have been to be misguided at a number of loci. For Research, Institute of associated with RA.3 Currently, over 100 risk example, an association between the Inflammation and Repair, loci have been defined, explaining approxi- chromosome 16p13 region and a number of Manchester Academic Health 45 Science Centre, The mately half of the genetic variance in RA. autoimmune diseases has been shown. This University of Manchester, The challenge in this post-GWAS era is to association was originally attributed to Manchester, UK interpret and translate these genetic find- CLEC16A, with the majority of disease asso- ings, defining how they influence disease sus- ciated SNPs found within the transcribed Correspondence to Dr Jane Worthington; ceptibility and outcome. Signals from GWAS region of this gene, especially within intron jane.worthington@ typically comprise large numbers of highly 19. CLEC16A is expressed in a variety of manchester.ac.uk correlated SNPs defining regions that contain, immune relevant cells and contains an Ding J, et al. RMD Open 2015;1:e000028. doi:10.1136/rmdopen-2014-000028 1 RMD Open RMD Open: first published as 10.1136/rmdopen-2014-000028 on 15 April 2015. Downloaded from immunoreceptor tyrosine-based activation motif. enhancers characterised by histone 3 lysine 27 acetyl- Functional studies have, however, revealed a long range ation (H3K27ac).12 chromatin interaction between intron 19 of CLEC16A Lead disease-associated variants, situated as they are in and regulatory sequences that affect the expression of gene regulatory regions, may have a number of functional DEXI, found ∼140 kb from the SNPs.7 The focus of consequences that contribute to increased risk of RA. research at this locus has now moved to DEXI as an auto- These include disruption of transcription factor binding immune candidate gene. A similar example, where the sites and chromatin interactions, as at the SORT1 and SNPs in question are intergenic, rather than intronic, DEXI loci, as well as other mechanisms of disrupting can be found at the chromosome 1p13 region, which is regulatory features such as enhancers, silencers, promo- associated with low-density lipoprotein cholesterol and ters and insulators. Examples include potential impacts myocardial infarction. Here a disease associated SNP dis- on the deposition of epigenetic markers and RNA rupts a transcription factor binding site found between binding. It is also possible for non-coding SNPs to affect CELSR2 and PSRC1, which inhibits the expression of the function of non-coding RNA transcripts, such as SORT1, found ∼35 kb from the putative causal SNP.8 those of eRNA of lncRNA, by altering their sequence or Evidence is now emerging that the variants most expression pattern. strongly associated with autoimmune disease (lead SNPs) are enriched in areas of the chromosome that; are open and active, are defined by epigenetic marks, LNCRNA regulate gene transcription, and act in a cell-specific lncRNA are traditionally defined by an arbitrary lower manner. Indeed, a recent study of 21 autoimmune dis- limit of 200 bases, with over 100 000 transcripts identi- 13 eases by Farh et al,9 described an enrichment of putative fied in humans. Their diverse functions and character- causal SNPs in immune-cell enhancers. The majority istics have only recently attracted the attention of the (∼60%) of these SNPs, associated with RA and 20 other scientific community (see box 1 for a description of autoimmune diseases, map to enhancer elements that various lncRNA categories). Further classification of are active in lymphoblasts, lymphocytes and macro- lncRNA has focused on genomic content, with over a phages. The RA-associated enhancers are enriched for; third of transcripts found in intergenic regions (long cell specificity (T and B cells), activity in response to intervening non-coding RNA, lincRNA). While advances stimulation, and size (large ‘super-enhancers’). in RNA sequencing (RNA Seq) techniques can account Furthermore, they are associated with the expression of for many of the lncRNA species identified to date, a non-coding RNAs (enhancer-derived RNAs, eRNAs also large number of lincRNA have been identified by having known as elncRNAs). This was shown to be true within a similar chromatin signature to that of other actively transcribed genes. Typically, trimethylation of histone 3 the subset of RA-associated super-enhancers in the ana- http://rmdopen.bmj.com/ lysis by Farh et al, but is best illustrated by Hnisz et al10 in lysine 4 is (H3K4me3) is observed at the promoter, with one of the first papers to describe super-enhancers. histone 3 lysine 36 trimethylation (H3K36me3) found Super-enhancers, consist of clusters of enhancer ele- along the transcribed length. ments that play a key role in defining cell identity and lincRNAs are typically transcribed by RNA Polymerase are associated with a 24.3-fold enrichment of RNA, com- II and often undergo polyadenylation and splicing, just 14 pared to typical enhancers. Fahr et al found a 3.2-fold like protein-coding transcripts. This is, however, not enrichment of RA SNPs in super-enhancers compared the case for some eRNAs, which are subdivided accord- to typical enhancers and speculated that these SNPs ing to whether they are unidirectionally or bidirection- on September 24, 2021 by guest. Protected copyright. could elicit subtle and stimulation specific changes in ally transcribed (1D-eRNA, 2D-eRNA). eRNA are gene expression. Defining the function of these ncRNA expressing regions will be pivotal if we are to translate GWAS findings into mechanisms of susceptibility. Box 1 Summary of lncRNA features and classification. By recruiting various proteins, enhancers mediate Long non-coding RNA (lncRNA) chromosomal interactions, enabling the assembly of ▸ Defined as over 200nt in length. Generally transcribed by RNA transcriptional machinery at promoter regions. It is well Polymerase II, spliced and polyadenylated, as for protein- established that these regulatory elements do not neces- coding genes. sarily affect the transcription of neighbouring genes, can ▸ lncRNA are often characterised according to genomic position function over large distances and generally affect the for example, exonic, intergenic (lincRNA), etc. expression of more than one gene.11 One of the hall- ▸ Other, functional categories have been proposed.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Universidade De São Paulo Faculdade De Zootecnia E Engenharia De Alimentos
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE ZOOTECNIA E ENGENHARIA DE ALIMENTOS LAÍS GRIGOLETTO Genomic studies in Montana Tropical Composite cattle Pirassununga 2020 LAIS GRIGOLETTO Genomic studies in Montana Tropical Composite cattle Versão Corrigida Thesis submitted to the College of Animal Science and Food Engineering, University of São Paulo in partial fulfillment of the requirements for the degree of Doctor in Science from the Animal Biosciences program. Concentration area: Genetics, Molecular and Cellular Biology Supervisor: Prof. Dr. José Bento Sterman Ferraz Co-supervisor: Prof. Dr. Fernando Baldi Pirassununga 2020 Ficha catalográfica elaborada pelo Serviço de Biblioteca e Informação, FZEA/USP, com os dados fornecidos pelo(a) autor(a) Grigoletto, Laís G857g Genomic studies in Montana Tropical Composite cattle / Laís Grigoletto ; orientador José Bento Sterman Ferraz ; coorientador Fernando Baldi. -- Pirassununga, 2020. 183 f. Tese (Doutorado - Programa de Pós-Graduação em Biociência Animal) -- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo. 1. beef cattle. 2. composite. 3. genomics. 4. imputation. 5. genetic progress. I. Ferraz, José Bento Sterman, orient. II. Baldi, Fernando, coorient. III. Título. Permitida a cópia total ou parcial deste documento, desde que citada a fonte - o autor UNIVERSIDADE DE SÃO PAULO Faculdade de Zootecnia e Engenharia de Alimentos Comissão de Ética no Uso de Animais DISPENSA DE ANÁLISE ÉTICA Comunicamos que o projeto de pesquisa abaixo identificado está dispensado da análise ética por utilizar animais oriundos de coleções biológicas formadas anteriormente ao ano de 2008, ano da promulgação da Lei nº 11.794/2008 – lei que estabelece procedimentos para o uso científico de animais. Ressaltamos que atividades realizadas na vigência da referida lei, ou que resulte em incremento do acervo biológico, devem ser submetidas à análise desta CEUA conforme disposto pelo Conselho Nacional de Controle de Experimentação Animal (CONCEA).
    [Show full text]
  • Phoenixin—A Pleiotropic Gut-Brain Peptide
    International Journal of Molecular Sciences Review Phoenixin—A Pleiotropic Gut-Brain Peptide Martha A. Schalla 1 and Andreas Stengel 1,2,* 1 Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; [email protected] 2 Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany * Correspondence: [email protected]; Tel.: +49-7071-2986719 Received: 30 April 2018; Accepted: 8 June 2018; Published: 11 June 2018 Abstract: Phoenixin is a recently discovered brain peptide initially thought to be restricted to reproductive functions. The subsequent identification of phoenixin’s expression in peripheral tissues was accompanied by the description of several other actions of this hormone, such as effects on behavior, sensory perception, memory retention, the cardiovascular system as well as food intake, pointing towards a pleiotropic role of this peptide. The present review will discuss the present knowledge on phoenixin and the signaling involved as well as highlight gaps in knowledge to stimulate further research. Keywords: central nervous system; food intake; gastrointestinal tract; gut-brain axis; gut hormone; neuropeptide; orexigenic; phoenixin-14; phoenixin-20 1. Introduction The bidirectional neuro-/humoral interaction between the central nervous system
    [Show full text]
  • Integrative Systems Biology Applied to Toxicology
    Integrative Systems Biology Applied to Toxicology Kristine Grønning Kongsbak PhD Thesis January 2015 Integrative Systems Biology Applied to Toxicology Kristine Grønning Kongsbak Søborg 2015 FOOD-PHD-2015 PhD Thesis 2015 Supervisors Professor Anne Marie Vinggaard Senior Scientist Niels Hadrup Division of Toxicology and Risk Assessment National Food Institute Technical University of Denmark Associate Professor Aron Charles Eklund Center for Biological Sequence Analysis Department for Systems Biology Technical University of Denmark Associate Professor Karine Audouze Mol´ecules Th´erapeutiques In Silico Paris Diderot University Funding This project was supported financially by the Ministry of Food, Agriculture and Fisheries of Denmark and the Technical University of Denmark. ©Kristine Grønning Kongsbak FOOD-PHD: ISBN 978-87-93109-30-8 Division of Toxicology and Risk Assessment National Food Institute Technical University of Denmark DK-2860 Søborg, Denmark www.food.dtu.dk 4 Summary Humans are exposed to various chemical agents through food, cosmetics, pharma- ceuticals and other sources. Exposure to chemicals is suspected of playing a main role in the development of some adverse health effects in humans. Additionally, European regulatory authorities have recognized the risk associated with combined exposure to multiple chemicals. Testing all possible combinations of the tens of thousands environmental chemicals is impractical. This PhD project was launched to apply existing computational systems biology methods to toxicological research. In this thesis, I present in three projects three different approaches to using com- putational toxicology to aid classical toxicological investigations. In project I, we predicted human health effects of five pesticides using publicly available data. We obtained a grouping of the chemical according to their potential human health ef- fects that were in concordance with their effects in experimental animals.
    [Show full text]
  • Transcriptomic and Proteomic Landscape of Mitochondrial
    TOOLS AND RESOURCES Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals Inge Ku¨ hl1,2†*, Maria Miranda1†, Ilian Atanassov3, Irina Kuznetsova4,5, Yvonne Hinze3, Arnaud Mourier6, Aleksandra Filipovska4,5, Nils-Go¨ ran Larsson1,7* 1Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany; 2Department of Cell Biology, Institute of Integrative Biology of the Cell (I2BC) UMR9198, CEA, CNRS, Univ. Paris-Sud, Universite´ Paris-Saclay, Gif- sur-Yvette, France; 3Proteomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany; 4Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia; 5School of Molecular Sciences, The University of Western Australia, Crawley, Australia; 6The Centre National de la Recherche Scientifique, Institut de Biochimie et Ge´ne´tique Cellulaires, Universite´ de Bordeaux, Bordeaux, France; 7Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden Abstract Dysfunction of the oxidative phosphorylation (OXPHOS) system is a major cause of human disease and the cellular consequences are highly complex. Here, we present comparative *For correspondence: analyses of mitochondrial proteomes, cellular transcriptomes and targeted metabolomics of five [email protected] knockout mouse strains deficient in essential factors required for mitochondrial DNA gene (IKu¨ ); expression, leading to OXPHOS dysfunction. Moreover,
    [Show full text]
  • Mitochondrial Replacement and Mitonuclear Interactions in the Broadstripe Topminnow (Fundulus Euryzonus)
    The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College 5-2021 Mitochondrial Replacement and Mitonuclear Interactions in the Broadstripe Topminnow (Fundulus euryzonus) Auburn Ansley Follow this and additional works at: https://aquila.usm.edu/honors_theses Part of the Biology Commons Mitochondrial Replacement and Mitonuclear Interactions in the Broadstripe Topminnow (Fundulus euryzonus) by Auburn Ansley A Thesis Submitted to the Honors College of The University of Southern Mississippi in Partial Fulfillment of Honors Requirements May 2021 iii Approved by: Brian Kreiser, Ph.D., Thesis Advisor, School of Biological, Environmental and Earth Sciences Jake Schaefer Ph.D., Director, School of Biological, Environmental and Earth Sciences Ellen Weinauer, Ph.D., Dean Honors College iii ABSTRACT When species hybridize, mitochondrial and nuclear introgression can take place. This is commonly observed in freshwater fish species, such as the Fundulus notatus complex, which is composed of F. notatus, F. olivaceus, and F. euryzonus. The broadstripe topminnow, F. euryzonus, is only found in the Amite and Tangipahoa Rivers in the Lake Pontchartrain drainage, where it overlaps in distribution with F. olivaceus. Previous studies determined that F. euryzonus in the Tangipahoa River system possesses mitochondrial DNA (mtDNA) from F. olivaceus as a result of hybridization between the two species. The goal of this thesis was to re-examine an existing data set of single nucleotide polymorphisms (SNPs) to determine if this mitochondrial discordance has manifested itself in changes in the nuclear genome between populations of F. euryzonus in the Amite and Tangipahoa Rivers. This was conducted using a sliding window analysis to look for genome regions with very high (>0.95) or low (<0.01) weighted fixation index (FST) values and further analyzing regions that included three or more windows in a series.
    [Show full text]
  • The Pdx1 Bound Swi/Snf Chromatin Remodeling Complex Regulates Pancreatic Progenitor Cell Proliferation and Mature Islet Β Cell
    Page 1 of 125 Diabetes The Pdx1 bound Swi/Snf chromatin remodeling complex regulates pancreatic progenitor cell proliferation and mature islet β cell function Jason M. Spaeth1,2, Jin-Hua Liu1, Daniel Peters3, Min Guo1, Anna B. Osipovich1, Fardin Mohammadi3, Nilotpal Roy4, Anil Bhushan4, Mark A. Magnuson1, Matthias Hebrok4, Christopher V. E. Wright3, Roland Stein1,5 1 Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 2 Present address: Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 3 Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 4 Diabetes Center, Department of Medicine, UCSF, San Francisco, California 5 Corresponding author: [email protected]; (615)322-7026 1 Diabetes Publish Ahead of Print, published online June 14, 2019 Diabetes Page 2 of 125 Abstract Transcription factors positively and/or negatively impact gene expression by recruiting coregulatory factors, which interact through protein-protein binding. Here we demonstrate that mouse pancreas size and islet β cell function are controlled by the ATP-dependent Swi/Snf chromatin remodeling coregulatory complex that physically associates with Pdx1, a diabetes- linked transcription factor essential to pancreatic morphogenesis and adult islet-cell function and maintenance. Early embryonic deletion of just the Swi/Snf Brg1 ATPase subunit reduced multipotent pancreatic progenitor cell proliferation and resulted in pancreas hypoplasia. In contrast, removal of both Swi/Snf ATPase subunits, Brg1 and Brm, was necessary to compromise adult islet β cell activity, which included whole animal glucose intolerance, hyperglycemia and impaired insulin secretion. Notably, lineage-tracing analysis revealed Swi/Snf-deficient β cells lost the ability to produce the mRNAs for insulin and other key metabolic genes without effecting the expression of many essential islet-enriched transcription factors.
    [Show full text]
  • Neuroendocrine Regulation of Reproduction in Fish
    Neuroendocrine Regulation of Reproduction in Fish A Thesis Submitted to the College of Graduate and Postdoctoral Studies In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Veterinary Biomedical Sciences Western College of Veterinary Medicine University of Saskatchewan Saskatoon By Jithine Jayakumar Rajeswari © Copyright Jithine Jayakumar Rajeswari, August 2020. All rights reserved. Permission to use and disclaimer statement In presenting this thesis/dissertation in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for scrutiny. I further agree that permission for copying this thesis/dissertation in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis/dissertation work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis/dissertation or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use, which may be made of any material in my thesis/dissertation. The company/corporation/brand name and website were exclusively created to meet the thesis and/or exhibition requirements for the degree of Postgraduate studies at the University of Saskatchewan. Reference in this thesis/dissertation to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the University of Saskatchewan.
    [Show full text]
  • Mouse Smim20 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Smim20 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Smim20 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Smim20 gene (NCBI Reference Sequence: NM_001145433 ; Ensembl: ENSMUSG00000061461 ) is located on Mouse chromosome 5. 3 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 3 (Transcript: ENSMUST00000147148). Exon 1 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Smim20 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-440H20 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 1 covers 55.56% of the coding region. Start codon is in exon 1, and stop codon is in exon 3. The size of intron 1 for 3'-loxP site insertion: 9784 bp. The size of effective cKO region: ~375 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy gRNA region Wildtype allele A gRNA region T 5' G 3' 1 3 Targeting vector A T G Targeted allele A T G Constitutive KO allele (After Cre recombination) Legends Homology arm Exon of mouse Smim20 cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Supplementary Figure 1 a C E G B D
    Supplementary Figure 1 A APC B TP53 50 50 N/S N/S 40 40 30 30 20 20 10 10 Doubling time (h), SRB (h), Doublingtime Doubling time (h), SRB Doubling time n= 830n= n= 16n= 26 0 0 wt mut wt mut KRAS BRAF C 50 D 50 N/S 40 40 N/S 30 30 20 20 10 10 Doubling time (h), SRB Doubling time (h), SRB (h), time Doubling n= 19n= 29 n= 39n= 7 0 0 wt mut wt mut SMAD4 E F 60 N/S 40 20 27 12 (h), SRB time Doubling n= 20n= 5 0 wt mut G TCF7L2 H CTNNB1 60 50 N/S N/S 40 40 30 20 20 10 Doubling time (h),SRB n= 19n= 6 Doubling (h), SRB time n= 19n= 6 0 0 wt mut wt mut Supplementary Figure 1: Cell growth as a function of the mutational status of the most frequently mutated genes in colorectal tumors. The average doubling time of cell lines that are either wild type or mutant for APC (A), TP53 (B), KRAS (C), BRAF (D), PIK3CA (E), SMAD4 (F), TCF7L2 (G)andCTNNB1 (H) was calculated to assess the possible effects on tumor growth of the most frequent mutations observed in colorectal tumors. N/S: Student’s T‐test p>0.05. Supplementary Figure 2 A B 20000 GAPDH TYMS 4000 15000 3000 10000 2000 5000 1554696_s_at 1000 Pearson r =0.459 Pearson r =0.457 P value =0.024 AFFX-HUMGAPDH/M33197_5_at 0 P value =0.037 Relative expression (microarray) 0 0 20 40 60 80 100 Relative expression (microarray) expression Relative 0 20 40 60 80 100 Relative expression (qPCR) Relative expression (qPCR) C D PPOX CALCOCO2 80 80 60 60 40 40 238117_at 238560_at 20 20 Pearson r =0.590 Pearson r =0.772 P value =0.004 P value =0.025 0 0 Relative expression (microarray) 0 20 40 60 80 100 (microarray) Relative expression 0 100 200 300 400 500 Relative expression (qPCR) Relative expression (qPCR) E F CBX5 SMAD4 400 300 300 200 200 231862_at 202526_at 100 100 Pearson r =0.873 Pearson r =0.898 P value =0.015 0 P value =0.001 0 Relative expression (microarray) 0 100 200 300 400 500 Relative expression (microarray) 0 100 200 300 Relative expression (qPCR) Relative expression (qPCR) Supplementary Figure 2: Independent validation of mRNA expression levels.
    [Show full text]