Universidade De São Paulo Faculdade De Zootecnia E Engenharia De Alimentos

Total Page:16

File Type:pdf, Size:1020Kb

Universidade De São Paulo Faculdade De Zootecnia E Engenharia De Alimentos UNIVERSIDADE DE SÃO PAULO FACULDADE DE ZOOTECNIA E ENGENHARIA DE ALIMENTOS LAÍS GRIGOLETTO Genomic studies in Montana Tropical Composite cattle Pirassununga 2020 LAIS GRIGOLETTO Genomic studies in Montana Tropical Composite cattle Versão Corrigida Thesis submitted to the College of Animal Science and Food Engineering, University of São Paulo in partial fulfillment of the requirements for the degree of Doctor in Science from the Animal Biosciences program. Concentration area: Genetics, Molecular and Cellular Biology Supervisor: Prof. Dr. José Bento Sterman Ferraz Co-supervisor: Prof. Dr. Fernando Baldi Pirassununga 2020 Ficha catalográfica elaborada pelo Serviço de Biblioteca e Informação, FZEA/USP, com os dados fornecidos pelo(a) autor(a) Grigoletto, Laís G857g Genomic studies in Montana Tropical Composite cattle / Laís Grigoletto ; orientador José Bento Sterman Ferraz ; coorientador Fernando Baldi. -- Pirassununga, 2020. 183 f. Tese (Doutorado - Programa de Pós-Graduação em Biociência Animal) -- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo. 1. beef cattle. 2. composite. 3. genomics. 4. imputation. 5. genetic progress. I. Ferraz, José Bento Sterman, orient. II. Baldi, Fernando, coorient. III. Título. Permitida a cópia total ou parcial deste documento, desde que citada a fonte - o autor UNIVERSIDADE DE SÃO PAULO Faculdade de Zootecnia e Engenharia de Alimentos Comissão de Ética no Uso de Animais DISPENSA DE ANÁLISE ÉTICA Comunicamos que o projeto de pesquisa abaixo identificado está dispensado da análise ética por utilizar animais oriundos de coleções biológicas formadas anteriormente ao ano de 2008, ano da promulgação da Lei nº 11.794/2008 – lei que estabelece procedimentos para o uso científico de animais. Ressaltamos que atividades realizadas na vigência da referida lei, ou que resulte em incremento do acervo biológico, devem ser submetidas à análise desta CEUA conforme disposto pelo Conselho Nacional de Controle de Experimentação Animal (CONCEA). Projeto: Genomic Studies in Montana tropical composite cattle. Finalidade: Pesquisa Acadêmica – Tese de Doutorado Pesquisador: Laís Grigoletto Pesquisador responsável: Prof. Dr. José Bento Sterman Ferraz (Dep. ZMV) Instituição: Faculdade de Zootecnia e Engenharia de Alimentos Informações adicionais: - . Pirassununga, 18 de agosto de 2020. Profa. Dra. CRISTIANE GONÇALVES TITTO Profa. Dra. DANIELE DOS SANTOS MARTINS Presidente da Comissão de Ética no Uso de Vice-Presidente da Comissão de Ética no Uso de Animais Animais Av. Duque de Caxias Norte, 225 - 13635-900 – Pirassununga, SP Fone: (19) 3565-6759 -- E-mail: [email protected] Universidade de São Paulo ATA DE DEFESA Aluno: 74135 - 9206875 - 2 / Página 1 de 1 Ata de defesa de Tese do(a) Senhor(a) Laís Grigoletto no Programa: Biociência Animal, do(a) Faculdade de Zootecnia e Engenharia de Alimentos da Universidade de São Paulo. Aos 10 dias do mês de julho de 2020, no(a) Sala do docente (GMAB) realizou-se a Defesa da Tese do(a) Senhor(a) Laís Grigoletto, apresentada para a obtenção do título de Doutora intitulada: "Estudos genômicos em bovinos de corte composto Montana tropical" Após declarada aberta a sessão, o(a) Sr(a) Presidente passa a palavra ao candidato para exposição e a seguir aos examinadores para as devidas arguições que se desenvolvem nos termos regimentais. Em seguida, a Comissão Julgadora proclama o resultado: Nome dos Participantes da Banca Função Sigla da CPG Resultado José Bento Sterman Ferraz Presidente FZEA - USP ______________ Heidge Fukumasu Titular FZEA - USP ______________ Juliana Petrini Titular UNIFAL - Externo ______________ Ricardo Vieira Ventura Titular FMVZ - USP ______________ Luiz Fernando Brito Titular PU - Externo ______________ Resultado Final: ______________ Parecer da Comissão Julgadora * Eu, Erica Cristina Mello Ferraz ____________________________________ , lavrei a presente ata, que assino juntamente com os(as) Senhores(as). Pirassununga, aos 10 dias do mês de julho de 2020. Heidge Fukumasu Juliana Petrini Ricardo Vieira Ventura Luiz Fernando Brito José Bento Sterman Ferraz Presidente da Comissão Julgadora * Obs: Se o candidato for reprovado por algum dos membros, o preenchimento do parecer é obrigatório. A defesa foi homologada pela Comissão de Pós-Graduação em ______________ e, portanto, o(a) aluno(a) _______________ jus ao título de Doutora em Ciências obtido no Programa Biociência Animal. __________________________________ Presidente da Comissão de Pós-Graduação To my lovely and supportive family. In memory of my grandmother's Maria Luiza and Cacilda (“Cacá”). I dedicate. ACKNOWLEDGEMENTS I truly believe that every person, situation, and the lesson come in our life for a reason. I am very blessed to have and met amazing people that I have learned with and can call then family and friends. I am very glad to no longer be the same person as I was in the past year. I’ve learned with each one and situation in my life. Also, I feel so realized for each decision I made in life until now. I was very lucky during my Ph.D. I met (and re-met) very special people, which did not only teach me about genetics and genomics but also taught me a new perspective and how to be a better person and chase my dreams. They helped me to not give up, even when I was scared and did not believe in myself. I could have never done half of what I did in my Ph.D. if I have not met them at some point in my path. There is a theory called six degrees of separation originated from a scientific study d that describes, in the world, a maximum of six bonds of friendship is necessary for two people to be connected, so on in the past five years, I may have more connections built. Thus, I would like to show here my thanks to some of the people that were part of these five (2 of masters and 3 of Ph.D.) tremendous years of my life. First of all, I would like to thank my family. My parents Renato and Angela to give me the support, care, and they love to go through this intense cycle of my life. I do not have words to describe how I am thankful. To my brother, Dr. Renan, who shared the whole life with me, also be very protective for me, and of course, we divide the Ph.D. life together. Even more, I am so thankful to Renan and my sister in law Carolina, to my blessed and perfect nephew Bento. To all my uncles and aunts, and cousins. To my little cousin Gabi (“Pri”) to all the support! If I had the chance of choosing my family, I would choose all of you again! I would like to say a very big thank you to my advisor, Dr. José Bento Sterman Ferraz, for all support that he has given me since when I sent an email asking to be your Master student. That decision to give up my job and start this journey worth each second. Bento, you gave me a lot of opportunities that I could have never imagined. You were always there ready to help me with everything that I needed. You always helped me to achieve my dreams as if they were yours, and you believed in my potential even when I did not. You are the best advisor that I could have asked for, and I am very proud of being your student and called you as a friend (sometimes more like my second father). You have a special place in my life, and we need to have our barbecue as soon as possible. Thank you very much for everything that you have done for me. I admire you a lot for everything that you have been doing for the improvement of the beef cattle industry in Brazil. Dr. Luiz Fernando Brito, you have been the best person I have met in life. It was a pleasure to have the opportunity to stay close with you last year (2019-2020) doing part of my Ph.D. at Purdue University. I am very thankful for having trusted and believe in me. Thanks for being by my side helping, teaching, and cheering for me. You proved to me how far we can go if we work hard, and how life brings us good surprises when we do our best. But especially, our discussions/partnerships/projects/travels were fundamental in making me who I am today. I remember that the first thing you said to me was: “Lais, my job here, is to make you think”. And, Luiz every day that I need to do something, I always think why should I need to do this When? How? I am sure that we will continue to work together. Thanks for everything. Dra. Hinayah, you are an example of a professional and a person for me. Thanks for all your help, discussion, dinners, and friendship. I miss sharing my day and all my stories with you. I can have a piece of what it is to have a sister in my life. Elisangela, our kindness “Li”, you’ve been all my supporting and friend in this important cycle of my life. I could have never imagined that someone would be so nice and kind. You were the most sweetness surprise from life, and I have sure that you will always be present in my life. Thank you for all these years, coffee times, advisers, care, listening, and other more special moments. Dr. Fernando Baldi, you helped me a lot in my early beginning in the academic field. Thanks for all these years. I’ve learned a lot from you. Dr. Joanir Pereira Eler, thanks for sharing all the data and your knowledge with me. Dr. Miguel Henrique Almeida Santana, I would like to thank you for always have the right words and trust. And, of course, for your friendship. You are like a brother to me.
Recommended publications
  • Mediator Head Subcomplex Med11/22 Contains a Common Helix Bundle
    Published online 15 April 2011 Nucleic Acids Research, 2011, Vol. 39, No. 14 6291–6304 doi:10.1093/nar/gkr229 Mediator head subcomplex Med11/22 contains a common helix bundle building block with a specific function in transcription initiation complex stabilization Martin Seizl, Laurent Larivie` re, Toni Pfaffeneder, Larissa Wenzeck and Patrick Cramer* Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universita¨ t (LMU) Mu¨ nchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany Received February 24, 2011; Revised and Accepted March 29, 2011 ABSTRACT Mediator undergoes conformational changes, which trig- Mediator is a multiprotein co-activator of RNA poly- ger its interaction with Pol II and promote pre-initiation merase (Pol) II transcription. Mediator contains a complex (PIC) formation (7). Mediator was purified from yeast (8,9), metazoans conserved core that comprises the ‘head’ and (10,11) and plants (12). Comparative genomics identified ‘middle’ modules. We present here a structure– an ancient 17-subunit Mediator core that is conserved function analysis of the essential Med11/22 hetero- in eukaryotes (13,14). Mediator from the yeast dimer, a part of the head module. Med11/22 forms a Saccharomyces cerevisiae (Sc) is a 1.4 MDa multiprotein conserved four-helix bundle domain with C-terminal complex comprising 25 subunits, of which 11 are essential extensions, which bind the central head subunit and 22 are at least partially conserved. Based on electron Med17. A highly conserved patch on the bundle microscopy and biochemical analysis, mediator subunits surface is required for stable transcription pre- were suggested to reside in four flexibly linked modules, initiation complex formation on a Pol II promoter the head, middle, tail and kinase module (15–17).
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • KIAA0556 Is a Novel Ciliary Basal Body Component Mutated in Joubert Syndrome Anna A
    Sanders et al. Genome Biology (2015) 16:293 DOI 10.1186/s13059-015-0858-z RESEARCH Open Access KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome Anna A. W. M. Sanders1†, Erik de Vrieze2,3†, Anas M. Alazami4†, Fatema Alzahrani4, Erik B. Malarkey5, Nasrin Sorusch6, Lars Tebbe6, Stefanie Kuhns1, Teunis J. P. van Dam7, Amal Alhashem8, Brahim Tabarki8, Qianhao Lu9,10, Nils J. Lambacher1, Julie E. Kennedy1, Rachel V. Bowie1, Lisette Hetterschijt2,3, Sylvia van Beersum3,11, Jeroen van Reeuwijk3,11, Karsten Boldt12, Hannie Kremer2,3,11, Robert A. Kesterson13, Dorota Monies4, Mohamed Abouelhoda4, Ronald Roepman3,11, Martijn H. Huynen7, Marius Ueffing12, Rob B. Russell9,10, Uwe Wolfrum6, Bradley K. Yoder5, Erwin van Wijk2,3*, Fowzan S. Alkuraya4,14* and Oliver E. Blacque1* Abstract Background: Joubert syndrome (JBTS) and related disorders are defined by cerebellar malformation (molar tooth sign), together with neurological symptoms of variable expressivity. The ciliary basis of Joubert syndrome related disorders frequently extends the phenotype to tissues such as the eye, kidney, skeleton and craniofacial structures. Results: Using autozygome and exome analyses, we identified a null mutation in KIAA0556 in a multiplex consanguineous family with hallmark features of mild Joubert syndrome. Patient-derived fibroblasts displayed reduced ciliogenesis potential and abnormally elongated cilia. Investigation of disease pathophysiology revealed that Kiaa0556-/- null mice possess a Joubert syndrome-associated brain-restricted phenotype. Functional studies in Caenorhabditis elegans nematodes and cultured human cells support a conserved ciliary role for KIAA0556 linked to microtubule regulation. First, nematode KIAA0556 is expressed almost exclusively in ciliated cells, and the worm and human KIAA0556 proteins are enriched at the ciliary base.
    [Show full text]
  • Investigating the Genetic Basis of Cisplatin-Induced Ototoxicity in Adult South African Patients
    --------------------------------------------------------------------------- Investigating the genetic basis of cisplatin-induced ototoxicity in adult South African patients --------------------------------------------------------------------------- by Timothy Francis Spracklen SPRTIM002 SUBMITTED TO THE UNIVERSITY OF CAPE TOWN In fulfilment of the requirements for the degree MSc(Med) Faculty of Health Sciences UNIVERSITY OF CAPE TOWN University18 December of Cape 2015 Town Supervisor: Prof. Rajkumar S Ramesar Co-supervisor: Ms A Alvera Vorster Division of Human Genetics, Department of Pathology, University of Cape Town 1 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration I, Timothy Spracklen, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever. Signature: Date: 18 December 2015 ' 2 Contents Abbreviations ………………………………………………………………………………….. 1 List of figures …………………………………………………………………………………... 6 List of tables ………………………………………………………………………………….... 7 Abstract ………………………………………………………………………………………… 10 1. Introduction …………………………………………………………………………………. 11 1.1 Cancer …………………………………………………………………………….. 11 1.2 Adverse drug reactions ………………………………………………………….. 12 1.3 Cisplatin …………………………………………………………………………… 12 1.3.1 Cisplatin’s mechanism of action ……………………………………………… 13 1.3.2 Adverse reactions to cisplatin therapy ……………………………………….
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Epigenome-Wide Exploratory Study of Monozygotic Twins Suggests Differentially Methylated Regions to Associate with Hand Grip Strength
    Biogerontology (2019) 20:627–647 https://doi.org/10.1007/s10522-019-09818-1 (0123456789().,-volV)( 0123456789().,-volV) RESEARCH ARTICLE Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength Mette Soerensen . Weilong Li . Birgit Debrabant . Marianne Nygaard . Jonas Mengel-From . Morten Frost . Kaare Christensen . Lene Christiansen . Qihua Tan Received: 15 April 2019 / Accepted: 24 June 2019 / Published online: 28 June 2019 Ó The Author(s) 2019 Abstract Hand grip strength is a measure of mus- significant CpG sites or pathways were found, how- cular strength and is used to study age-related loss of ever two of the suggestive top CpG sites were mapped physical capacity. In order to explore the biological to the COL6A1 and CACNA1B genes, known to be mechanisms that influence hand grip strength varia- related to muscular dysfunction. By investigating tion, an epigenome-wide association study (EWAS) of genomic regions using the comb-p algorithm, several hand grip strength in 672 middle-aged and elderly differentially methylated regions in regulatory monozygotic twins (age 55–90 years) was performed, domains were identified as significantly associated to using both individual and twin pair level analyses, the hand grip strength, and pathway analyses of these latter controlling the influence of genetic variation. regions revealed significant pathways related to the Moreover, as measurements of hand grip strength immune system, autoimmune disorders, including performed over 8 years were available in the elderly diabetes type 1 and viral myocarditis, as well as twins (age 73–90 at intake), a longitudinal EWAS was negative regulation of cell differentiation.
    [Show full text]
  • Salty Taste Deficits in CALHM1 Knockout Mice M
    Donald and Barbara Zucker School of Medicine Journal Articles Academic Works 2014 Salty Taste Deficits in CALHM1 Knockout Mice M. G. Tordoff H. T. Ellis T. R. Aleman A. Downing P. Marambaud Northwell Health See next page for additional authors Follow this and additional works at: https://academicworks.medicine.hofstra.edu/articles Part of the Medical Molecular Biology Commons Recommended Citation Tordoff M, Ellis H, Aleman T, Downing A, Marambaud P, Foskett ,J Dana R, McCaughey S. Salty Taste Deficits in CALHM1 Knockout Mice. 2014 Jan 01; 39(6):Article 2870 [ p.]. Available from: https://academicworks.medicine.hofstra.edu/articles/2870. Free full text article. This Article is brought to you for free and open access by Donald and Barbara Zucker School of Medicine Academic Works. It has been accepted for inclusion in Journal Articles by an authorized administrator of Donald and Barbara Zucker School of Medicine Academic Works. For more information, please contact [email protected]. Authors M. G. Tordoff, H. T. Ellis, T. R. Aleman, A. Downing, P. Marambaud, J. K. Foskett, R. M. Dana, and S. A. McCaughey This article is available at Donald and Barbara Zucker School of Medicine Academic Works: https://academicworks.medicine.hofstra.edu/articles/2870 Chem. Senses 39: 515–528, 2014 doi:10.1093/chemse/bju020 Advance Access publication May 20, 2014 Salty Taste Deficits in CALHM1 Knockout Mice Michael G. Tordoff1, Hillary T. Ellis1, Tiffany R. Aleman1, Arnelle Downing1, Philippe Marambaud2, J. Kevin Foskett3, Rachel M. Dana4 and Stuart
    [Show full text]
  • Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School July 2017 Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Pathology Commons Scholar Commons Citation Mohamed, Mai, "Role of Amylase in Ovarian Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6907 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role of Amylase in Ovarian Cancer by Mai Mohamed A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pathology and Cell Biology Morsani College of Medicine University of South Florida Major Professor: Patricia Kruk, Ph.D. Paula C. Bickford, Ph.D. Meera Nanjundan, Ph.D. Marzenna Wiranowska, Ph.D. Lauri Wright, Ph.D. Date of Approval: June 29, 2017 Keywords: ovarian cancer, amylase, computational analyses, glycocalyx, cellular invasion Copyright © 2017, Mai Mohamed Dedication This dissertation is dedicated to my parents, Ahmed and Fatma, who have always stressed the importance of education, and, throughout my education, have been my strongest source of encouragement and support. They always believed in me and I am eternally grateful to them. I would also like to thank my brothers, Mohamed and Hussien, and my sister, Mariam. I would also like to thank my husband, Ahmed.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Mouse Trim41 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Trim41 Knockout Project (CRISPR/Cas9) Objective: To create a Trim41 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Trim41 gene (NCBI Reference Sequence: NM_145377 ; Ensembl: ENSMUSG00000040365 ) is located on Mouse chromosome 11. 6 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 6 (Transcript: ENSMUST00000047145). Exon 1~3 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 1 starts from the coding region. Exon 1~3 covers 60.32% of the coding region. The size of effective KO region: ~7606 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 6 Legends Exon of mouse Trim41 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 813 bp section of Exon 1 is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 231 bp section of Exon 3 is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Anti-VPS4A Antibody (ARG43067)
    Product datasheet [email protected] ARG43067 Package: 50 μg anti-VPS4A antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes VPS4A Tested Reactivity Hu, Ms, Rat Tested Application FACS, IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name VPS4A Antigen Species Human Immunogen Recombinant protein corresponding to M1-K71 of Human VPS4A. Conjugation Un-conjugated Alternate Names SKD2; SKD1; hVPS4; Protein SKD2; SKD1A; Vacuolar protein sorting-associated protein 4A; VPS4-1; EC 3.6.4.6; VPS4 Application Instructions Application table Application Dilution FACS 1:150 - 1:500 IHC-P 1:200 - 1:1000 WB 1:500 - 1:2000 Application Note IHC-P: Antigen Retrieval: Heat mediation was performed in EDTA buffer (pH 8.0). * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 49 kDa Properties Form Liquid Purification Affinity purification with immunogen. Buffer 0.2% Na2HPO4, 0.9% NaCl, 0.05% Sodium azide and 4% Trehalose. Preservative 0.05% Sodium azide Stabilizer 4% Trehalose Concentration 0.5 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed www.arigobio.com 1/3 before use. Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol VPS4A Gene Full Name vacuolar protein sorting 4 homolog A (S.
    [Show full text]