Thesis Was Carried out Under the Supervision of Dr
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tumor Initiating but Differentiated Luminal-Like Breast Cancer Cells Are Highly Invasive in the Absence of Basal-Like Activity
Tumor initiating but differentiated luminal-like breast cancer cells are highly invasive in the absence of basal-like activity Jiyoung Kima, René Villadsena, Therese Sørlieb,c, Louise Fogha, Signe Z. Grønlunda,d, Agla J. Fridriksdottira, Irene Kuhne, Fritz Rankf,1, Vera Timmermans Wielengaf, Hiroko Solvangb,g, Paul A. W. Edwardsh, Anne-Lise Børresen-Daleb,i, Lone Rønnov-Jessend, Mina J. Bisselle,2, and Ole William Petersena,2 aDepartment of Cellular and Molecular Medicine, Centre for Biological Disease Analysis and Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; bDepartment of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Montebello 0310, Oslo, Norway; cCancer Stem Cell Innovation Center, Oslo University Hospital, Norwegian Radium Hospital, 0310 Oslo, Norway; dCell and Developmental Biology, Department of Biology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; eLife Sciences Division, Berkeley National Laboratory, Berkeley, CA 94720; fDepartment of Pathology, Rigshospitalet, DK-2100 Copenhagen Ø, Denmark; gDepartment of Biostatistics, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway; hDepartment of Pathology and Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0X2, United Kingdom; and iK. G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Clinical Medicine, University of Oslo, 0318 Oslo, Norway Contributed by Mina J. Bissell, February 28, 2012 (sent for review January 10, 2012) The majority of human breast cancers exhibit luminal epithelial these contradictions is the concept of tumor cell plasticity, i.e., the differentiation. However, most aggressive behavior, including possibility that differentiated luminal cells must acquire basal-like invasion and purported cancer stem cell activity, are considered traits to become malignant (10–14). -
Investigating the Genetic Basis of Cisplatin-Induced Ototoxicity in Adult South African Patients
--------------------------------------------------------------------------- Investigating the genetic basis of cisplatin-induced ototoxicity in adult South African patients --------------------------------------------------------------------------- by Timothy Francis Spracklen SPRTIM002 SUBMITTED TO THE UNIVERSITY OF CAPE TOWN In fulfilment of the requirements for the degree MSc(Med) Faculty of Health Sciences UNIVERSITY OF CAPE TOWN University18 December of Cape 2015 Town Supervisor: Prof. Rajkumar S Ramesar Co-supervisor: Ms A Alvera Vorster Division of Human Genetics, Department of Pathology, University of Cape Town 1 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration I, Timothy Spracklen, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever. Signature: Date: 18 December 2015 ' 2 Contents Abbreviations ………………………………………………………………………………….. 1 List of figures …………………………………………………………………………………... 6 List of tables ………………………………………………………………………………….... 7 Abstract ………………………………………………………………………………………… 10 1. Introduction …………………………………………………………………………………. 11 1.1 Cancer …………………………………………………………………………….. 11 1.2 Adverse drug reactions ………………………………………………………….. 12 1.3 Cisplatin …………………………………………………………………………… 12 1.3.1 Cisplatin’s mechanism of action ……………………………………………… 13 1.3.2 Adverse reactions to cisplatin therapy ………………………………………. -
Alagille Watson Syndrome (JAG1) Sequencing & Deletion/Duplication
Lab Dept: Anatomic Pathology Test Name: ALAGILLE WATSON SYNDROME (JAG1) SEQUENCING General Information Lab Order Codes: JAG1 Synonyms: Alagille Watson Syndrome; Cholestasis with Peripheral Pulmonary Stenosis; Arteriohepatic Dysplasia; Syndromatic Hepatic Ductular Hypoplasia; ALGS1 CPT Codes: Sequencing: 81407 – Molecular pathology Level 8 Deletion/Duplication- High Density Targeted Array 81406 – Molecular pathology Level 7 Test Includes: Analysis of bi-directional sequencing. Also includes a targeted array CGH analysis with exon-level resolution to evaluate for a deletion or duplication of one exon of this gene. Logistics Test Indications: Alagille Syndrome is one of the major forms of chronic liver disease in children and is an autosomal dominant disorder with high penetrance but variable expressivity. The main clinical findings include cholestatis due to bile duct paucity, a characteristic facial appearance, and cardiovascular, eye and skeletal abnormalities. Cardiovascular findings include tetralogy of Fallot or singular manifestations thereof, peripheral pulmonary artery stenosis, atrial and/or ventricular septal defects, and coarction of the aorta. Butterfly vertebra is the most common skeletal finding. Other findings include narrowing of interpeduncular spaces in the lumbar spine, spina bifida occulta, and short fingers and ulnae. Facial features consist of broad forehead, triangular face, prominent zygomatic arch and moderate hypertelorism. Posterior embryotoxon and retinal pigmentary changes are common opthalmological findings. ALGS1 is caused by mutations in the JAG1 gene. It encodes jagged-1, a ligand for the Notch receptors. Notch proteins are transmembrane receptors and are components of signaling pathways important for cell fate. JAG1 is expressed in the developing heart and other structures affected in Alagille syndrome. Over 90% of patients with Alagille syndrome have a mutation in the JAG1 gene. -
Anti-VPS4A Antibody (ARG43067)
Product datasheet [email protected] ARG43067 Package: 50 μg anti-VPS4A antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes VPS4A Tested Reactivity Hu, Ms, Rat Tested Application FACS, IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name VPS4A Antigen Species Human Immunogen Recombinant protein corresponding to M1-K71 of Human VPS4A. Conjugation Un-conjugated Alternate Names SKD2; SKD1; hVPS4; Protein SKD2; SKD1A; Vacuolar protein sorting-associated protein 4A; VPS4-1; EC 3.6.4.6; VPS4 Application Instructions Application table Application Dilution FACS 1:150 - 1:500 IHC-P 1:200 - 1:1000 WB 1:500 - 1:2000 Application Note IHC-P: Antigen Retrieval: Heat mediation was performed in EDTA buffer (pH 8.0). * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 49 kDa Properties Form Liquid Purification Affinity purification with immunogen. Buffer 0.2% Na2HPO4, 0.9% NaCl, 0.05% Sodium azide and 4% Trehalose. Preservative 0.05% Sodium azide Stabilizer 4% Trehalose Concentration 0.5 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed www.arigobio.com 1/3 before use. Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol VPS4A Gene Full Name vacuolar protein sorting 4 homolog A (S. -
Pan-Cancer Molecular Classes Transcending Tumor Lineage Across 32 Cancer Types, Multiple Data Platforms, and Over 10,000 Cases Fengju Chen1, Yiqun Zhang1, Don L
Published OnlineFirst February 9, 2018; DOI: 10.1158/1078-0432.CCR-17-3378 Biology of Human Tumors Clinical Cancer Research Pan-Cancer Molecular Classes Transcending Tumor Lineage Across 32 Cancer Types, Multiple Data Platforms, and over 10,000 Cases Fengju Chen1, Yiqun Zhang1, Don L. Gibbons2,3, Benjamin Deneen4,5,6,7, David J. Kwiatkowski8,9, Michael Ittmann10, and Chad J. Creighton1,11,12,13 Abstract Purpose: The Cancer Genome Atlas data resources represent of immune infiltrates were most strongly manifested within a an opportunity to explore commonalities across cancer types class representing 13% of cancers. Pathway-level differences involving multiple molecular levels, but tumor lineage and involving hypoxia, NRF2-ARE, Wnt, and Notch were manifested histology can represent a barrier in moving beyond differences in two additional classes enriched for mesenchymal markers and relatedtocancertype. miR200 silencing. Experimental Design: On the basis of gene expression data, we Conclusions: All pan-cancer molecular classes uncovered classified 10,224 cancers, representing 32 major types, into 10 here, with the important exception of the basal-like breast molecular-based "classes." Molecular patterns representing tissue cancer class, involve a wide range of cancer types and would or histologic dominant effects were first removed computation- facilitate understanding the molecular underpinnings of ally, with the resulting classes representing emergent themes cancers beyond tissue-oriented domains. Numerous biolog- across tumor lineages. ical processes associated with cancer in the laboratory Results: Key differences involving mRNAs, miRNAs, proteins, setting were found here to be coordinately manifested and DNA methylation underscored the pan-cancer classes. One across large subsets of human cancers. -
ZFYVE19 (E-14): Sc-165940
SAN TA C RUZ BI OTEC HNOL OG Y, INC . ZFYVE19 (E-14): sc-165940 BACKGROUND APPLICATIONS Zinc-finger proteins contain DNA-binding domains and have a wide variety of ZFYVE19 (E-14) is recommended for detection of ZFYVE19 of mouse, rat and functions, most of which encompass some form of transcriptional activation human origin by Western Blotting (starting dilution 1:200, dilution range or repression. ZFYVE19 (zinc finger, FYVE domain containing 19), also known 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range as MPFYVE (MLL partner containing FYVE domain), is a 471 amino acid pro - 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30- tein that contains one FYVE-type zinc finger. Expressed in heart, brain, kid ney, 1:3000); non cross-reactive with other ZFYVE family members. skeletal muscle and liver, ZFYVE19 may participate in transcriptional regula - Suitable for use as control antibody for ZFYVE19 siRNA (h): sc-90097, tion events within the cell. Defects in the gene encoding ZFYVE19 are asso - ZFYVE19 siRNA (m): sc-155604, ZFYVE19 shRNA Plasmid (h): sc-90097-SH, ciated with acute myeloblastic leukemia (AML), a rapidly progressing cancer ZFYVE19 shRNA Plasmid (m): sc-155604-SH, ZFYVE19 shRNA (h) Lentiviral of the myeloid line of white blood cells that is characterized by fever, ane mia, Particles: sc-90097-V and ZFYVE19 shRNA (m) Lentiviral Particles: bone pain, shortness of breath and frequent infections. Three isoforms of sc-155604-V. ZFYVE19 exist due to alternative splicing events. Molecular Weight of ZFYVE19: 48 kDa. REFERENCES Positive Controls: PLC/PRF/5 whole cell lysate. -
Early Growth Response 1 Regulates Hematopoietic Support and Proliferation in Human Primary Bone Marrow Stromal Cells
Hematopoiesis SUPPLEMENTARY APPENDIX Early growth response 1 regulates hematopoietic support and proliferation in human primary bone marrow stromal cells Hongzhe Li, 1,2 Hooi-Ching Lim, 1,2 Dimitra Zacharaki, 1,2 Xiaojie Xian, 2,3 Keane J.G. Kenswil, 4 Sandro Bräunig, 1,2 Marc H.G.P. Raaijmakers, 4 Niels-Bjarne Woods, 2,3 Jenny Hansson, 1,2 and Stefan Scheding 1,2,5 1Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden; 2Lund Stem Cell Center, Depart - ment of Laboratory Medicine, Lund University, Lund, Sweden; 3Division of Molecular Medicine and Gene Therapy, Department of Labora - tory Medicine, Lund University, Lund, Sweden; 4Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands and 5Department of Hematology, Skåne University Hospital Lund, Skåne, Sweden ©2020 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2019.216648 Received: January 14, 2019. Accepted: July 19, 2019. Pre-published: August 1, 2019. Correspondence: STEFAN SCHEDING - [email protected] Li et al.: Supplemental data 1. Supplemental Materials and Methods BM-MNC isolation Bone marrow mononuclear cells (BM-MNC) from BM aspiration samples were isolated by density gradient centrifugation (LSM 1077 Lymphocyte, PAA, Pasching, Austria) either with or without prior incubation with RosetteSep Human Mesenchymal Stem Cell Enrichment Cocktail (STEMCELL Technologies, Vancouver, Canada) for lineage depletion (CD3, CD14, CD19, CD38, CD66b, glycophorin A). BM-MNCs from fetal long bones and adult hip bones were isolated as reported previously 1 by gently crushing bones (femora, tibiae, fibulae, humeri, radii and ulna) in PBS+0.5% FCS subsequent passing of the cell suspension through a 40-µm filter. -
Multiomics of Azacitidine-Treated AML Cells Reveals Variable And
Multiomics of azacitidine-treated AML cells reveals variable and convergent targets that remodel the cell-surface proteome Kevin K. Leunga, Aaron Nguyenb, Tao Shic, Lin Tangc, Xiaochun Nid, Laure Escoubetc, Kyle J. MacBethb, Jorge DiMartinob, and James A. Wellsa,1 aDepartment of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; bEpigenetics Thematic Center of Excellence, Celgene Corporation, San Francisco, CA 94158; cDepartment of Informatics and Predictive Sciences, Celgene Corporation, San Diego, CA 92121; and dDepartment of Informatics and Predictive Sciences, Celgene Corporation, Cambridge, MA 02140 Contributed by James A. Wells, November 19, 2018 (sent for review August 23, 2018; reviewed by Rebekah Gundry, Neil L. Kelleher, and Bernd Wollscheid) Myelodysplastic syndromes (MDS) and acute myeloid leukemia of DNA methyltransferases, leading to loss of methylation in (AML) are diseases of abnormal hematopoietic differentiation newly synthesized DNA (10, 11). It was recently shown that AZA with aberrant epigenetic alterations. Azacitidine (AZA) is a DNA treatment of cervical (12, 13) and colorectal (14) cancer cells methyltransferase inhibitor widely used to treat MDS and AML, can induce interferon responses through reactivation of endoge- yet the impact of AZA on the cell-surface proteome has not been nous retroviruses. This phenomenon, termed viral mimicry, is defined. To identify potential therapeutic targets for use in com- thought to induce antitumor effects by activating and engaging bination with AZA in AML patients, we investigated the effects the immune system. of AZA treatment on four AML cell lines representing different Although AZA treatment has demonstrated clinical benefit in stages of differentiation. The effect of AZA treatment on these AML patients, additional therapeutic options are needed (8, 9). -
Spatially Restricted JAG1-Notch Signaling in Human Thymus Provides Suitable DC Developmental Niches
Article Spatially restricted JAG1-Notch signaling in human thymus provides suitable DC developmental niches Enrique Martín-Gayo,1* Sara González-García,1* María J. García-León,1 Alba Murcia-Ceballos,1 Juan Alcain,1 Marina García-Peydró,1 Luis Allende,2 Belén de Andrés,3 María L. Gaspar,3 and María L. Toribio1 1Department of Cell Biology and Immunology, Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain 2Immunology Department, i+12 Research Institute, Hospital Universitario 12 de Octubre, Madrid, Spain 3Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain A key unsolved question regarding the developmental origin of conventional and plasmacytoid dendritic cells (cDCs and pDCs, respectively) resident in the steady-state thymus is whether early thymic progenitors (ETPs) could escape T cell fate constraints imposed normally by a Notch-inductive microenvironment and undergo DC development. By modeling DC generation in bulk Downloaded from and clonal cultures, we show here that Jagged1 (JAG1)-mediated Notch signaling allows human ETPs to undertake a myeloid transcriptional program, resulting in GATA2-dependent generation of CD34+ CD123+ progenitors with restricted pDC, cDC, and monocyte potential, whereas Delta-like1 signaling down-regulates GATA2 and impairs myeloid development. Progressive com- mitment to the DC lineage also occurs intrathymically, as myeloid-primed CD123+ monocyte/DC and common DC progenitors, equivalent to those previously identified in the bone marrow, are resident in the normal human thymus. The identification of + a discrete JAG1 thymic medullary niche enriched for DC-lineage cells expressing Notch receptors further validates the human jem.rupress.org thymus as a DC-poietic organ, which provides selective microenvironments permissive for DC development. -
Whole Exome Sequencing Reveals NOTCH1 Mutations in Anaplastic Large Cell Lymphoma and Points to Notch Both As a Key Pathway and a Potential Therapeutic Target
Non-Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing reveals NOTCH1 mutations in anaplastic large cell lymphoma and points to Notch both as a key pathway and a potential therapeutic target Hugo Larose, 1,2 Nina Prokoph, 1,2 Jamie D. Matthews, 1 Michaela Schlederer, 3 Sandra Högler, 4 Ali F. Alsulami, 5 Stephen P. Ducray, 1,2 Edem Nuglozeh, 6 Mohammad Feroze Fazaludeen, 7 Ahmed Elmouna, 6 Monica Ceccon, 2,8 Luca Mologni, 2,8 Carlo Gambacorti-Passerini, 2,8 Gerald Hoefler, 9 Cosimo Lobello, 2,10 Sarka Pospisilova, 2,10,11 Andrea Janikova, 2,11 Wilhelm Woessmann, 2,12 Christine Damm-Welk, 2,12 Martin Zimmermann, 13 Alina Fedorova, 14 Andrea Malone, 15 Owen Smith, 15 Mariusz Wasik, 2,16 Giorgio Inghirami, 17 Laurence Lamant, 18 Tom L. Blundell, 5 Wolfram Klapper, 19 Olaf Merkel, 2,3 G. A. Amos Burke, 20 Shahid Mian, 6 Ibraheem Ashankyty, 21 Lukas Kenner 2,3,22 and Suzanne D. Turner 1,2,10 1Department of Pathology, University of Cambridge, Cambridge, UK; 2European Research Initiative for ALK Related Malignancies (ERIA; www.ERIALCL.net ); 3Department of Pathology, Medical University of Vienna, Vienna, Austria; 4Unit of Laboratory Animal Pathology, Uni - versity of Veterinary Medicine Vienna, Vienna, Austria; 5Department of Biochemistry, University of Cambridge, Tennis Court Road, Cam - bridge, UK; 6Molecular Diagnostics and Personalised Therapeutics Unit, Colleges of Medicine and Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia; 7Neuroinflammation Research Group, Department of Neurobiology, A.I Virtanen Institute -
Human CD Marker Chart Reviewed by HLDA1 Bdbiosciences.Com/Cdmarkers
BD Biosciences Human CD Marker Chart Reviewed by HLDA1 bdbiosciences.com/cdmarkers 23-12399-01 CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD1a R4, T6, Leu6, HTA1 b-2-Microglobulin, CD74 + + + – + – – – CD93 C1QR1,C1qRP, MXRA4, C1qR(P), Dj737e23.1, GR11 – – – – – + + – – + – CD220 Insulin receptor (INSR), IR Insulin, IGF-2 + + + + + + + + + Insulin-like growth factor 1 receptor (IGF1R), IGF-1R, type I IGF receptor (IGF-IR), CD1b R1, T6m Leu6 b-2-Microglobulin + + + – + – – – CD94 KLRD1, Kp43 HLA class I, NKG2-A, p39 + – + – – – – – – CD221 Insulin-like growth factor 1 (IGF-I), IGF-II, Insulin JTK13 + + + + + + + + + CD1c M241, R7, T6, Leu6, BDCA1 b-2-Microglobulin + + + – + – – – CD178, FASLG, APO-1, FAS, TNFRSF6, CD95L, APT1LG1, APT1, FAS1, FASTM, CD95 CD178 (Fas ligand) + + + + + – – IGF-II, TGF-b latency-associated peptide (LAP), Proliferin, Prorenin, Plasminogen, ALPS1A, TNFSF6, FASL Cation-independent mannose-6-phosphate receptor (M6P-R, CIM6PR, CIMPR, CI- CD1d R3G1, R3 b-2-Microglobulin, MHC II CD222 Leukemia -
Universidade De São Paulo Faculdade De Zootecnia E Engenharia De Alimentos
UNIVERSIDADE DE SÃO PAULO FACULDADE DE ZOOTECNIA E ENGENHARIA DE ALIMENTOS LAÍS GRIGOLETTO Genomic studies in Montana Tropical Composite cattle Pirassununga 2020 LAIS GRIGOLETTO Genomic studies in Montana Tropical Composite cattle Versão Corrigida Thesis submitted to the College of Animal Science and Food Engineering, University of São Paulo in partial fulfillment of the requirements for the degree of Doctor in Science from the Animal Biosciences program. Concentration area: Genetics, Molecular and Cellular Biology Supervisor: Prof. Dr. José Bento Sterman Ferraz Co-supervisor: Prof. Dr. Fernando Baldi Pirassununga 2020 Ficha catalográfica elaborada pelo Serviço de Biblioteca e Informação, FZEA/USP, com os dados fornecidos pelo(a) autor(a) Grigoletto, Laís G857g Genomic studies in Montana Tropical Composite cattle / Laís Grigoletto ; orientador José Bento Sterman Ferraz ; coorientador Fernando Baldi. -- Pirassununga, 2020. 183 f. Tese (Doutorado - Programa de Pós-Graduação em Biociência Animal) -- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo. 1. beef cattle. 2. composite. 3. genomics. 4. imputation. 5. genetic progress. I. Ferraz, José Bento Sterman, orient. II. Baldi, Fernando, coorient. III. Título. Permitida a cópia total ou parcial deste documento, desde que citada a fonte - o autor UNIVERSIDADE DE SÃO PAULO Faculdade de Zootecnia e Engenharia de Alimentos Comissão de Ética no Uso de Animais DISPENSA DE ANÁLISE ÉTICA Comunicamos que o projeto de pesquisa abaixo identificado está dispensado da análise ética por utilizar animais oriundos de coleções biológicas formadas anteriormente ao ano de 2008, ano da promulgação da Lei nº 11.794/2008 – lei que estabelece procedimentos para o uso científico de animais. Ressaltamos que atividades realizadas na vigência da referida lei, ou que resulte em incremento do acervo biológico, devem ser submetidas à análise desta CEUA conforme disposto pelo Conselho Nacional de Controle de Experimentação Animal (CONCEA).