Mouse Trim41 Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Trim41 Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Trim41 Knockout Project (CRISPR/Cas9) Objective: To create a Trim41 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Trim41 gene (NCBI Reference Sequence: NM_145377 ; Ensembl: ENSMUSG00000040365 ) is located on Mouse chromosome 11. 6 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 6 (Transcript: ENSMUST00000047145). Exon 1~3 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 1 starts from the coding region. Exon 1~3 covers 60.32% of the coding region. The size of effective KO region: ~7606 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 6 Legends Exon of mouse Trim41 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 813 bp section of Exon 1 is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 231 bp section of Exon 3 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 9 https://www.alphaknockout.com Overview of the GC Content Distribution (up) Window size: 300 bp Sequence 12 Summary: Full Length(813bp) | A(24.11% 196) | C(20.66% 168) | T(17.47% 142) | G(37.76% 307) Note: The 813 bp section of Exon 1 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution (down) Window size: 300 bp Sequence 12 Summary: Full Length(231bp) | A(23.38% 54) | C(25.54% 59) | T(15.15% 35) | G(35.93% 83) Note: The 231 bp section of Exon 3 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 4 of 9 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 813 1 813 813 100.0% chr11 - 48815842 48816654 813 browser details YourSeq 77 150 401 813 74.5% chr9 + 63680540 63680625 86 browser details YourSeq 76 54 163 813 81.0% chr14 + 106106964 106107064 101 browser details YourSeq 66 156 523 813 92.3% chr11 - 94989194 95212233 223040 browser details YourSeq 50 192 400 813 93.0% chr13 - 20580035 20580365 331 browser details YourSeq 48 301 465 813 72.3% chr5 - 27627385 27627499 115 browser details YourSeq 47 206 464 813 65.4% chr13 - 81012860 81012950 91 browser details YourSeq 46 133 490 813 62.8% chr12 + 31155126 31155258 133 browser details YourSeq 45 181 391 813 66.0% chr9 - 29830874 29830968 95 browser details YourSeq 43 291 491 813 62.5% chr11 - 42442394 42442465 72 browser details YourSeq 41 144 462 813 59.6% chr12 - 104780916 104781018 103 browser details YourSeq 37 301 487 813 57.5% chr10 + 24396983 24397032 50 browser details YourSeq 36 375 491 813 61.6% chr11 + 116225919 116225957 39 browser details YourSeq 35 148 312 813 59.0% chr10 + 60131381 60131440 60 browser details YourSeq 33 293 463 813 55.6% chr10 - 22610100 22610160 61 browser details YourSeq 32 447 491 813 91.9% chr1 + 17545720 17545764 45 browser details YourSeq 31 441 487 813 91.7% chr13 - 22064901 22064948 48 browser details YourSeq 31 447 491 813 74.3% chr1 + 94768813 94768848 36 browser details YourSeq 30 453 488 813 96.9% chr11 + 95749563 95749718 156 browser details YourSeq 27 374 400 813 100.0% chr3 + 25838297 25838323 27 Note: The 813 bp section of Exon 1 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 231 1 231 231 100.0% chr11 - 48809051 48809281 231 browser details YourSeq 24 1 25 231 100.0% chr4 + 150797301 150797422 122 browser details YourSeq 21 158 180 231 95.7% chr13 + 30574065 30574087 23 browser details YourSeq 20 45 64 231 100.0% chr7 - 130406947 130406966 20 browser details YourSeq 20 54 73 231 100.0% chr12 - 53762960 53762979 20 Note: The 231 bp section of Exon 3 is BLAT searched against the genome. No significant similarity is found. Page 5 of 9 https://www.alphaknockout.com Gene and protein information: Trim41 tripartite motif-containing 41 [ Mus musculus (house mouse) ] Gene ID: 211007, updated on 12-Aug-2019 Gene summary Official Symbol Trim41 provided by MGI Official Full Name tripartite motif-containing 41 provided by MGI Primary source MGI:MGI:2384814 See related Ensembl:ENSMUSG00000040365 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as RINCK; R75223; AW552703; BC020156 Expression Ubiquitous expression in testis adult (RPKM 35.3), adrenal adult (RPKM 16.3) and 28 other tissues See more Orthologs human all Genomic context Location: 11; 11 B1.2 See Trim41 in Genome Data Viewer Exon count: 9 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 11 NC_000077.6 (48806403..48818199, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 11 NC_000077.5 (48619906..48630893, complement) Chromosome 11 - NC_000077.6 Page 6 of 9 https://www.alphaknockout.com Transcript information: This gene has 4 transcripts Gene: Trim41 ENSMUSG00000040365 Description tripartite motif-containing 41 [Source:MGI Symbol;Acc:MGI:2384814] Gene Synonyms RINCK Location Chromosome 11: 48,806,404-48,817,353 reverse strand. GRCm38:CM001004.2 About this gene This gene has 4 transcripts (splice variants), 157 orthologues, 73 paralogues and is a member of 1 Ensembl protein family. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Trim41-201 ENSMUST00000047145.13 3432 630aa ENSMUSP00000037055.7 Protein coding CCDS36138 Q5NCC3 TSL:1 GENCODE basic APPRIS P1 Trim41-204 ENSMUST00000140800.1 723 161aa ENSMUSP00000121705.1 Protein coding - Q5NCC2 CDS 3' incomplete TSL:3 Trim41-203 ENSMUST00000138019.1 471 157aa ENSMUSP00000118789.1 Protein coding - F6X2H0 CDS 5' and 3' incomplete TSL:3 Trim41-202 ENSMUST00000131888.7 429 126aa ENSMUSP00000119707.1 Protein coding - Q5NCC4 CDS 5' incomplete TSL:3 Page 7 of 9 https://www.alphaknockout.com 30.95 kb Forward strand 48.80Mb 48.81Mb 48.82Mb Genes Rack1-206 >retained intron Rack1-204 >lncRNA Trim7-202 >protein coding (Comprehensive set... Rack1-205 >lncRNA Rack1-201 >protein coding Rack1-203 >retained intron Gm25296-201 >snoRNA Snord96a-201 >snoRNA Snord95-201 >snoRNA Rack1-202 >lncRNA Contigs AL645849.17 > Genes (Comprehensive set... < Trim41-201protein coding < Gm12184-201protein coding < Trim41-202protein coding < Trim41-204protein coding < Trim41-203protein coding Regulatory Build 48.80Mb 48.81Mb 48.82Mb Reverse strand 30.95 kb Regulation Legend CTCF Enhancer Promoter Promoter Flank Gene Legend Protein Coding merged Ensembl/Havana Ensembl protein coding Non-Protein Coding processed transcript RNA gene Page 8 of 9 https://www.alphaknockout.com Transcript: ENSMUST00000047145 < Trim41-201protein coding Reverse strand 10.95 kb ENSMUSP00000037... MobiDB lite Low complexity (Seg) Coiled-coils (Ncoils) Superfamily SSF57850 SSF57845 Concanavalin A-like lectin/glucanase domain superfamily SMART Zinc finger, RING-type B-box-type zinc finger SPRY-associated SPRY domain Prints Butyrophylin-like, SPRY domain Pfam PF15227 B-box-type zinc finger SPRY-associated SPRY domain PROSITE profiles Zinc finger, RING-type B-box-type zinc finger B30.2/SPRY domain PROSITE patterns Zinc finger, RING-type, conserved site PANTHER PTHR24103:SF638 PTHR24103 Gene3D Zinc finger, RING/FYVE/PHD-type 3.30.40.200 2.60.120.920 CDD cd16602 B-box-type zinc finger cd13741 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend inframe deletion missense variant synonymous variant Scale bar 0 60 120 180 240 300 360 420 480 540 630 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 9 of 9.
Recommended publications
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Bioinformatics Tools for the Analysis of Gene-Phenotype Relationships Coupled with a Next Generation Chip-Sequencing Data Processing Pipeline
    Bioinformatics Tools for the Analysis of Gene-Phenotype Relationships Coupled with a Next Generation ChIP-Sequencing Data Processing Pipeline Erinija Pranckeviciene Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the Doctorate in Philosophy degree in Cellular and Molecular Medicine Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa c Erinija Pranckeviciene, Ottawa, Canada, 2015 Abstract The rapidly advancing high-throughput and next generation sequencing technologies facilitate deeper insights into the molecular mechanisms underlying the expression of phenotypes in living organisms. Experimental data and scientific publications following this technological advance- ment have rapidly accumulated in public databases. Meaningful analysis of currently avail- able data in genomic databases requires sophisticated computational tools and algorithms, and presents considerable challenges to molecular biologists without specialized training in bioinfor- matics. To study their phenotype of interest molecular biologists must prioritize large lists of poorly characterized genes generated in high-throughput experiments. To date, prioritization tools have primarily been designed to work with phenotypes of human diseases as defined by the genes known to be associated with those diseases. There is therefore a need for more prioritiza- tion tools for phenotypes which are not related with diseases generally or diseases with which no genes have yet been associated in particular. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) is a method of choice to study the gene regulation processes responsible for the expression of cellular phenotypes. Among publicly available computational pipelines for the processing of ChIP-Seq data, there is a lack of tools for the downstream analysis of composite motifs and preferred binding distances of the DNA binding proteins.
    [Show full text]
  • Universidade De São Paulo Faculdade De Zootecnia E Engenharia De Alimentos
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE ZOOTECNIA E ENGENHARIA DE ALIMENTOS LAÍS GRIGOLETTO Genomic studies in Montana Tropical Composite cattle Pirassununga 2020 LAIS GRIGOLETTO Genomic studies in Montana Tropical Composite cattle Versão Corrigida Thesis submitted to the College of Animal Science and Food Engineering, University of São Paulo in partial fulfillment of the requirements for the degree of Doctor in Science from the Animal Biosciences program. Concentration area: Genetics, Molecular and Cellular Biology Supervisor: Prof. Dr. José Bento Sterman Ferraz Co-supervisor: Prof. Dr. Fernando Baldi Pirassununga 2020 Ficha catalográfica elaborada pelo Serviço de Biblioteca e Informação, FZEA/USP, com os dados fornecidos pelo(a) autor(a) Grigoletto, Laís G857g Genomic studies in Montana Tropical Composite cattle / Laís Grigoletto ; orientador José Bento Sterman Ferraz ; coorientador Fernando Baldi. -- Pirassununga, 2020. 183 f. Tese (Doutorado - Programa de Pós-Graduação em Biociência Animal) -- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo. 1. beef cattle. 2. composite. 3. genomics. 4. imputation. 5. genetic progress. I. Ferraz, José Bento Sterman, orient. II. Baldi, Fernando, coorient. III. Título. Permitida a cópia total ou parcial deste documento, desde que citada a fonte - o autor UNIVERSIDADE DE SÃO PAULO Faculdade de Zootecnia e Engenharia de Alimentos Comissão de Ética no Uso de Animais DISPENSA DE ANÁLISE ÉTICA Comunicamos que o projeto de pesquisa abaixo identificado está dispensado da análise ética por utilizar animais oriundos de coleções biológicas formadas anteriormente ao ano de 2008, ano da promulgação da Lei nº 11.794/2008 – lei que estabelece procedimentos para o uso científico de animais. Ressaltamos que atividades realizadas na vigência da referida lei, ou que resulte em incremento do acervo biológico, devem ser submetidas à análise desta CEUA conforme disposto pelo Conselho Nacional de Controle de Experimentação Animal (CONCEA).
    [Show full text]
  • Disruption of Ubiquitin Mediated Proteolysis Is a Widespread Mechanism of Tumorigenesis
    bioRxiv preprint doi: https://doi.org/10.1101/507764; this version posted December 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Disruption of ubiquitin mediated proteolysis is a widespread mechanism of tumorigenesis Francisco Martínez-Jiménez1, Ferran Muiños1, Erika Lopez-Arribillaga1, Nuria Lopez-Bigas1,2,3,*,†, Abel Gonzalez-Perez1,2,*,† Affiliations: 1. Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain. 2. Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain. 3. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain * Co-senior authors †Corresponding authors. E-mail: [email protected], [email protected] Abstract E3 ligases and degrons --the sequences they recognize in target proteins-- are key parts of the ubiquitin-mediated proteolysis system. There are several examples of alterations of these two components of the system that play a role in cancer. Here, we uncovered the landscape of the contribution of such alterations to tumorigenesis across cancer types. We first systematically identified novel instances of degrons across the human proteome using a random forest classifier, and validated them exploiting somatic mutations across more than 7,000 tumors. We detected signals of positive selection across these novel degrons and revealed new instances involved in cancer development. Overall, we estimated that at least one in seven driver mutations across primary tumors affect either degrons or E3 ligases.
    [Show full text]
  • Setd1 Histone 3 Lysine 4 Methyltransferase Complex Components in Epigenetic Regulation
    SETD1 HISTONE 3 LYSINE 4 METHYLTRANSFERASE COMPLEX COMPONENTS IN EPIGENETIC REGULATION Patricia A. Pick-Franke Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Master of Science in the Department of Biochemistry and Molecular Biology Indiana University December 2010 Accepted by the Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Master of Science. _____________________________________ David Skalnik, Ph.D., Chair _____________________________________ Kristin Chun, Ph.D. Master’s Thesis Committee _____________________________________ Simon Rhodes, Ph.D. ii DEDICATION This thesis is dedicated to my sons, Zachary and Zephaniah who give me great joy, hope and continuous inspiration. I can only hope that I successfully set a good example demonstrating that one can truly accomplish anything, if you never give up and reach for your dreams. iii ACKNOWLEDGEMENTS I would like to thank my committee members Dr. Skalnik, Dr. Chun and Dr. Rhodes for allowing me to complete this dissertation. They have been incredibly generous with their flexibility. I must make a special thank you to Jeanette McClintock, who willingly gave her expertise in statistical analysis with the Cfp1 microarray data along with encouragement, support and guidance to complete this work. I would like to thank Courtney Tate for her ceaseless willingness to share ideas, and her methods and materials, and Erika Dolbrota for her generous instruction as well as the name of a good doctor. I would also like to acknowledge the superb mentorship of Dr. Jeon Heong Lee, PhD and the contagious passion and excitement for the life of science of Dr.
    [Show full text]
  • The Changing Chromatome As a Driver of Disease: a Panoramic View from Different Methodologies
    The changing chromatome as a driver of disease: A panoramic view from different methodologies Isabel Espejo1, Luciano Di Croce,1,2,3 and Sergi Aranda1 1. Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2. Universitat Pompeu Fabra (UPF), Barcelona, Spain 3. ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain *Corresponding authors: Luciano Di Croce ([email protected]) Sergi Aranda ([email protected]) 1 GRAPHICAL ABSTRACT Chromatin-bound proteins regulate gene expression, replicate and repair DNA, and transmit epigenetic information. Several human diseases are highly influenced by alterations in the chromatin- bound proteome. Thus, biochemical approaches for the systematic characterization of the chromatome could contribute to identifying new regulators of cellular functionality, including those that are relevant to human disorders. 2 SUMMARY Chromatin-bound proteins underlie several fundamental cellular functions, such as control of gene expression and the faithful transmission of genetic and epigenetic information. Components of the chromatin proteome (the “chromatome”) are essential in human life, and mutations in chromatin-bound proteins are frequently drivers of human diseases, such as cancer. Proteomic characterization of chromatin and de novo identification of chromatin interactors could thus reveal important and perhaps unexpected players implicated in human physiology and disease. Recently, intensive research efforts have focused on developing strategies to characterize the chromatome composition. In this review, we provide an overview of the dynamic composition of the chromatome, highlight the importance of its alterations as a driving force in human disease (and particularly in cancer), and discuss the different approaches to systematically characterize the chromatin-bound proteome in a global manner.
    [Show full text]
  • To Ubiquitinate Or Not to Ubiquitinate: TRIM17 in Cell Life and Death
    cells Review To Ubiquitinate or Not to Ubiquitinate: TRIM17 in Cell Life and Death Meenakshi Basu-Shrivastava † , Alina Kozoriz † , Solange Desagher and Iréna Lassot * Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France; [email protected] (M.B.-S.); [email protected] (A.K.); [email protected] (S.D.) * Correspondence: [email protected] † These authors contribute equally to this review. Abstract: TRIM17 is a member of the TRIM family, a large class of RING-containing E3 ubiquitin- ligases. It is expressed at low levels in adult tissues, except in testis and in some brain regions. However, it can be highly induced in stress conditions which makes it a putative stress sensor required for the triggering of key cellular responses. As most TRIM members, TRIM17 can act as an E3 ubiquitin-ligase and promote the degradation by the proteasome of substrates such as the antiapoptotic protein MCL1. Intriguingly, TRIM17 can also prevent the ubiquitination of other proteins and stabilize them, by binding to other TRIM proteins and inhibiting their E3 ubiquitin-ligase activity. This duality of action confers several pivotal roles to TRIM17 in crucial cellular processes such as apoptosis, autophagy or cell division, but also in pathological conditions as diverse as Parkinson’s disease or cancer. Here, in addition to recent data that endorse this duality, we review what is currently known from public databases and the literature about TRIM17 gene regulation and expression, TRIM17 protein structure and interactions, as well as its involvement in cell physiology and human disorders.
    [Show full text]
  • Downloaded, Preprocessed and Analysed Case-Control Gene Expression Datasets from Gene Ex- Pression Omnibus (GEO)
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.23.002972; this version posted March 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Finding associations in a heterogeneous setting: Statistical test for aberration enrichment Aziz M. Mezlini1,2,3,4*, Sudeshna Das 1,2, Anna Goldenberg 3,4 1 Harvard Medical School. Boston 2 Massachusetts General Hospital. Boston 3 Department of Computer Science. University of Toronto. 4 Hospital for sick children. Toronto * [email protected] Abstract Most two-group statistical tests are implicitly looking for a broad pattern such as an overall shift in mean, median or variance between the two groups. Therefore, they operate best in settings where the effect of interest is uniformly affecting everyone in one group versus the other. In real-world applications, there are many scenarios where the effect of interest is heterogeneous. For example, a drug that works very well on only a proportion of patients and is equivalent to a placebo on the remaining patients, or a disease associated gene expression dysregulation that only occurs in a proportion of cases whereas the remaining cases have expression levels indistinguishable from the controls for the considered gene. In these examples with heterogeneous effect, we believe that using classical two-group statistical tests may not be the most powerful way to detect the signal. In this paper, we developed a statistical test targeting heterogeneous effects and demonstrated its power in a controlled simulation setting compared to existing methods.
    [Show full text]
  • Gastrocnemius Transcriptome Analysis Reveals Domestication Induced Gene Expression Changes Between Wild and Domestic Chickens
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Genomics 100 (2012) 314–319 Contents lists available at SciVerse ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Gastrocnemius transcriptome analysis reveals domestication induced gene expression changes between wild and domestic chickens Qinghe Li a,1, Nan Wang b,1, Zhuo Du a, Xiaoxiang Hu a, Li Chen c, Jing Fei a, Yuanyuan Wang a, Ning Li a,⁎ a State Key Laboratory for Agro-biotechnology, China Agricultural University, Beijing, 100193, China b College of Veterinary Medicine, China Agricultural University, Beijing 100193, China c Institute of Animal Sciences and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China article info abstract Article history: Artificial selection of chicken for human-preferred traits has manifested great phenotypic differences be- Received 19 January 2012 tween wild and domestic chickens. Study on the formation of these phenotypic variations will contribute Accepted 12 July 2012 to comprehensive understanding of the molecular mechanism of animal domestication. We used three Available online 21 July 2012 kinds of chicken breeds for transcriptome analysis, including the red jungle fowl which was the wild ancestor of chickens, and two other domestic breeds, the chahua chicken and the avian broiler. More than 12,000 Keywords: genes' expression levels were compared between different chicken breeds, and hundreds of genes displayed Wild chicken Domestic chicken differential expression levels compared with wild chicken. Gene ontology analysis showed that differentially Gene expression profile expressed genes in domestic chickens tended to be enriched in extracellular matrix, DNA binding and im- Domestication mune system development, etc.
    [Show full text]
  • Developmental Retardation Due to Paternal 5Q/11Q Translocation in a Chinese Infant: Clinical, Chromosomal and Microarray Characterization
    Journal of Genetics (2019) 98:77 © Indian Academy of Sciences https://doi.org/10.1007/s12041-019-1120-3 RESEARCH ARTICLE Developmental retardation due to paternal 5q/11q translocation in a Chinese infant: clinical, chromosomal and microarray characterization XIANGYU ZHAO1 , HONGYAN XU1, CHEN ZHAO2 and LIN LI1∗ 1Department of Medical Genetics, Linyi People’s Hospital, Linyi 276003, Shandong, People’s Republic of China 2Department of Neurology, Weifang People’s Hospital, Weifang 261000, Shandong, People’s Republic of China *For correspondence. E-mail: [email protected]. Received 12 June 2018; revised 18 April 2019; accepted 19 May 2019 Abstract. Although it is known that the parental carriers of chromosomal translocation are considered to be at high risk for spontaneous abortion and embryonic death, normal gestation and delivery remain possible. This study aims to investigate the genetic factors of a Chinese infant with multiple malformations and severe postnatal development retardation. In this study, the routine cytogenetic analysis, chromosomal microarray analysis (CMA) and fluorescence in situ hybridization (FISH) analysis were performed. Conventional karyotype analyses revealed normal karyotypes of all family members. CMA of the DNA of the proband revealed a 8.3 Mb duplication of 5q35.1-qter and a 6.9 Mb deletion of 11q24.3-qter. FISH analyses verified a paternal tiny translocation between the long arm of chromosomes 5 and 11. Our investigation serves to provide important information on genetic counselling for the patient and future pregnancies in this family. Moreover, the combined use of CMA and FISH is effective for clarifying pathogenically submicroscopic copy number variants. Keywords. 5q/11q translocation; karyotyping; chromosomal microarray analysis; fluorescence in situ hybridization; growth retardation.
    [Show full text]
  • Condensin I Associates with Structural and Gene Regulatory Regions in Vertebrate Chromosomes
    ARTICLE Received 17 May 2013 | Accepted 3 Sep 2013 | Published 3 Oct 2013 DOI: 10.1038/ncomms3537 Condensin I associates with structural and gene regulatory regions in vertebrate chromosomes Ji Hun Kim1,2, Tao Zhang1,2, Nicholas C. Wong1,3,4, Nadia Davidson1, Jovana Maksimovic1, Alicia Oshlack1,2, William C. Earnshaw5, Paul Kalitsis1,2 & Damien F. Hudson1,2 The condensin complex is essential for correct packaging and segregation of chromosomes during mitosis and meiosis in all eukaryotes. To date, the genome-wide location and the nature of condensin-binding sites have remained elusive in vertebrates. Here we report the genome-wide map of condensin I in chicken DT40 cells. Unexpectedly, we find that con- densin I binds predominantly to promoter sequences in mitotic cells. We also find a striking enrichment at both centromeres and telomeres, highlighting the importance of the complex in chromosome segregation. Taken together, the results show that condensin I is largely absent from heterochromatic regions. This map of the condensin I binding sites on the chicken genome reveals that patterns of condensin distribution on chromosomes are conserved from prokaryotes, through yeasts to vertebrates. Thus in three kingdoms of life, condensin is enriched on promoters of actively transcribed genes and at loci important for chromosome segregation. 1 Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Melbourne, Victoria 3052, Australia. 2 Department of Paediatrics, University of Melbourne, Parkville, Melbourne, Victoria 3052, Australia. 3 Ludwig Institute of Cancer Research, Olivia Newton John Cancer and Wellness Centre, Austin Hospital, Heidelberg, Melbourne, Victoria 3084, Australia. 4 Department of Pathology, University of Melbourne, Parkville, Melbourne, Victoria 3052, Australia.
    [Show full text]
  • Rnaseq Studies Reveal Distinct Transcriptional Response to Vitamin
    bioRxiv preprint doi: https://doi.org/10.1101/798504; this version posted May 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 RNAseq studies reveal distinct transcriptional response to vitamin 2 A deficiency in small intestine versus colon, uncovering novel 3 vitamin A-regulated genes 4 5 Zhi Chai1,2,*, Yafei Lyu3,8, Qiuyan Chen2, Cheng-Hsin Wei2,9, Lindsay M. Snyder4,10, Veronika 6 Weaver4, Aswathy Sebastian5, István Albert6, Qunhua Li7, Margherita T. Cantorna4, A. Catharine 2* 7 Ross . 8 9 1Intercollege Graduate Degree Program in Physiology, 2Department of Nutritional Sciences, 10 3Intercollege Graduate Degree Program in Bioinformatics and Genomics, 4Department of 11 Veterinary and Biomedical Sciences, 5Huck Institutes of the Life Sciences, 6Department of 12 Biochemistry and Molecular Biology, 7Department of Statistics. The Pennsylvania State 13 University, University Park, PA, USA. 8Present address: Department of Biostatistics, 14 Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 15 Philadelphia, PA, USA. 9Present address: Frederick National Laboratory for Cancer Research, 16 Frederick, MD, USA. 10Present address: Center for Evolutionary and Theoretical Immunology, 17 The University of New Mexico, Albuquerque, NM, USA. 18 19 *Corresponding authors 20 A. Catharine Ross ([email protected]) and Zhi Chai ([email protected]) 21 110 Chandlee Laboratory 22 University Park, PA, USA. 16802 bioRxiv preprint doi: https://doi.org/10.1101/798504; this version posted May 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]