Discovery and Characterization of Novel Bioactive Peptides and a Natural Erralpha Ligand

Total Page:16

File Type:pdf, Size:1020Kb

Discovery and Characterization of Novel Bioactive Peptides and a Natural Erralpha Ligand Discovery and Characterization of Novel Bioactive Peptides and a Natural ERRalpha Ligand The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Schwaid, Adam. 2013. Discovery and Characterization of Novel Bioactive Peptides and a Natural ERRalpha Ligand. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11181064 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Discovery and Characterization of Novel Bioactive Peptides and a Natural ERR α Ligand A dissertation presented by Adam Schwaid to The Department of Chemistry and Chemical Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Chemistry Harvard University Cambridge, Massachusetts August, 2013 © 2013 Adam Schwaid All rights reserved. Dissertation Advisor: Professor Alan Saghatelian Adam Schwaid Discovery and Characterization of Novel Bioactive Peptides and a Natural ERR α Ligand Abstract Metabolites and peptides have a central role in biology that is often overlooked. Despite the importance of metabolites in key protein-metabolite interactions (PMIs), the extent and identity of these interactions is not known. Likewise, the extent to which short open reading frames (sORFs) in the genome are translated into peptides has also been an elusive question. This dissertation describes the development and application of methods to elucidate unknown molecules and interactions critical to understanding biology, and the subsequent characterization of the biological roles of these discoveries in cells and mice. A liquid chromatography-mass spectrometry (LC-MS)-based metabolomics approach was used to discover that cholesterol is a ligand for Estrogen Related Receptor alpha (ERR α), an orphan nuclear receptor critical in numerous biological processes including metabolism, bone growth, and certain cancers. Despite intense study over the 25 years since this nuclear receptor was discovered there is no known endogenous ligand for this nuclear receptor. The discovery of cholesterol as a natural ERR α ligand allows for the understanding of how ERR α driven pathways are regulated and enables the modulation of receptor activity levels through control of cholesterol levels. In addition, I also helped pioneer the development of a peptidomics strategy to discover novel sORF-encoded polypeptides (SEPs). Using our approach, we identified iii 86 novel SEPs. To further the discovery and characterization of these molecules, I collaborated on the development of a chemoproteomics approach to discover cysteine- containing SEPs (ccSEPs), leading to the identification of a further 17 SEPs. In total, 103 novel SEP, representing 103 novel human genes with unknown functions are now known. To characterize SEPs, I developed a new workflow that relies on transcriptomics to characterize the functions of novel SEPs, and found that SEPs regulate gene expression. Based on changes in gene expression, SEPs can be assigned to several putative pathways. In one case, this analysis revealed that overexpression of the SEP results in a gene expression profile associated with addition of TNF α, which was confirmed by further biochemical characterization indicating this SEP promotes inflammation. More importantly, by establishing this approach, I have demonstrated a general strategy for elucidating the functions of SEPs. iv Acknowledgements I owe a great deal of thanks to Alan Saghatelian for his guidance and mentoring over the course of my Ph.D. If it were not for his willingness to take me under his wing I would never have had this opportunity to learn and grow as a scientist. His tutelage has allowed me to develop the skills to pose interesting scientific questions and answer them experimentally. Alan has fostered a uniquely collegial, collaborative, and friendly atmosphere in his laboratory that encourages the free flow of ideas and promotes teamwork amongst his students. I would also like to thank my colleagues in the Saghatelian lab, from whom I learn every day. I would like to thank Sarah Slavoff for teaching me everything I know about experimental molecular biology, and frequent scientific conversations about varied topics—both relevant and irrelevant to our research. I would like to thank Andrew Mitchell who first mentored me when I joined the Saghatelian lab, and taught me how to ask the right questions when tackling mountains of information; Yui Vinayavekhin for her friendly welcome into the Saghatelian lab and her fastidious experimental advice; Anna Mari Lone for her tutelage in peptidomics, and good natured sense of humor; Amanda McFedries for her expertise in protein expression and all aspects of biochemistry—in addition to her keen insights into prospective business ventures; Tejia Zhang for her expertise in metabolomics and advice regarding experiments; Jiao Ma for her dedication, and quick mastery of new topics; Edwin Homan for his insights on mass spectrometry and science in general; Bogdan Budnik and John Neveau for advice on mass spectrometry and proteomics; Whitney Nolte for v frequent and unerring advice regarding graduate school and beyond, and Mathias Leidl for keeping lab lively and convivial. Additionally, I would like to thank my colleagues in the Verdine Lab and Gregory Verdine for their counsel during the course of my Master’s work. The support of my family and friends was crucial to the completion of this dissertation. Their encouragement kept me going during the most challenging periods of my studies. In particular I would like to thank Steve Hershman for his prescient advice in the face of limited information. Most importantly, Julie French’s unwavering faith and understanding in me formed the cornerstone of my strength without which my studies would have crumbled. vi Table of Contents Chapter 1: Methods for the Elucidation of Protein-Small Molecule Interactions ............. 1 1.1 Introduction ............................................................................................................ 2 1.2 Small molecule-to-protein ...................................................................................... 3 1.2.1 Small-molecule affinity methods ...................................................................... 3 1.2.1 Proteomic target identification ......................................................................... 7 1.2.1 Chemoproteomic target identification ............................................................ 12 1.3 Protein-to-small molecule .................................................................................... 16 1.3.1 Biophysical identification of small molecule binders ...................................... 16 1.3.2 Affinity-based identification of small molecule binders .................................. 18 1.4 Conclusions ......................................................................................................... 23 1.5 References .......................................................................................................... 24 Chapter 2: Cholesterol is a Natural ERR α Ligand ........................................................ 28 2.1 Introduction .......................................................................................................... 29 2.2 Discovery of an endogenous ERR α Binder ......................................................... 30 2.3 Structural Analysis of ERR α Cholesterol Binding ................................................ 36 2.4 Cholesterol regulates ERR α Transcription ........................................................... 38 2.5 Cholesterol regulates ERR α activity in Osteoclastogenesis ................................ 39 2.6 Cholesterol agonism reveals a novel role for ERR α in atherosclerotic foam cell formation .................................................................................................................... 44 2.7 Cholesterol functions as an ERR α agonist in vivo ............................................... 45 2.8 Conclusion ........................................................................................................... 48 2.9 Methods ............................................................................................................... 49 2.10 References ........................................................................................................ 56 Chapter 3: Discovery and Characterization of sORF Encoded Peptides....................... 59 3.1 Introduction .......................................................................................................... 60 3.2 Discovering SEPs Encoded by Annotated Transcripts ........................................ 62 3.3 SEPs are Derived from Unannotated Transcripts ................................................ 66 3.4 SEP Translation is Initiated at Non-AUG Codons ................................................ 68 3.5 Supporting SEP length assignments ................................................................... 69 3.6 Cellular Concentrations of SEPs.......................................................................... 71 3.7 Heterologous Expression of SEPs ....................................................................... 72 3.8 SEPs Exhibit Subcellular Localization
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2005/0010974A1 Milligan Et Al
    US 20050010974A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0010974A1 Milligan et al. (43) Pub. Date: Jan. 13, 2005 (54) PROMOTERS FOR REGULATION OF GENE Publication Classification EXPRESSION IN PLANT ROOTS (51) Int. Cl." ............................ C12N 15/82; C12O 1/68; (76) Inventors: Stephen B Milligan, Kirkland, WA C12N 15/87; C12N 15/63; (US); Dale Skalla, Research Triangle C12N 15/85; C12N 5/10; Park, NC (US); Kay Lawton, Research C12N 15/09; CO7H 21/04 Triangle Park, NC (US) (52) U.S. Cl. ..................... 800/287; 536/23.6; 435/320.1; 435/455; 435/419; 435/468; Correspondence Address: 800/278; 435/6; 536/24.33 Randee S Schwatz Syngenta Biotechnology 3054 Cornwallis Road (57) ABSTRACT Research Triangle Park, NC 27709 (US) The present invention is directed to promoters isolated from (21) Appl. No.: 10/490,147 maize and functional equivalents thereto. The promoters of the present invention have particular utility in driving root (22) PCT Filed: Nov. 4, 2002 Specific expression of heterologous genes that impart (86) PCT No.: PCT/US02/35374 increased agronomic, horticultural and/or pesticidal charac teristics to a given promoters of the invention and trans (30) Foreign Application Priority Data formed plant tissues containing DNA molecules comprising a promoter of the invention operably linked to a heterolo Nov. 7, 2001 (US)........................................... 60337026 gous gene or genes, and Seeds thereof. US 2005/0010974 A1 Jan. 13, 2005 PROMOTERS FOR REGULATION OF GENE latory Sequences may be short regions of DNA sequence EXPRESSION IN PLANT ROOTS 6-100 base pairs that define the binding sites for trans-acting factors, Such as transcription factors.
    [Show full text]
  • Downloaded and Searched Against the Dbest Database to Identify Ests
    BMC Genomics BioMed Central Research article Open Access A transcription map of the 6p22.3 reading disability locus identifying candidate genes Eric R Londin1, Haiying Meng2 and Jeffrey R Gruen*2 Address: 1Graduate Program in Genetics, State University of New York at Stony Brook, NY, USA and 2Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA Email: Eric R Londin - [email protected]; Haiying Meng - [email protected]; Jeffrey R Gruen* - [email protected] * Corresponding author Published: 30 June 2003 Received: 22 April 2003 Accepted: 30 June 2003 BMC Genomics 2003, 4:25 This article is available from: http://www.biomedcentral.com/1471-2164/4/25 © 2003 Londin et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. reading disabilitydyslexia6p22.3In silicoESTs Abstract Background: Reading disability (RD) is a common syndrome with a large genetic component. Chromosome 6 has been identified in several linkage studies as playing a significant role. A more recent study identified a peak of transmission disequilibrium to marker JA04 (G72384) on chromosome 6p22.3, suggesting that a gene is located near this marker. Results: In silico cloning was used to identify possible candidate genes located near the JA04 marker. The 2 million base pairs of sequence surrounding JA04 was downloaded and searched against the dbEST database to identify ESTs. In total, 623 ESTs from 80 different tissues were identified and assembled into 153 putative coding regions from 19 genes and 2 pseudogenes encoded near JA04.
    [Show full text]
  • Mouse Trim41 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Trim41 Knockout Project (CRISPR/Cas9) Objective: To create a Trim41 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Trim41 gene (NCBI Reference Sequence: NM_145377 ; Ensembl: ENSMUSG00000040365 ) is located on Mouse chromosome 11. 6 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 6 (Transcript: ENSMUST00000047145). Exon 1~3 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 1 starts from the coding region. Exon 1~3 covers 60.32% of the coding region. The size of effective KO region: ~7606 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 6 Legends Exon of mouse Trim41 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 813 bp section of Exon 1 is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 231 bp section of Exon 3 is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Supplementary Data
    Supplementary Fig. 1 A B Responder_Xenograft_ Responder_Xenograft_ NON- NON- Lu7336, Vehicle vs Lu7466, Vehicle vs Responder_Xenograft_ Responder_Xenograft_ Sagopilone, Welch- Sagopilone, Welch- Lu7187, Vehicle vs Lu7406, Vehicle vs Test: 638 Test: 600 Sagopilone, Welch- Sagopilone, Welch- Test: 468 Test: 482 Responder_Xenograft_ NON- Lu7860, Vehicle vs Responder_Xenograft_ Sagopilone, Welch - Lu7558, Vehicle vs Test: 605 Sagopilone, Welch- Test: 333 Supplementary Fig. 2 Supplementary Fig. 3 Supplementary Figure S1. Venn diagrams comparing probe sets regulated by Sagopilone treatment (10mg/kg for 24h) between individual models (Welsh Test ellipse p-value<0.001 or 5-fold change). A Sagopilone responder models, B Sagopilone non-responder models. Supplementary Figure S2. Pathway analysis of genes regulated by Sagopilone treatment in responder xenograft models 24h after Sagopilone treatment by GeneGo Metacore; the most significant pathway map representing cell cycle/spindle assembly and chromosome separation is shown, genes upregulated by Sagopilone treatment are marked with red thermometers. Supplementary Figure S3. GeneGo Metacore pathway analysis of genes differentially expressed between Sagopilone Responder and Non-Responder models displaying –log(p-Values) of most significant pathway maps. Supplementary Tables Supplementary Table 1. Response and activity in 22 non-small-cell lung cancer (NSCLC) xenograft models after treatment with Sagopilone and other cytotoxic agents commonly used in the management of NSCLC Tumor Model Response type
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Mclean, Chelsea.Pdf
    COMPUTATIONAL PREDICTION AND EXPERIMENTAL VALIDATION OF NOVEL MOUSE IMPRINTED GENES A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Chelsea Marie McLean August 2009 © 2009 Chelsea Marie McLean COMPUTATIONAL PREDICTION AND EXPERIMENTAL VALIDATION OF NOVEL MOUSE IMPRINTED GENES Chelsea Marie McLean, Ph.D. Cornell University 2009 Epigenetic modifications, including DNA methylation and covalent modifications to histone tails, are major contributors to the regulation of gene expression. These changes are reversible, yet can be stably inherited, and may last for multiple generations without change to the underlying DNA sequence. Genomic imprinting results in expression from one of the two parental alleles and is one example of epigenetic control of gene expression. So far, 60 to 100 imprinted genes have been identified in the human and mouse genomes, respectively. Identification of additional imprinted genes has become increasingly important with the realization that imprinting defects are associated with complex disorders ranging from obesity to diabetes and behavioral disorders. Despite the importance imprinted genes play in human health, few studies have undertaken genome-wide searches for new imprinted genes. These have used empirical approaches, with some success. However, computational prediction of novel imprinted genes has recently come to the forefront. I have developed generalized linear models using data on a variety of sequence and epigenetic features within a training set of known imprinted genes. The resulting models were used to predict novel imprinted genes in the mouse genome. After imposing a stringency threshold, I compiled an initial candidate list of 155 genes.
    [Show full text]
  • Construction of a Radiation Hybrid Map of Chicken Chromosome 2 And
    Construction of a radiation hybrid map of chicken chromosome 2 and alignment to the chicken draft sequence Sophie Leroux, Mélanie Dottax, Suzanne Bardes, Florence Vignoles, Katia Feve, Frédérique Pitel, Mireille Morisson, Alain Vignal To cite this version: Sophie Leroux, Mélanie Dottax, Suzanne Bardes, Florence Vignoles, Katia Feve, et al.. Construction of a radiation hybrid map of chicken chromosome 2 and alignment to the chicken draft sequence. BMC Genomics, BioMed Central, 2005, 6, pp.12. 10.1186/1471-2164-6-12. hal-02682366 HAL Id: hal-02682366 https://hal.inrae.fr/hal-02682366 Submitted on 1 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BMC Genomics BioMed Central Research article Open Access Construction of a radiation hybrid map of chicken chromosome 2 and alignment to the chicken draft sequence Sophie Leroux*, Mélanie Dottax, Suzanne Bardes, Florence Vignoles, Katia Fève, Frédérique Pitel, Mireille Morisson and Alain Vignal Address: Laboratoire de Génétique Cellulaire, INRA, Castanet-Tolosan, 31326, France Email: Sophie Leroux*
    [Show full text]
  • Bioinformatics Tools for the Analysis of Gene-Phenotype Relationships Coupled with a Next Generation Chip-Sequencing Data Processing Pipeline
    Bioinformatics Tools for the Analysis of Gene-Phenotype Relationships Coupled with a Next Generation ChIP-Sequencing Data Processing Pipeline Erinija Pranckeviciene Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the Doctorate in Philosophy degree in Cellular and Molecular Medicine Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa c Erinija Pranckeviciene, Ottawa, Canada, 2015 Abstract The rapidly advancing high-throughput and next generation sequencing technologies facilitate deeper insights into the molecular mechanisms underlying the expression of phenotypes in living organisms. Experimental data and scientific publications following this technological advance- ment have rapidly accumulated in public databases. Meaningful analysis of currently avail- able data in genomic databases requires sophisticated computational tools and algorithms, and presents considerable challenges to molecular biologists without specialized training in bioinfor- matics. To study their phenotype of interest molecular biologists must prioritize large lists of poorly characterized genes generated in high-throughput experiments. To date, prioritization tools have primarily been designed to work with phenotypes of human diseases as defined by the genes known to be associated with those diseases. There is therefore a need for more prioritiza- tion tools for phenotypes which are not related with diseases generally or diseases with which no genes have yet been associated in particular. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) is a method of choice to study the gene regulation processes responsible for the expression of cellular phenotypes. Among publicly available computational pipelines for the processing of ChIP-Seq data, there is a lack of tools for the downstream analysis of composite motifs and preferred binding distances of the DNA binding proteins.
    [Show full text]
  • Universidade De São Paulo Faculdade De Zootecnia E Engenharia De Alimentos
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE ZOOTECNIA E ENGENHARIA DE ALIMENTOS LAÍS GRIGOLETTO Genomic studies in Montana Tropical Composite cattle Pirassununga 2020 LAIS GRIGOLETTO Genomic studies in Montana Tropical Composite cattle Versão Corrigida Thesis submitted to the College of Animal Science and Food Engineering, University of São Paulo in partial fulfillment of the requirements for the degree of Doctor in Science from the Animal Biosciences program. Concentration area: Genetics, Molecular and Cellular Biology Supervisor: Prof. Dr. José Bento Sterman Ferraz Co-supervisor: Prof. Dr. Fernando Baldi Pirassununga 2020 Ficha catalográfica elaborada pelo Serviço de Biblioteca e Informação, FZEA/USP, com os dados fornecidos pelo(a) autor(a) Grigoletto, Laís G857g Genomic studies in Montana Tropical Composite cattle / Laís Grigoletto ; orientador José Bento Sterman Ferraz ; coorientador Fernando Baldi. -- Pirassununga, 2020. 183 f. Tese (Doutorado - Programa de Pós-Graduação em Biociência Animal) -- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo. 1. beef cattle. 2. composite. 3. genomics. 4. imputation. 5. genetic progress. I. Ferraz, José Bento Sterman, orient. II. Baldi, Fernando, coorient. III. Título. Permitida a cópia total ou parcial deste documento, desde que citada a fonte - o autor UNIVERSIDADE DE SÃO PAULO Faculdade de Zootecnia e Engenharia de Alimentos Comissão de Ética no Uso de Animais DISPENSA DE ANÁLISE ÉTICA Comunicamos que o projeto de pesquisa abaixo identificado está dispensado da análise ética por utilizar animais oriundos de coleções biológicas formadas anteriormente ao ano de 2008, ano da promulgação da Lei nº 11.794/2008 – lei que estabelece procedimentos para o uso científico de animais. Ressaltamos que atividades realizadas na vigência da referida lei, ou que resulte em incremento do acervo biológico, devem ser submetidas à análise desta CEUA conforme disposto pelo Conselho Nacional de Controle de Experimentação Animal (CONCEA).
    [Show full text]
  • Disruption of Ubiquitin Mediated Proteolysis Is a Widespread Mechanism of Tumorigenesis
    bioRxiv preprint doi: https://doi.org/10.1101/507764; this version posted December 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Disruption of ubiquitin mediated proteolysis is a widespread mechanism of tumorigenesis Francisco Martínez-Jiménez1, Ferran Muiños1, Erika Lopez-Arribillaga1, Nuria Lopez-Bigas1,2,3,*,†, Abel Gonzalez-Perez1,2,*,† Affiliations: 1. Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain. 2. Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain. 3. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain * Co-senior authors †Corresponding authors. E-mail: [email protected], [email protected] Abstract E3 ligases and degrons --the sequences they recognize in target proteins-- are key parts of the ubiquitin-mediated proteolysis system. There are several examples of alterations of these two components of the system that play a role in cancer. Here, we uncovered the landscape of the contribution of such alterations to tumorigenesis across cancer types. We first systematically identified novel instances of degrons across the human proteome using a random forest classifier, and validated them exploiting somatic mutations across more than 7,000 tumors. We detected signals of positive selection across these novel degrons and revealed new instances involved in cancer development. Overall, we estimated that at least one in seven driver mutations across primary tumors affect either degrons or E3 ligases.
    [Show full text]
  • Ep 2301948 B1
    (19) & (11) EP 2 301 948 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07H 21/04 (2006.01) C12N 15/82 (2006.01) 09.05.2012 Bulletin 2012/19 A01H 5/00 (2006.01) A01H 5/10 (2006.01) (21) Application number: 10172501.8 (22) Date of filing: 04.11.2002 (54) Promoters for regulation of gene expression in plant roots Promotoren zur Regulierung der Genexpression in Pflanzenwurzeln Promoteurs régulant l’expression génique dans les racines de plante (84) Designated Contracting States: (74) Representative: Radkov, Stoyan Atanassov AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Syngenta International AG IE IT LI LU MC NL PT SE SK TR WRO-1004.8.15 Schwarzwaldallee 215 (30) Priority: 07.11.2001 US 337026 P 4058 Basel (CH) (43) Date of publication of application: (56) References cited: 30.03.2011 Bulletin 2011/13 WO-A-00/29594 US-A- 5 837 848 US-B1- 6 207 879 US-B1- 6 232 526 (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: • DATABASE EMBL [Online] 29 March 2002 02789419.5 / 1 537 136 (2002-03-29), "fzmb011f011b09f0 fzmb filtered library Zea mays genomic clone fzmb011f011b09 (73) Proprietor: Syngenta Participations AG 5’, DNA sequence.", XP002602534, retrieved from 4058 Basel (CH) EBI accession no. EMBL:BH775378 Database accession no. BH775378 (72) Inventors: • LU GUIHUA ET AL: "A novel cis-acting element • Milligan, Stephen, B. conferring root-preferred gene expression in Kirkland, WA 98034 (US) maize", JOURNAL OF PLANT PHYSIOLOGY, vol.
    [Show full text]
  • Setd1 Histone 3 Lysine 4 Methyltransferase Complex Components in Epigenetic Regulation
    SETD1 HISTONE 3 LYSINE 4 METHYLTRANSFERASE COMPLEX COMPONENTS IN EPIGENETIC REGULATION Patricia A. Pick-Franke Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Master of Science in the Department of Biochemistry and Molecular Biology Indiana University December 2010 Accepted by the Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Master of Science. _____________________________________ David Skalnik, Ph.D., Chair _____________________________________ Kristin Chun, Ph.D. Master’s Thesis Committee _____________________________________ Simon Rhodes, Ph.D. ii DEDICATION This thesis is dedicated to my sons, Zachary and Zephaniah who give me great joy, hope and continuous inspiration. I can only hope that I successfully set a good example demonstrating that one can truly accomplish anything, if you never give up and reach for your dreams. iii ACKNOWLEDGEMENTS I would like to thank my committee members Dr. Skalnik, Dr. Chun and Dr. Rhodes for allowing me to complete this dissertation. They have been incredibly generous with their flexibility. I must make a special thank you to Jeanette McClintock, who willingly gave her expertise in statistical analysis with the Cfp1 microarray data along with encouragement, support and guidance to complete this work. I would like to thank Courtney Tate for her ceaseless willingness to share ideas, and her methods and materials, and Erika Dolbrota for her generous instruction as well as the name of a good doctor. I would also like to acknowledge the superb mentorship of Dr. Jeon Heong Lee, PhD and the contagious passion and excitement for the life of science of Dr.
    [Show full text]