Materials and Methods

Total Page:16

File Type:pdf, Size:1020Kb

Materials and Methods Hughes Hall College Identification and characterisation of new factors and mechanisms regulating human cytochrome c oxidase biogenesis Alba Signes Marrahi Dissertation submitted for the degree of Doctor of Philosophy November 2018 Preface Declaration This dissertation describes the results of my own work, except for the experiments performed by collaborators, which are specified in the figure legends. All the work was carried out under the supervision of Prof. Massimo Zeviani assisted by Dr. Erika Fernandez-Vizarra (Senior Investigator Scientist) at the Medical Research Council (MRC) Mitochondrial Biology Unit, between January 2015 and November 2018. This thesis has not been submitted, in whole or in part, for a degree at this or any other institution and the length of it does not exceed the prescribed word limit. Part of the text in Chapter 1 has been published in a review article: Assembly of mammalian oxidative phosphorylation complexes I–V and supercomplexes (2018) (Signes & Fernandez-Vizarra, Essays in Biochemistry, 62(3): 255–270). The results described in Chapter 3 led to a publication: MR-1S Interacts with PET100 and PET117 in Module-Based Assembly of Human Cytochrome c Oxidase (2017) (Vidoni et al., Cell reports, 18 (7), 1727-1738). The results described in Chapter 4 and 5 led to a publication: APOPT1/COA8 assists COX assembly and is oppositely regulated by UPS and ROS (2019) (Signes et al., EMBO Molecular Medicine, 11(1), e9582). Alba Signes Marrahi, Cambridge (UK), November 2018. iii Preface Acknowledgements Firstly, I would like to thank my supervisor, Prof. Massimo Zeviani, for giving me the opportunity to carry out my work in his laboratory. I also want to give a huge thank you to Dr. Erika Fernandez-Vizarra for her guidance, enthusiasm and support during the past four years. Her passion for science is inspiring. A big thank you to every single member of the Mitochondrial Medicine group, including those that already left, because no matter how busy they were, they always gave me their invaluable guidance and help (as scientists and as friends). Thanks also to all the many colleagues in the unit who were always kind and supportive with me. Special thanks to Massimo and Erika for proofreading my thesis and giving me constructive feedback. I must also thank Dr. Carlo Viscomi, Raffaele Cerutti, Prof. Mike Murphy, Dr. Liz Hinchy, Prof. James Nathan and Anna Dickson, who greatly contributed to this project. I must also acknowledge the team from the Phenomics Laboratory, Forvie Site (Cambridge Biomedical Campus, Cambridge CB2 0PY) for their fantastic work and help with animal models. A special thank you to Penny, Janet, Irina, Jennifer, Dave, Steve, Merlin, Ash, and Andrew for their help with student, administrative, technical and IT matters. And a big thanks to the Medical Research Council for funding my research experience. I have been very lucky to meet wonderful people in Cambridge, many of whom have become very close friends. A very special thank you is reserved to Nicole, who gave me her kind support and advice and was always there when needed. Lastly, I want to thank my family for their love and support and for giving me the strength and motivation that I, sometimes, lack. iv Preface Summary Assembly of the mitochondrial complex IV (CIV) or cytochrome c oxidase (COX) is an intricate and highly regulated process in which the three-core mitochondrial DNA (mtDNA) encoded subunits assemble in a coordinated way with the remaining eleven supernumerary nuclear DNA (nDNA) encoded subunits. This process requires a large number of additional factors, which are necessary for the correct maturation of the complex but are not part of the fully assembled enzyme. Studies in mutant strains of the yeast Saccharomyces cerevisiae have been very useful to find many assembly factors and their human orthologs. However, it has become evident that there are animal-specific factors not present in yeast, which need to be identified using other techniques. In this work, two of these COX assembly factors, identified through two different approaches, have been characterised. First, quantitative proteomic analysis of the subassemblies accumulated in a MT-CO3 deficient cell line allowed the identification of MR-1S, conserved only in vertebrates. The downregulation of this protein produced a COX assembly and enzymatic defect. In addition, it was found to interact with the highly conserved bona fide COX assembly factors PET100 and PET117. Secondly, genomic screening of patients displaying mitochondrial encephalopathy and COX deficiency, revealed the presence of pathogenic variants in APOPT1. An Apopt1 knockout (KO) mouse model was generated by CRISPR/Cas9 to study the role of the APOPT1 protein in relation with COX biogenesis. Phenotypic characterisation showed COX deficiency in all tissues, associated with neuromuscular impairment, similar to the features found in human individuals carrying mutations in APOPT1, for which two immortalised skin fibroblast cell lines were studied. All the analysed mouse tissues and human cells showed decreased levels of fully assembled COX and subassembly accumulation. Interestingly, APOPT1 was found to be tightly regulated at the post-translational level, being its turnover controlled by the cytoplasmic ubiquitin- proteasome system (UPS), while increased oxidative stress had stabilising effects on the mature intramitochondrial form, which was shown to protect COX subunits from oxidatively-induced degradation. v Preface Abbreviations AAVs adeno-associated virus ACO2 mitochondrial aconitase ADP adenosine diphosphate AIF apoptosis inducing factor ALS amyotrophic lateral sclerosis ANT adenine nucleotide translocator AOX alternative oxidase ATP adenosine triphosphate bp base pairs BN-PAGE Blue Native Polyacrylamide Gel Electrophoresis BSA bovine serum albumin CI complex I CII complex II CIII complex III CIV complex IV CV complex V CLAMS comprehensive laboratory animal monitoring system CNS central nervous system COX cytochrome c oxidase CT computed tomography CS citrate synthase D-loop displacement loop DDM n-dodecyl-β-D-maltoside DMEM dulbecco’s modified eagle’s medium DNA deoxyribonucleic acid DUBs deubiquitinating enzymes EM electron microscopy ER endoplasmic reticulum ERAD ER–associated protein degradation ETC electron transport chain EV empty vector FAD flavin adenine dinucleotide FBS foetal bovine serum FMN flavin mononucleotide FVB friend virus B g gram GSH glutathione (reduced) GSSG glutathione (oxidised) HA hemagglutinin HEK human embryonic kidney HIF-1α hypoxia-inducible factor-1α vi Preface HS heavy strand IGA in gel activity IHC immunohistochemistry IMM inner mitochondrial membrane IMS inter-membrane space ISC iron-sulphur cluster kDa kilodalton KGDH α-ketoglutarate dehydrogenase KO knockout LACE1 ATPase lactation elevated 1 l litre LS light strand; leigh syndrome M molar mM millimolar MAD mitochondrial-associated degradation MAVS mitochondrial antiviral signalling MCIA mitochondrial complex I assembly MCU mitochondrial calcium uniporter MEFs mouse embryo fibroblasts MELAS mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes MIA mitochondrial intermembrane space assembly machinery MitoPQ mitoparaquat MITRAC mitochondrial translation regulation assembly intermediate of cytochrome c oxidase ml millilitre MOMP mitochondrial outer membrane permeabilisation MPT mitochondrial permeability transition MR-1S/M/L myofibrillary-related protein 1 short/medium/long isoform MRI magnetic resonance imaging MRS MR-spectroscopy MS mass spectrometry Mt mitochondria mtDNA mitochondrial DNA MTS mitochondrial targeting signal MW molecular weight NAD nicotinamide adenine dinucleotide NBF neutral buffered formalin nDNA nuclear DNA NGS next-generation sequencing NMD nonsense-mediated mRNA decay OAA oxaloacetic acid OH origin of the heavy strand vii Preface OMM outer mitochondrial membrane OXPHOS oxidative phosphorylation PBS phosphate buffered saline PCR polymerase chain reaction PDHC pyruvate dehydrogenase complex PET positron emission tomography Pi inorganic phosphate PLS pump loading site PMF proton-motive force PNKD paroxysmal non-kinesigenic dyskinesia Q, CoQ ubiquinone or coenzyme Q RNA ribonucleic acid rRNA ribosomal RNA RET reverse electron transfer SDH succinate dehydrogenase SDS-PAGE sodium dodecyl sulphate-polyacrylamide polyacrylamide gel electrophoresis shRNA small hairpin RNA SILAC stable isotope-labelled amino acids in cell culture SOD2/MnSOD superoxide dismutase 2 TCA tricarboxylic acid cycle TIM transporter of the inner membrane TOM translocase of the outer membrane Tm melting temperature tRNAs transfer RNAs UPR unfolded protein response UPS ubiquitin-proteasome system WB Western blot WT Wild-type μg microgram μl microlitre μM micromolar viii Table of contents Preface Declaration ......................................................................................................... iii Acknowledgements ............................................................................................ iv Summary ............................................................................................................ v Abbreviations ...................................................................................................... vi Chapter 1: Introduction 1.1 General introduction to mitochondrial biology ....................................... 2 1.1.1 Mitochondrial origin ................................................................................ 2 1.1.2 Mitochondrial architecture
Recommended publications
  • Molecular Mechanism of ACAD9 in Mitochondrial Respiratory Complex 1 Assembly
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.07.425795; this version posted January 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Molecular mechanism of ACAD9 in mitochondrial respiratory complex 1 assembly Chuanwu Xia1, Baoying Lou1, Zhuji Fu1, Al-Walid Mohsen2, Jerry Vockley2, and Jung-Ja P. Kim1 1Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA 2Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA Abstract ACAD9 belongs to the acyl-CoA dehydrogenase family, which catalyzes the α-β dehydrogenation of fatty acyl-CoA thioesters. Thus, it is involved in fatty acid β-oxidation (FAO). However, it is now known that the primary function of ACAD9 is as an essential chaperone for mitochondrial respiratory complex 1 assembly. ACAD9 interacts with ECSIT and NDUFAF1, forming the mitochondrial complex 1 assembly (MCIA) complex. Although the role of MCIA in the complex 1 assembly pathway is well studied, little is known about the molecular mechanism of the interactions among these three assembly factors. Our current studies reveal that when ECSIT interacts with ACAD9, the flavoenzyme loses the FAD cofactor and consequently loses its FAO activity, demonstrating that the two roles of ACAD9 are not compatible. ACAD9 binds to the carboxy-terminal half (C-ECSIT), and NDUFAF1 binds to the amino-terminal half of ECSIT. Although the binary complex of ACAD9 with ECSIT or with C-ECSIT is unstable and aggregates easily, the ternary complex of ACAD9-ECSIT-NDUFAF1 (i.e., the MCIA complex) is soluble and extremely stable.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • NDUFAF7 (NM 001083946) Human Untagged Clone – SC316187 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for SC316187 NDUFAF7 (NM_001083946) Human Untagged Clone Product data: Product Type: Expression Plasmids Product Name: NDUFAF7 (NM_001083946) Human Untagged Clone Tag: Tag Free Symbol: NDUFAF7 Synonyms: C2orf56; MidA; PRO1853 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin Fully Sequenced ORF: >NCBI ORF sequence for NM_001083946, the custom clone sequence may differ by one or more nucleotides ATGAGTGTACTGCTGAGGTCAGGTTTGGGGCCGTTGTGTGCCGTGGCGCGCGCAGCCATTCCTTTTATTT GGAGAGGGAAATACTTCAGCTCCGGGAATGAGCCTGCAGAAAACCCGGTGACGCCGATGCTGCGGCATCT TATGTACAAAATAAAGTCTACTGGTCCCATCACTGTGGCCGAGTACATGAAGGAGGTGTTGACTAATCCA GCCAAGCTACTAGGTATATGGTTCATTAGTGAATGGATGGCCACTGGAAAAAGCACAGCTTTCCAGCTGG TGGAACTGGGCCCAGGTAGGGGAACCCTCGTGGGAGATATTTTGAGGGTGTTCACTCAACTTGGATCTGT GCTGAAAAATTGTGACATTTCAGTACATCTGGTAGAGAAAACACCACAGGGATGGCGAGAAGTATTTGTT GACATTGATCCACAGGTTTCTGATAAACTGAGGTTTGTTTTGGCACCTTCTGCCACCCCAGCAGAAGCCT TCATACAACATGACGAAACAAGGGATCATGTTGAAGTGTGTCCTGATGCTGGTGTTATCATCGAGGAACT TTCTCAACGCATTGCATTAACTGGAGGTGCTGCACTGGTTGCTGATTATGGTCATGATGGAACAAAGACA GATACCTTCAGAGGGTTTTGCGACCACAAGCTTCATGATGTCTTAATTGCCCCAGGAACAGCAGATCTAA CAGCTGATGTGGACTTCAGTTATTTGCGAAGAATGGCACAGGGAAAAGTAGCCTCTCTGGGCCCAATAAA ACAACACACATTTTTAAAAAATATGGGTATTGATGTCCGGCTGAAGGTTCTTTTAGATAAATCAAATGAG CCATCAGTGAGGCAGCAGTTACTTCAAGGATATGATATGTTAATGAATCCAAAGAAGATGGGAGAGAGAT
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Oma1 (NM 025909) Mouse Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for MR208350 Oma1 (NM_025909) Mouse Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: Oma1 (NM_025909) Mouse Tagged ORF Clone Tag: Myc-DDK Symbol: Oma1 Synonyms: 2010001O09Rik; MPRP-1; ZMPOMA1 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 4 Oma1 (NM_025909) Mouse Tagged ORF Clone – MR208350 ORF Nucleotide >MR208350 ORF sequence Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGAGCCTCCTTTATGGACTGCAGTCTACCAGGATAAATCGGTTTCTCTCTGGAGTGAATAACCTGGCCA ACAGGAGACAGTGGACCCCCCCAGCAAGCTGTCCACTGGCACCAAAGCTCCGAGCAGTAAATGCATACTG GGGACTGAACACAGTCAGTCATTGTCATTCAGTGACCTTACTGCCTAGAAACTTTCTTTTCTGTAGGACT CTCAATCACAAAAAATCAAGATGCCTCTCAAGTGCCCAAAGCAAGGAATTGGGGGTGCTTACCTACAGAT GTACTGTGCGGGGTGATTCTGTTCTAAGACAAGGAGCAAGGAAAGTGGCTGGCGTTCCTGCTCTCGCGGC CTCCTGTTCTCCAAGCTGTCCTGCCGTAATAGAGGCCCGGAGTTTCCGTACATCTGCAAGGGTTCAGGCT GCCCCAGTCCCTCTCTTGCTGCTCATTCTGAAGCCAGTGCAAAAGCTCCTTGCTATCATCGTGGGCAGGG GCATAAGGAAATGGTGGCAAGCACTTCCCCCTAACAAGAAGGAGCTATTTAAAGACAGCGTGAGGAAGAA CAAGTGGCGGCTGCTTCTTGGTCTGAGTGCATTTGGACTGCTCTTTGTAGTGTTTTATTTCACTCACCTG
    [Show full text]
  • Region Based Gene Expression Via Reanalysis of Publicly Available Microarray Data Sets
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2018 Region based gene expression via reanalysis of publicly available microarray data sets. Ernur Saka University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Bioinformatics Commons, Computational Biology Commons, and the Other Computer Sciences Commons Recommended Citation Saka, Ernur, "Region based gene expression via reanalysis of publicly available microarray data sets." (2018). Electronic Theses and Dissertations. Paper 2902. https://doi.org/10.18297/etd/2902 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. REGION BASED GENE EXPRESSION VIA REANALYSIS OF PUBLICLY AVAILABLE MICROARRAY DATA SETS By Ernur Saka B.S. (CEng), University of Dokuz Eylul, Turkey, 2008 M.S., University of Louisville, USA, 2011 A Dissertation Submitted To the J. B. Speed School of Engineering in Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science and Engineering Department of Computer Engineering and Computer Science University of Louisville Louisville, Kentucky May 2018 Copyright 2018 by Ernur Saka All rights reserved REGION BASED GENE EXPRESSION VIA REANALYSIS OF PUBLICLY AVAILABLE MICROARRAY DATA SETS By Ernur Saka B.S. (CEng), University of Dokuz Eylul, Turkey, 2008 M.S., University of Louisville, USA, 2011 A Dissertation Approved On April 20, 2018 by the following Committee __________________________________ Dissertation Director Dr.
    [Show full text]
  • Abstracts from the 51St European Society of Human Genetics Conference: Electronic Posters
    European Journal of Human Genetics (2019) 27:870–1041 https://doi.org/10.1038/s41431-019-0408-3 MEETING ABSTRACTS Abstracts from the 51st European Society of Human Genetics Conference: Electronic Posters © European Society of Human Genetics 2019 June 16–19, 2018, Fiera Milano Congressi, Milan Italy Sponsorship: Publication of this supplement was sponsored by the European Society of Human Genetics. All content was reviewed and approved by the ESHG Scientific Programme Committee, which held full responsibility for the abstract selections. Disclosure Information: In order to help readers form their own judgments of potential bias in published abstracts, authors are asked to declare any competing financial interests. Contributions of up to EUR 10 000.- (Ten thousand Euros, or equivalent value in kind) per year per company are considered "Modest". Contributions above EUR 10 000.- per year are considered "Significant". 1234567890();,: 1234567890();,: E-P01 Reproductive Genetics/Prenatal Genetics then compared this data to de novo cases where research based PO studies were completed (N=57) in NY. E-P01.01 Results: MFSIQ (66.4) for familial deletions was Parent of origin in familial 22q11.2 deletions impacts full statistically lower (p = .01) than for de novo deletions scale intelligence quotient scores (N=399, MFSIQ=76.2). MFSIQ for children with mater- nally inherited deletions (63.7) was statistically lower D. E. McGinn1,2, M. Unolt3,4, T. B. Crowley1, B. S. Emanuel1,5, (p = .03) than for paternally inherited deletions (72.0). As E. H. Zackai1,5, E. Moss1, B. Morrow6, B. Nowakowska7,J. compared with the NY cohort where the MFSIQ for Vermeesch8, A.
    [Show full text]
  • Clinical Diagnostic Whole Exome Sequencing for Infants in Intensive Care Settings: Outcomes Analysis and Economic Evaluation
    The Texas Medical Center Library DigitalCommons@TMC UT School of Public Health Dissertations (Open Access) School of Public Health Summer 5-2019 CLINICAL DIAGNOSTIC WHOLE EXOME SEQUENCING FOR INFANTS IN INTENSIVE CARE SETTINGS: OUTCOMES ANALYSIS AND ECONOMIC EVALUATION HADLEY STEVENS SMITH UTHealth School of Public Health Follow this and additional works at: https://digitalcommons.library.tmc.edu/uthsph_dissertsopen Part of the Community Psychology Commons, Health Psychology Commons, and the Public Health Commons Recommended Citation SMITH, HADLEY STEVENS, "CLINICAL DIAGNOSTIC WHOLE EXOME SEQUENCING FOR INFANTS IN INTENSIVE CARE SETTINGS: OUTCOMES ANALYSIS AND ECONOMIC EVALUATION" (2019). UT School of Public Health Dissertations (Open Access). 106. https://digitalcommons.library.tmc.edu/uthsph_dissertsopen/106 This is brought to you for free and open access by the School of Public Health at DigitalCommons@TMC. It has been accepted for inclusion in UT School of Public Health Dissertations (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. CLINICAL DIAGNOSTIC WHOLE EXOME SEQUENCING FOR INFANTS IN INTENSIVE CARE SETTINGS: OUTCOMES ANALYSIS AND ECONOMIC EVALUATION by HADLEY STEVENS SMITH, MPSA, BS APPROVED: J. MICHAEL SWINT, PHD SEEMA R. LALANI, MD MARCIA C. DE OLIVEIRA OTTO, PHD HEIDI V. RUSSELL, MD, PHD JOSE-MIGUEL YAMAL, PHD DEAN, THE UNIVERSITY OF TEXAS SCHOOL OF PUBLIC HEALTH Copyright by Hadley Stevens Smith, PhD, MPSA, BS 2019 CLINICAL DIAGNOSTIC WHOLE
    [Show full text]
  • Systems Biology of Mitochondrial Dysfunction
    From the DEPARTMENT OF MOLECULAR MEDICINE AND SURGERY Karolinska Institutet, Stockholm, Sweden SYSTEMS BIOLOGY OF MITOCHONDRIAL DYSFUNCTION Florian A. Schober Stockholm 2021 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet Printed by Universitetsservice US­AB, 2021 © 2021 Florian A. Schober ISBN 978­91­8016­166­4 Cover illustration: The digital mitochondria, a puzzle. ASCII code (outer membrane) and ASCII code at 700 ppm mass tolerance, charge +1, carbamidomethylation (C) as fixed, methylation (KR) and oxidation (M) as variable modifications, 6% missing values (inner membrane). SYSTEMS BIOLOGY OF MITOCHONDRIAL DYSFUNCTION THESIS FOR DOCTORAL DEGREE (Ph.D.) By Florian A. Schober The thesis will be defended in public online and at Biomedicum in the Ragnar Granit lecture hall, Karolinska Institutet, Solnavägen 9, on May 7, 2021 at 9:00. Principal Supervisor: Opponent: Dr. Anna Wredenberg Dr. Christian Frezza Karolinska Institutet Cambridge University Department of Medical Biochemistry MRC Cancer Unit and Biophysics Division of Molecular Metabolism Examination Board: Prof. Maria Ankacrona Co­supervisors: Karolinska Institutet Dr. Christoph Freyer Department of Neurobiology, Care Sciences Karolinska Institutet and Society Department of Medical Biochemistry Division of Neurogeriatrics and Biophysics Division of Molecular Metabolism Dr. Bianca Habermann Aix­Marseille Université Prof. Anna Wedell Institut de Biologie du Développement Karolinska Institutet de Marseille Department of Molecular Medicine Computational Biology Team and Surgery Division of Inborn Errors of Metabolism Prof. Roman Zubarev Karolinska Institutet Department of Medical Biochemistry and Biophysics Division of Physiological Chemistry I The scientist does not study nature because it is useful to do so. He studies it because he takes pleasure in it, and he takes pleasure in it because it is beautiful.
    [Show full text]
  • Functional Proximity Mapping of RNA Binding Proteins Uncovers a Mitochondrial Mrna Anchor That Promotes Stress Recovery
    Functional proximity mapping of RNA binding proteins uncovers a mitochondrial mRNA anchor that promotes stress recovery Wei Qin Stanford University Samuel Myers Broad Institute Dominique Carey The Broad Institute of MIT and Harvard Steven Carr Broad Institute Alice Ting ( [email protected] ) Stanford University https://orcid.org/0000-0002-8277-5226 Article Keywords: Unbiased Proteome Discovery, Nucleolus, Outer Mitochondrial Membrane, Local Translation, Functional Protein Mapping Posted Date: November 12th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-103196/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/49 Abstract Proximity labeling (PL) with genetically-targeted promiscuous enzymes has emerged as a powerful tool for unbiased proteome discovery. By combining the spatiotemporal specicity of PL with methods for functional protein enrichment, it should be possible to map specic protein subclasses within distinct compartments of living cells. Here we demonstrate this capability for RNA binding proteins (RBPs), by combining peroxidase-based PL with organic-aqueous phase separation of crosslinked protein-RNA complexes (“APEX-PS”). We validated APEX-PS by mapping nuclear RBPs, then applied it to uncover the RBPomes of two unpuriable subcompartments - the nucleolus and the outer mitochondrial membrane (OMM). At the OMM, we discovered the RBP SYNJ2BP, which retains specic nuclear-encoded mitochondrial mRNAs during translation stress, to promote their local translation and import of protein products into the mitochondrion during stress recovery. APEX-PS is a versatile tool for compartment- specic RBP discovery and expands the scope of PL to functional protein mapping. Introduction RNA-protein interactions are pervasive in both transient and stable macromolecular complexes underlying transcription, translation and stress response 1, 2.
    [Show full text]
  • C11orf83 (UQCC3) (NM 001085372) Human Tagged ORF Clone Lentiviral Particle Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC213079L3V C11orf83 (UQCC3) (NM_001085372) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: C11orf83 (UQCC3) (NM_001085372) Human Tagged ORF Clone Lentiviral Particle Symbol: UQCC3 Synonyms: C11orf83; CCDS41658.1; MC3DN9; UNQ655 Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) ACCN: NM_001085372 ORF Size: 279 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC213079). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_001085372.2 RefSeq Size: 1959 bp RefSeq ORF: 282 bp Locus ID: 790955 UniProt ID: Q6UW78 Protein Families: Transmembrane MW: 10.5 kDa Gene Summary: Complex III is a mitochondrial inner membrane protein complex that transfers electrons from ubiquinol to cytochrome c. This gene encodes a protein that functions in complex III assembly. Mutations in this gene result in Mitochondrial complex III deficiency, nuclear type 9. [provided by RefSeq, Dec 2014] This product is to be used for laboratory only.
    [Show full text]