UCSD Elliot Chaparral Reserve Herptiles List Compiled by Rebecca Wolf 11 May 2010 ORDER/Family Common Name Scientific Name Ref S

Total Page:16

File Type:pdf, Size:1020Kb

UCSD Elliot Chaparral Reserve Herptiles List Compiled by Rebecca Wolf 11 May 2010 ORDER/Family Common Name Scientific Name Ref S UCSD Elliot Chaparral Reserve Herptiles List Compiled by Rebecca Wolf 11 May 2010 ORDER/Family Common Name Scientific Name Ref Status CAUDATA SALAMANDERS Plethodontidae Lungless Salamanders Arboreal salamander Aneides lugubris Black-bellied slender salamander Batrachoseps nigriventris Pacific slender salamander Batrachoseps pacificus 1 Ensatina salamander Ensatina eschscholtzi Salamandridae True Salamanders and Newts California Newt Taricha torosa ANURA FROGS AND TOADS Hylidae Treefrogs Pacific Treefrog Pseudacris regilla 1 California treefrog Pseudacris cadaverina Bufonidae Toads Western Toad Bufo boreas 1 Southwestern Toad Bufo microscaphus Red-spotted Toad Bufo punctatus Ranidae True Frogs Red-legged Frog Rana aurora Bullfrog Rana catesbeiana Pipidae Pipid frogs African Clawed frog Xenopus leavis Spea Spadefoots Western Spadefoot Spea hammondii 1 TESTUDINES Turtles Emydidae Pond turtles Western Pond Turtle Actinemys marmorata Trachemys Slider Turtles Sliders Trachemys sp. SQUAMATA LIZARDS AND SNAKES Gekkonidae Gekos Western Banded Gecko Coleonyx variegatus abbotti Xantusiidae Night Lizards UCSD Elliot Chaparral Reserve Herptiles List Compiled by Rebecca Wolf 11 May 2010 Granite night Lizard Xantusia henshawi Desert night Lizard Xantusia vigilis Anniellidae Legless Lizards California Legless Lizard Aniella pulchra Anguidae Alligator Lizards Southern Alligator Lizard Elgaria multicarinatus 1 Scincidae Skinks Gilbert Skink Eumeces gilberti Western Skink Eumeces skiltonianus 1 Teiidae Whiptails and Racerunners Orange-Throated Whiptail Aspidoscelis hyperthyrus 1 Western Whiptail Aspidoscelis tigris 1 Phrynosomatidae Horned Lizards and others Western Fence Lizard Sceloporus occidentalis 1 Western Spiny Lizard Sceloporus orcutti 1 Side-Blotched Lizard Uta stansburiana 1 Coast Horned Lizard Phrynosoma blainvillii 1 Crotaphytidae Crotaphytids Long-nosed Leopard Lizard Gambelia wislizenii Leptotyphlopidae Blind Snkes Western blind snake Leptotyphlops humilis Boidae Boas Rosy Boa Lichanura trivirgata Colubridae Colubrids Glossy Snake Arizona elegans Eastern Racer Coluber constrictor 1 Ringneck snake Diadophis punctatus 1 Night snake Hypsiglena chlorophaea 1 Common Kingsnake Lampropeltis getula 1 California Mountain Kingsnake Lampropeltis zonata Coachwhip Masticophis flagellum California Whipsnake (Striped Racer)Masticophis lateralis lateralis 1 Gopher Snake Pituophis catenifer 1 Long-nosed snake Rhinocheilus lecontei 1 Western Patch-Nosed snake Salvadora hexalepis Western Black-Headed Snake Tantilla planiceps 1 Two-Striped Garter Snake Thamnophis hammondii 1 Common Garter Snake Thamnophis sirtalis Lyre Snake Trimorphodon biscutatus UCSD Elliot Chaparral Reserve Herptiles List Compiled by Rebecca Wolf 11 May 2010 Viperidae Vipers Speckled Rattlesnake Crotalus mitchellii Red Diamond Rattlesnake Crotalus ruber 1 Southern Pacific Rattlesnake Crotalus viridis 1 1. Robert Fisher SDSU 1999.
Recommended publications
  • Life History of the Marbled Whiptail Lizard Aspidoscelis Marmorata from the Central Chihuahuan Desert, Mexico
    Acta Herpetologica 8(2): 81-91, 2013 Life history of the Marbled Whiptail Lizard Aspidoscelis marmorata from the central Chihuahuan Desert, Mexico Héctor Gadsden1, Gamaliel Castañeda2 1 Instituto de Ecología, A. C.-Centro Regional Chihuahua, Cubículo 29C, Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, C. P. 31109, Chihuahua, Chihuahua, México. Corresponding author. E-mail: [email protected] 2 Facultad de Ciencias Biológicas. Universidad Juárez del Estado de Durango. Avenida Universidad s/n. Fraccionamiento Filadelfia. Gómez Palacio, 35070, Durango, México Submitted on 2012, 5th December; revised on 2013, 10th August; accepted on 2013, 3rd September. Abstract. The life history of a population of marbled whiptail lizard, Aspidoscelis marmorata, was examined from 1989 to 1994 in the sand dunes of the Biosphere Reserve of Mapimí, in Northern México. Lizards were studied using mark- recapture techniques. Reproduction in females occurred between May and August, with birth hatchlings matching the wet season in August. Reproductive activity was highest in the early wet season (July). Males and females reached adult size class at an average age of 1.7 years and 1.8 years, respectively. Body size of males attained an asymptote around 90 mm snout-vent length and females around 82 mm snout-vent length, at an age of approximately 3.6 years and 3.0 years, respectively. The density varied from 7 to 85 individuals / 1.0 ha. The Mexican population had late maturity, relatively long life expectancy, and fewer offspring. Overall, the observed data for A. marmorata and the expectations of life history theory for a late maturing species (K-rate selection) are in agreement.
    [Show full text]
  • Life History of the Coppertail Skink (Ctenotus Taeniolatus) in Southeastern Australia
    Herpetological Conservation and Biology 15(2):409–415. Submitted: 11 February 2020; Accepted: 19 May 2020; Published: 31 August 2020. LIFE HISTORY OF THE COPPERTAIL SKINK (CTENOTUS TAENIOLATUS) IN SOUTHEASTERN AUSTRALIA DAVID A. PIKE1,2,6, ELIZABETH A. ROZNIK3, JONATHAN K. WEBB4, AND RICHARD SHINE1,5 1School of Biological Sciences A08, University of Sydney, New South Wales 2006, Australia 2Present address: Department of Biology, Rhodes College, Memphis, Tennessee 38112, USA 3Department of Conservation and Research, Memphis Zoo, Memphis, Tennessee 38112, USA 4School of Life Sciences, University of Technology Sydney, Broadway, New South Wales 2007, Australia 5Present address: Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia 6Corresponding author, e-mail: [email protected] Abstract.—The global decline of reptiles is a serious problem, but we still know little about the life histories of most species, making it difficult to predict which species are most vulnerable to environmental change and why they may be vulnerable. Life history can help dictate resilience in the face of decline, and therefore understanding attributes such as sexual size dimorphism, site fidelity, and survival rates are essential. Australia is well-known for its diversity of scincid lizards, but we have little detailed knowledge of the life histories of individual scincid species. To examine the life history of the Coppertail Skink (Ctenotus taeniolatus), which uses scattered surface rocks as shelter, we estimated survival rates, growth rates, and age at maturity during a three-year capture-mark- recapture study. We captured mostly females (> 84%), and of individuals captured more than once, we captured 54.3% at least twice beneath the same rock, and of those, 64% were always beneath the same rock (up to five captures).
    [Show full text]
  • Taxonomic Hypotheses and the Biogeography of Speciation in the Tiger Whiptail Complex (Aspidoscelis Tigris: Squamata, Teiidae)
    a Frontiers of Biogeography 2021, 13.2, e49120 Frontiers of Biogeography RESEARCH ARTICLE the scientific journal of the International Biogeography Society Taxonomic hypotheses and the biogeography of speciation in the Tiger Whiptail complex (Aspidoscelis tigris: Squamata, Teiidae) Tyler K. Chafin1* , Marlis R. Douglas1 , Whitney J.B. Anthonysamy1,2, Brian K. Sullivan3, James M. Walker1, James E. Cordes4, and Michael E. Douglas1 1 Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA; 2 St. Louis College of Pharmacy, 4588 Parkview Place, St. Louis, Missouri, 63110, USA; 3 School of Mathematical and Natural Sciences, P. O. Box 37100, Arizona State University, Phoenix, Arizona, 85069, USA; 4 Division of Mathematics and Sciences, Louisiana State University, Eunice, Louisiana, 70535, USA. *Corresponding author: Tyler K. Chafin, [email protected] Abstract Highlights Biodiversity in southwestern North America has a complex 1. Phylogeographies of vertebrates within the biogeographic history involving tectonism interspersed southwestern deserts of North America have been with climatic fluctuations. This yields a contemporary shaped by climatic fluctuations imbedded within pattern replete with historic idiosyncrasies often difficult broad geomorphic processes. to interpret when viewed from through the lens of modern ecology. The Aspidoscelis tigris (Tiger Whiptail) 2. The resulting synergism drives evolutionary processes, complex (Squamata: Teiidae) is one such group in which such as an expansion of within-species genetic taxonomic boundaries have been confounded by a series divergence over time. Taxonomic inflation often of complex biogeographic processes that have defined results (i.e., an increase in recognized taxa due to the evolution of the clade. To clarify this situation, arbitrary delineations), such as when morphological we first generated multiple taxonomic hypotheses, divergences fail to juxtapose with biogeographic which were subsequently tested using mitochondrial hypotheses.
    [Show full text]
  • 0189 Xantusia Henshawi.Pdf (296.1Kb)
    189.1 REPTILIA: SQUAMATA: SAURIA: XANTUSIIDAE XANTUSIA HENSHA WI Catalogue of Am.erican Am.phihians and Reptiles. sequently (Van Denburgh, 1922) placed Z ablepsis henshavii in the synonymy ofX. henshawi Stejneger. Cope (1895b) described, LEE, JULIANC. 1976. Xantusia henshawi. but failed to name a supposedly new species of Xantusia. In a later publication (Cope, 1895c) he corrected the oversight, and named Xantusia picta. Van Denburgh (1916) synonymized Xantusia henshawi Stejneger picta with X. henshawi, and traced the complicated history of Granite night lizard the type-specimen . Xantusia henshawi Stejneger, 1893:467. Type-locality, "Witch • ETYMOLOGY.The specific epithet honors H. W. Henshaw. Creek, San Diego County, California." Holotype, U. S. Nat. According to Webb (1970), "The name bolsonae refers to the Mus. 20339, collected in May 1893 by H. W. Henshaw (Holo• geographic position of this race in a southern outlier of the type not seen by author). Bolson de Mapimi." Zablepsis henshavii: Cope, 1895a:758. See NOMENCLATURAL HISTORY. 1. Xantusia henshawi henshawi Stejnege •. Xantusia picta Cope, 1895c:859. Type-locality, "Tejon Pass, California," probably in error, corrected by Van Denburgh Xantusia henshawi Stejneger, 1893:467. See species account. Xantusia henshawi henshawi: Webb, 1970:2. First use of tri- (1916:14) to Poway, San Diego County, California. Holotype, nomial. Acad. Natur. Sci. Philadelphia 12881 (Malnate, 1971), prob• ably collected by Dr. Frank E. Blaisdell (see NOMENCLATURAL • DEFINITIONANDDIAGNOSIS. The mean snout-vent length HISTORY). in males is 56 mm., and in females 62 mm. Distinct post• • CONTENT. Two subspecies are recognized: henshawi and orbital stripes are usually absent, and the dorsal color pattern bolsonae.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • The Functional Significance of Panting As a Mechanism of Thermoregulation and Its Relationship to the Critical Thermal Maxima in Lizards Caleb L
    © 2020. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2020) 223, jeb224139. doi:10.1242/jeb.224139 RESEARCH ARTICLE The functional significance of panting as a mechanism of thermoregulation and its relationship to the critical thermal maxima in lizards Caleb L. Loughran* and Blair O. Wolf* ABSTRACT lizards and its importance for thermoregulation have not been Because most desert-dwelling lizards rely primarily on behavioral widely investigated (Tattersall et al., 2006). thermoregulation for the maintenance of active body temperature, the Because lizards thermoregulate primarily by shuttling between effectiveness of panting as a thermoregulatory mechanism for different microclimates or by postural adjustments to maintain a evaporative cooling has not been widely explored. We measured preferred body temperature (Tpref ) before initiating open-mouthed panting, the onset of panting has historically been viewed as an changes in body temperature (Tb) with increasing air temperature (Ta) for 17 species of lizards that range across New Mexico and Arizona emergent response to unavoidable heat exposure and of approaching ’ and quantified the temperatures associated with the onset of panting, lethal Tb values near the animal s critical thermal maximum (CTmax; Weese, 1917; Cowles and Bogert, 1944; Dawson and Templeton, and the capacity of individuals to depress Tb below Ta while panting, 1966, Vernon and Heatwole, 1970; Webb et al., 1972, Tattersall and estimated the critical thermal maxima (CTmax) for each individual.
    [Show full text]
  • Life History Account for Island Night Lizard
    California Wildlife Habitat Relationships System California Department of Fish and Wildlife California Interagency Wildlife Task Group ISLAND NIGHT LIZARD Xantusia riversiana Family: XANTUSIIDAE Order: SQUAMATA Class: REPTILIA R035 Written by: R. Marlow Reviewed by: T. Papenfuss Edited by: R. Duke, J. Harris DISTRIBUTION, ABUNDANCE, AND SEASONALITY The island night lizard is presently known from three of the Channel Islands off the coast of southern California: San Clemente, Santa Barbara and San Nicolas. It may occur on other Channel Islands and has been reported from Santa Catalina, but these reports have not been substantiated (Stebbins 1954). These three islands provide a variety of habitats from coastal strand and sand dunes to chaparral and woodlands, and the lizards are found in all habitats that provide cover in great abundance (Stebbins 1954, Mautz and Case 1974). SPECIFIC HABITAT REQUIREMENTS Feeding: This species is omnivorous. It eats insects (silverfish, caterpillars, moths, ants, etc.), plants (up to 50% by volume) and possibly small mammals (Schwenkmeyer 1949, Knowlton 1949, Brattstrom 1952, Stebbins 1954). This lizard seems to be a food generalist and opportunist, taking advantage of whatever food source is available in an environment with few, if any, competitors. Cover: This species, like other members of this family, makes extensive use of cover. It is seldom observed on the surface in the open, but usually under objects or moving through thick vegetation, or around cover. It utilizes prostrate plant cover, the extensive patches of Opuntia or ice plant found on these islands, as well as rocks, logs and rubble (Stebbins 1954). Adequate cover in the form of vegetation, rock rubble, logs or other objects is probably the most important habitat requirement.
    [Show full text]
  • Amphiumidae Cryptobranchidae Proteidae
    Amphiumidae Amphiuma means – Two-toed Amphiuma cryptobranchidae Cryptobranchus alleganiensis – Hellbender Proteidae Necturus maculosus – Mudpuppy Sirenidae Siren intermedia – Lesser Siren Ambystomatidae Ambystoma gracile – Northwestern Salamander Ambystoma tigrinum – Tiger Salamander Ambystoma macrodactylum – Long-toed Salamander Ambystoma californiense – California Tiger Salamander Dicamptodontidae Dicamptodon ensatus – California Giant Salamander Dicamptodon tenebrosus – Pacific Giant Salamander Rhyacotritonidae Rhyacotriton variegatus – Southern Torrent Salamander Salamandridae Taricha torosa – California Newt Taricha Sierrae – Sierra Newt Taricha rivularis – Red-bellied Newt Taricha granulosa – Rough-skinned Newt Plethodontidae Aneides flavipunctatus – Black Salamander Aneides vagrans – Wandering Salamander Aneides ferreus – Clouded Salamander Aneides lugubris – Arboreal Salamander Plethodontidae Ensatina eschscholtzii – Ensatina Plethodontidae Batrachoseps attenuatus – California Slender Salamander Batrachoseps gavilanensis – Gabilan Mountains Slender Salamander Plethodontidae Plethodon dunni – Dunn’s Salamander Plethodon stormi – Siskiyou Mountains Salamander Plethodon elongatus – Del Norte Salamander Plethodon asupak – Scott Bar Salamander Plethodontidae Hydromantes brunus – Limestone Salamander Hydromantes platycephalus – Mount Lyell Salamander Hydromantes shastae – Shasta Salamander Ascaphidae Ascaphus truei – Tailed Frog Pelobatidae Spea hammondii – Western Spadefoot Spea intermontana – Great Basin Spadefoot Scaphiopus couchi
    [Show full text]
  • Animal Health Requirements for Importation of Reptiles, Amphibians, and Invertebrates Into Denmark
    INTERNATIONAL TRADE DIVISION ANIMAL HEALTH REQUIREMENTS FOR IMPORTATION OF REPTILES, AMPHIBIANS, AND INVERTEBRATES INTO DENMARK. La 23,0-2100 These animal health requirements concern veterinary import requirements and certification re- quirements alone and shall apply without prejudice to other Danish and EU legislation. Reptiles, amphibians and invertebrates meaning animals of the Family/Species listed below (please note the exceptions): Order Family/Species Crocodilia Ostaeolaemus spp. (Dwarf Crocodile), Paleosuchus spp. (Cuvier's Dwarf Caiman and Smooth-fronted (Crocodiles) Caiman) and Alligator sinensis (Chinese alligator) Rhynchocephalia Sphenodontidae (Tuataras) Squamata (Liz- Corytophanidae, Iguanidae , Phrynosomatidae, Polychrotidae, Tropiduridae, Crotaphytidae, Opluridae, ards and snakes) Hoplocercidae, Agamidae, Chamaeleonidae, Gekkonidae, Pygopodidae, Dibamidae, Scincidae, Cordy- lidae, Gerrhosauridae, Xantusiidae, Lacertidae, Teiidae, Gymnophthalmidae, Anguidae, Anniellidae, Xenosauridae, Varanidae (except Varanus komodoensis, Varanus salvator, Varanus salvadoiri, Vara- nus niloticus and Varanus ornatus), Lanthanotidae, Helodermatidae, Aniliidae, Anomochilidae, Boidae (except Eunectes murinus) , Bolyeriidae, Cylindrophiidae , Loxocemidae , Pythonidae (except Python molurus, Python sebae and Python reticulatus), Tropidophiidae , Uropeltidae, Xenopeltidae, Anomalepididae, Leptotyphlopidae, Typhlopidae, Acrochordidae, Atractaspididae (except Atractaspis spp. and Macrelaps spp.), Colubridae (except Thelotornis spp., Dispholidus
    [Show full text]
  • Monitoring Results for Reptiles, Amphibians and Ants in the Nature Reserve of Orange County (NROC) 2002
    Monitoring Results for Reptiles, Amphibians and Ants in the Nature Reserve of Orange County (NROC) 2002 Summary Report Prepared for: The Nature Reserve of Orange County – Lyn McAfee The Nature Conservancy – Trish Smith U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY WESTERN ECOLOGICAL RESEARCH CENTER Monitoring Results for Reptiles, Amphibians and Ants in the Nature Reserve of Orange County (NROC) 2002 By Adam Backlin1, Cindy Hitchcock1, Krista Pease2 and Robert Fisher2 U.S. GEOLOGICAL SURVEY WESTERN ECOLOGICAL RESEARCH CENTER Annual Report Prepared for: The Nature Reserve of Orange County The Nature Conservancy 1San Diego Field Station-Irvine Office USGS Western Ecological Research Center 2883 Irvine Blvd. Irvine, CA 92602 2San Diego Field Station-San Diego Office USGS Western Ecological Research Center 5745 Kearny Villa Road, Suite M San Diego, CA 92123 Sacramento, California 2003 ii U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, SECRETARY U.S. GEOLOGICAL SURVEY Charles G. Groat, Director The use of firm, trade, or brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information, contact: Center Director Western Ecological Research Center U.S. Geological Survey 7801 Folsom Blvd., Suite 101 Sacramento, CA 95826 iii Table of Contents Abstract .............................................................................................................................. 1 Research Goals ..................................................................................................................
    [Show full text]
  • [email protected] Biodiversity @Maddreptiles
    Timothy Colston Biological Science Harnessing NGS Technologies to Understand Biological Diversification: From Microbes to Macroevolutionary Patterns [email protected] Biodiversity @maddreptiles Source: International Conference on Biodiversity Motivation & Tools –Molecular [email protected] @maddreptiles (NGS) [email protected] Biodiversity @maddreptiles Source: International Conference on Biodiversity [email protected] Biodiversity @maddreptiles [email protected] Biodiversity –the “microbiome” @maddreptiles NGS Sequencing [email protected] Biodiversity –the “microbiome” @maddreptiles NGS Sequencing [email protected] Biodiversity –the “microbiome” @maddreptiles • Plants and Animals are “metagenomic organisms” – Co‐evolution • Host‐associated microbial cells ~ 10X number of host cells – Fitness/Selection – Heritable by Gaby D'Allesandro / © AMNH [email protected] Biodiversity –the “microbiome” @maddreptiles • Plants and Animals are “metagenomic organisms” – Co‐evolution • Host‐associated microbial genes > 10X number of host cells – Fitness/Selection – Heritable by Gaby D'Allesandro / © AMNH [email protected] Biodiversity –the “microbiome” @maddreptiles Mammals Fish Birds Amphibians Reptiles Colston, T.J. & Jackson, C.R. (2016) Molecular Ecology The Reptile Microbiome C h a m A a g e a A l m e m V o L i a p d n a h a i r H d a n i s e e L t T a n b h S l a r a i A o e A d o a c h X e d n g n a n e i n D e T e o n g r e o n i n t n r r a d i u i L t i s m o o e d o c i a e i d a p p a l s t d e i a y l h o i e a u d a i a l d t C c i B o r u
    [Show full text]
  • Environmental Consequences
    5-Mile Zone Protective and Regulatory Pumping Unit RMP/EA Water Rights The use of water in the 5-mile zone is regulated by (1) a 1989 Reclamation memorandum that is based in part on Public Law 93-320, as amended by Public Law 96-336; (2) IBWC 242 Minute; (3) existing water contracts; and (4) all applicable Federal and State regulations. Public Law 96-336 states that no contract shall be entered into that will impair the ability of the United States to continue to deliver to Mexico, on the Colorado River downstream from Morelos Dam, approximately 140,000 acre-feet of water annually, consistent with the terms contained in IBWC 242 Minute. Therefore, any request for water use from the study area would be subject to these limitations. Environmental Consequences Increased pumping from the aquifer, which could occur under alternatives that allow for development or land transfers or exchanges that would use or require more water, would affect groundwater availability in the study area. Some water use could occur in the 5-mile zone, west of the study area and outside of Reclamation’s jurisdiction, such as near the city of San Luis. Some elements of the alternatives could also affect groundwater quality. Following are the anticipated effects of each alternative. Alternative A Under Alternative A, if groundwater were used to meet the water needs of new developments, the aquifer could be lowered. However, the quantities needed should not adversely affect Reclamation=s ability to meet its water delivery obligations to Mexico unless total pumpage for the 5-mile zone approaches 160,000 acre-feet per year, the limit stipulated by IBWC 242 Minute.
    [Show full text]