CHAPTER 2. DIRECT TORQUE CONTROL. PRINCIPLES and GENERALITIES

Total Page:16

File Type:pdf, Size:1020Kb

CHAPTER 2. DIRECT TORQUE CONTROL. PRINCIPLES and GENERALITIES CHAPTER 2. DIRECT TORQUE CONTROL. PRINCIPLES and GENERALITIES. 2.1 - Induction motor controllers. 2.1.1 – Voltage/frequency. There are many different ways to drive an induction motor. The main differences between them are the motor’s performance and the viability and cost in its real implementation. Despite the fact that "Voltage/frequency" (V/f) is the simplest controller, it is the most widespread, being in the majority of the industrial applications. It is known as a scalar control and acts imposing a constant relation between voltage and frequency. The structure is very simple and it is normally used without speed feedback. However, this controller doesn't achieve a good accuracy in both speed and torque 2.1 Direct Torque Control. Principles and Generalities. responses mainly due to the fact that the stator flux and the torque are not directly controlled. Even though, as long as the parameters are identified, the accuracy in the speed can be 2% (except in a very low speed) and the dynamic response can be approximately around 50ms [LEO 1][LUD 2]. 2.1.2 – Vector controls. In these types of controllers, there are control loops for controlling both the torque and the flux [BOS 1]. The most widespread controllers are the ones that use vector transform such as either Park or Ku. Its accuracy can reach values such as 0.5% regarding the speed and 2% regarding the torque, even in stand still. The main disadvantages are the huge computational capability required and the compulsory good identification of the motor parameters [ROM 1]. 2.1.3 – Field Acceleration method. This method is based on avoiding the electromagnetic transients in the stator currents, keeping its phase continuous. Therefore, the equations used can be simplified saving the vector transformation in the controllers. It is achieved some computational reduction, overcoming the main problem in the vector controllers and then becoming an important alternative for the vector controllers [BED 5] [ROM 1] [YAM 1]. 2.1.4 - Direct Torque Control. In Direct Torque Control it is possible to control directly the stator flux and the torque by selecting the appropriate inverter state. Its main features are as follows [LUD 1] [VAS 2]: § Direct torque control and direct stator flux control. § Indirect control of stator currents and voltages. § Approximately sinusoidal stator fluxes and stator currents. § High dynamic performance even at locked rotor. 2.2 Direct Torque Control. Principles and Generalities. This method presents the following advantages: § Absence of co-ordinate transform. § Absence of voltage modulator block, as well as other controllers such as PID for flux and torque. § Minimal torque response time, even better than the vector controllers. Although, some disadvantages are present: § Possible problems during starting. § Requirement of torque and flux estimators, implying the consequent parameters identification. § Inherent torque and flux ripples. 2.3 Direct Torque Control. Principles and Generalities. 2.2 - Principles of Direct Torque Control. 2.2.1 - Introduction. As it has been introduced in expression 1.81, the electromagnetic torque in the three- phase induction machines can be expressed as follows [BOL 1][VAS 2]: 3 (2.1) t e = 2 Pys ´ is Where ys is the stator flux, i s is the stator current (both fixed to the stationary reference frame fixed to the stator) and P the number of pairs of poles. The previous equation can be modified and expressed as follows: 3 (2.2) t e = 2 P ys × is × sin (a s - rs ) Where rs is the stator flux angle and a s is the stator current one, both referred to the horizontal axis of the stationary frame fixed to the stator. If the stator flux modulus is kept constant and the angle rs is changed quickly, then the electromagnetic torque is directly controlled. The same conclusion can be obtained using another expression for the electromagnetic torque. From equation 1.83, next equation can be written: 3 Lm ' te = P y r ´ y s × sin(rs - rr ) 2 L L L2 s r - m (2.3) Because of the rotor time constant is larger than the stator one, the rotor flux changes slowly compared to the stator flux; in fact, the rotor flux can be assumed constant. (The fact that the rotor flux can be assumed constant is true as long as the response time of the control is much faster than the rotor time constant). As long as the stator flux modulus is kept constant, then the electromagnetic torque can be rapidly changed and controlled by means of changing the angle rs - rr [TAK 2] [VAS 2]. 2.2.2 - DTC Controller. The way to impose the required stator flux is by means of choosing the most suitable Voltage Source Inverter state. If the ohmic drops are neglected for simplicity, then 2.4 Direct Torque Control. Principles and Generalities. the stator voltage impresses directly the stator flux in accordance with the following equation: dy s = us dt (2.4) Or: Dy s = usDt (2.5) Decoupled control of the stator flux modulus and torque is achieved by acting on the radial and tangential components respectively of the stator flux-linkage space vector in its locus. These two components are directly proportional (Rs=0) to the components of the same voltage space vector in the same directions. Figure 2.1 shows the possible dynamic locus of the stator flux, and its different variation depending on the VSI states chosen. The possible global locus is divided into six different sectors signalled by the discontinuous line. v3(010) v2(110) 2 3 v3(FD,TI) v2 (FI,TI) v6(FI,TD) v4(011) v5(FD,TD) v1(100) 4 1 5 6 v5(001) v6(101) Figure 2.1. Stator flux vector locus and different possible switching voltage vectors. FD: flux decrease. FI: flux increase. TD: torque decrease. TI: torque increase. In Accordance with figure 2.1, the general table II.I can be written. It can be seen from table II.I, that the states Vk and Vk+3 , are not considered in the torque because they can both increase (first 30 degrees) or decrease (second 30 degrees) the torque at the same sector depending on the stator flux position. The usage of these states for 2.5 Direct Torque Control. Principles and Generalities. controlling the torque is considered one of the aims to develop in the present thesis, dividing the total locus into twelve sectors instead of just six [LUD 1]. VOLTAGE VECTOR INCREASE DECREASE Stator Flux Vk,V k+1,V k-1 Vk+2 ,V k-2,Vk+3 Torque Vk+1 ,V k+2 Vk-1,V k-2 Table II.I: General Selection Table for Direct Torque Control, being "k" the sector number. Finally, the DTC classical look up table is as follows: F t S1 S2 S3 S4 S5 S6 TI V2 V3 V4 V5 V6 V1 FI T= V0 V7 V0 V7 V0 V7 TD V6 V1 V2 V3 V4 V5 TI V3 V4 V5 V6 V1 V2 FD T= V7 V0 V7 V0 V7 V0 TD V5 V6 V1 V2 V3 V4 Table II.II. Look up table for Direct Torque Control. FD/FI: flux decrease/increase. TD/=/I: torque decrease/equal/increase. Sx: stator flux sector. F: stator flux modulus error after the hysteresis block. t: torque error after the hysteresis block. The sectors of the stator flux space vector are denoted from S1 to S6. Stator flux modulus error after the hysteresis block (F ) can take just two values. Torque error after the hysteresis block (t) can take three different values. The zero voltage vectors V0 and V7 are selected when the torque error is within the given hysteresis limits, and must remain unchanged. 2.6 Direct Torque Control. Principles and Generalities. 2.2.3 - DTC Schematic. In figure 2.2 a possible schematic of Direct Torque Control is shown. As it can be seen, there are two different loops corresponding to the magnitudes of the stator flux and torque. The reference values for the flux stator modulus and the torque are compared with the actual values, and the resulting error values are fed into the two- level and three-level hysteresis blocks respectively. The outputs of the stator flux error and torque error hysteresis blocks, together with the position of the stator flux are used as inputs of the look up table (see table II.II). The position of the stator flux is divided into six different sectors. In accordance with the figure 2.2, the stator flux modulus and torque errors tend to be restricted within its respective hysteresis bands. It can be proved that the flux hysteresis band affects basically to the stator-current distortion in terms of low order harmonics and the torque hysteresis band affects the switching frequency [VAS 2]. The DTC requires the flux and torque estimations, which can be performed as it is proposed in figure 2.2 schematic, by means of two different phase currents and the state of the inverter. Flux ref + - Torque ref + Selection VSI induction - Table motor flux sector VSI state stator flux torque estimators Figure 2.2. Direct Torque Control schematic. However, flux and torque estimations can be performed using other magnitudes such as two stator currents and the mechanical speed, or two stator currents again and the shaft position [LUD 1] [TAK 2]. 2.7 Direct Torque Control. Principles and Generalities. 2.2.3.1 - Stator flux and torque estimator using wm, isA and isB magnitudes. This estimator does not require co-ordinate transform. It is used the motor model fixed to the stationary reference frame fixed to the stator.
Recommended publications
  • Evaluation of Direct Torque Control with a Constant-Frequency Torque Regulator Under Various Discrete Interleaving Carriers
    electronics Article Evaluation of Direct Torque Control with a Constant-Frequency Torque Regulator under Various Discrete Interleaving Carriers Ibrahim Mohd Alsofyani and Kyo-Beum Lee * Department of Electrical and Computer Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu Suwon 16499, Korea * Correspondence: [email protected]; Tel.: +82-31-219-2376 Received: 25 June 2019; Accepted: 20 July 2019; Published: 23 July 2019 Abstract: Constant-frequency torque regulator–based direct torque control (CFTR-DTC) provides an attractive and powerful control strategy for induction and permanent-magnet motors. However, this scheme has two major issues: A sector-flux droop at low speed and poor torque dynamic performance. To improve the performance of this control method, interleaving triangular carriers are used to replace the single carrier in the CFTR controller to increase the duty voltage cycles and reduce the flux droop. However, this method causes an increase in the motor torque ripple. Hence, in this work, different discrete steps when generating the interleaving carriers in CFTR-DTC of an induction machine are compared. The comparison involves the investigation of the torque dynamic performance and torque and stator flux ripples. The effectiveness of the proposed CFTR-DTC with various discrete interleaving-carriers is validated through simulation and experimental results. Keywords: constant-frequency torque regulator; direct torque control; flux regulation; induction motor; interleaving carriers; low-speed operation 1. Introduction There are two well-established control strategies for high-performance motor drives: Field orientation control (FOC) and direct torque control (DTC) [1–3]. The FOC method has received wide acceptance in industry [4]. Nevertheless, it is complex because of the requirement for two proportional-integral (PI) regulators, space-vector modulation (SVM), and frame transformation, which also needs the installation of a high-resolution speed encoder.
    [Show full text]
  • Direct Torque Control of Induction Motors
    DIRECT TORQUE CONTROL FOR INDUCTION MOTOR DRIVES MAIN FEATURES OF DTC · Decoupled control of torque and flux · Absence of mechanical transducers · Current regulator, PWM pulse generation, PI control of flux and torque and co-ordinate transformation are not required · Very simple control scheme and low computational time · Reduced parameter sensitivity BLOCK DIAGRAM OF DTC SCHEME + _ s* s j s + Djs _ Voltage Vector s * T + j s DT Selection _ T S S S s Stator a b c Torque j s s E Flux vs 2 Estimator Estimator 3 s is 2 i b i a 3 Induction Motor In principle the DTC method selects one of the six nonzero and two zero voltage vectors of the inverter on the basis of the instantaneous errors in torque and stator flux magnitude. MAIN TOPICS Þ Space vector representation Þ Fundamental concept of DTC Þ Rotor flux reference Þ Voltage vector selection criteria Þ Amplitude of flux and torque hysteresis band Þ Direct self control (DSC) Þ SVM applied to DTC Þ Flux estimation at low speed Þ Sensitivity to parameter variations and current sensor offsets Þ Conclusions INVERTER OUTPUT VOLTAGE VECTORS I Sw1 Sw3 Sw5 E a b c Sw2 Sw4 Sw6 Voltage-source inverter (VSI) For each possible switching configuration, the output voltages can be represented in terms of space vectors, according to the following equation æ 2p 4p ö s 2 j j v = ç v + v e 3 + v e 3 ÷ s ç a b c ÷ 3 è ø where va, vb and vc are phase voltages.
    [Show full text]
  • Improved Direct Torque Control of Doubly Fed Induction Motor Using Space Vector Modulation
    Received: December 22, 2020. Revised: February 26, 2021. 177 Improved Direct Torque Control of Doubly Fed Induction Motor Using Space Vector Modulation Mohammed El Mahfoud1* Badre Bossoufi1 Najib El Ouanjli2 Mahfoud Said2 Mohammed Taoussi2 1Laboratory of engineering Modeling and Systems Analysis, SMBA University Fez, Morocco 2Technologies and Industrial Services Laboratory, SMBA University Fez, Morocco * Corresponding author’s Email: [email protected] Abstract: This research paper deals with the improved direct torque control (DTC) of a doubly fed induction machine (DFIM) operating in motor mode. The conventional DTC is a powerful tool to ensure robustness and good torque dynamics. However, the variable switching frequency as well as the presence of torque and flux ripples due to the use of hysteresis controllers are the major drawbacks of this strategy. For this purpose, the control by space vector Modulation (SVM) is developed to improve DTC performance, by replacing hysterisis controllers by PI controllers to reduce electromagnetic flux ripple and torque ripple in order to minimize mechanical vibration and acoustic noise while maintaining the benefits of DTC control. The proposed control algorithm is simulated and tested in MATLAB/Simulink. A comparative analysis between this technique and conventional DTC is carried out, highlighting the efficiency of the proposed improvement approach. The performance indexes and comparative results show the effectiveness of the proposed control in reducing torque ripple and stator and rotor flux ripple by up to 43%, 42% and 31%, respectively, resulting in Total Harmonic Distortion (THD%) 61% lower, in addition the switching frequency is controlled, and the Rejection Time is improved by more than 76%.
    [Show full text]
  • Direct Torque Control of Induction Motor Using Fuzzy Logic Controller
    International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 3, Issue 2 (January 2014), PP.56-61 Direct Torque Control of Induction Motor Using Fuzzy Logic Controller 1 2 C.Vignesh, S.Shantha Sheela, 3 4 E.Chidam Meenakchi Devi, R.Balachandar 1,2,3,4 M.E Power Electronics and Drives, Sri Subramanya college of Engineering and Technology,India Abstract:- In this paper, Direct Torque Control (DTC) approaches of induction motor (IM) drives has been proposed and it is extensively implemented in industrial variable speed applications. This paper presents a unique direct torque control (DTC) approach for induction motor (IM) drives fed by using a fuzzy logic controller. The intention is to develop a low-ripple high-performance induction motor (IM) drive. The presented scheme is founded on the emulation of the operation of the conservative six switch three-phase inverter. It routines the dc current to re-construct the stator currents desired to estimate the motor flux and the electromagnetic torque. This methodology has been adopted in the design of the vector selection table of the suggested DTC approach through fuzzy logic controller. The modelling and simulation results of direct torque control of induction motor have been confirmed by means of the software package MATLAB/Simulink. Keywords:- Direct Torque Control, Fuzzy Logic Controller, Induction Motor, Direct Torque Control Fed Induction Motor. I. INTRODUCTION For high power industrial applications it is desirable to use AC motor drive instead of DC drive. But due to inherent torque coupling present in AC motor, the dynamic response becomes sluggish.
    [Show full text]
  • The Fundamentals of Ac Electric Induction Motor Design and Application
    THE FUNDAMENTALS OF AC ELECTRIC INDUCTION MOTOR DESIGN AND APPLICATION by Edward J. Thornton Electrical Consultant E. I. du Pont de Nemours Houston, Texas and J. Kirk Armintor Senior Account Sales Engineer Rockwell Automation The Woodlands, Texas Edward J. (Ed) Thornton is an Electrical Electrical Mechanical Consultant in the Electrical Technology Coupling System Field System Consulting Group in Engineering at DuPont, in Houston, Texas. His specialty is the design, operation, and maintenance of electric power distribution systems and large motor installations. He has 20 years E , I T , w of consulting experience with DuPont. Mr. Thornton received his B.S. degree Figure 1. Block Representation of Energy Conversion for Motors. (Electrical Engineering, 1978) from Virginia Polytechnic Institute and State University. The coupling magnetic field is key to the operation of electrical He is a registered Professional Engineer in the State of Texas. apparatus such as induction motors. The fundamental laws associated with the relationship between electricity and magnetism were derived from experiments conducted by several key scientists J. Kirk Armintor is a Senior Account in the 1800s. Sales Engineer in the Rockwell Automation Houston District Office, in The Woodlands, Basic Design and Theory of Operation Texas. He has 32 years’ experience with The alternating current (AC) induction motor is one of the most motor applications in the petroleum, rugged and most widely used machines in industry. There are two chemical, paper, and pipeline industries. major components of an AC induction motor. The stationary or He has authored technical papers on motor static component is the stator. The rotating component is the rotor.
    [Show full text]
  • Abstract Controlling Ac Motor Using Arduino
    ABSTRACT CONTROLLING AC MOTOR USING ARDUINO MICROCONTROLLER Nithesh Reddy Nannuri, M.S. Department of Electrical Engineering Northern Illinois University, 2014 Donald S Zinger, Director Space vector modulation (SVM) is a technique used for generating alternating current waveforms to control pulse width modulation signals (PWM). It provides better results of PWM signals compared to other techniques. CORDIC algorithm calculates hyperbolic and trigonometric functions of sine, cosine, magnitude and phase using bit shift, addition and multiplication operations. This thesis implements SVM with Arduino microcontroller using CORDIC algorithm. This algorithm is used to calculate the PWM timing signals which are used to control the motor. Comparison of the time taken to calculate sinusoidal signal using Arduino and CORDIC algorithm was also done. NORTHERN ILLINOIS UNIVERSITY DEKALB, ILLINOIS DECEMBER 2014 CONTROLLING AC MOTOR USING ARDUINO MICROCONTROLLER BY NITHESH REDDY NANNURI ©2014 Nithesh Reddy Nannuri A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF SCIENCE DEPARTMENT OF ELECTRICAL ENGINEERING Thesis Director: Dr. Donald S Zinger ACKNOWLEDGEMENTS I would like to express my sincere gratitude to Dr. Donald S. Zinger for his continuous support and guidance in this thesis work as well as throughout my graduate study. I would like to thank Dr. Martin Kocanda and Dr. Peng-Yung Woo for serving as members of my thesis committee. I would like to thank my family for their unconditional love, continuous support, enduring patience and inspiring words. Finally, I would like to thank my friends and everyone who has directly or indirectly helped me for their cooperation in completing the thesis.
    [Show full text]
  • Electric Motors
    SPECIFICATION GUIDE ELECTRIC MOTORS Motors | Automation | Energy | Transmission & Distribution | Coatings www.weg.net Specification of Electric Motors WEG, which began in 1961 as a small factory of electric motors, has become a leading global supplier of electronic products for different segments. The search for excellence has resulted in the diversification of the business, adding to the electric motors products which provide from power generation to more efficient means of use. This diversification has been a solid foundation for the growth of the company which, for offering more complete solutions, currently serves its customers in a dedicated manner. Even after more than 50 years of history and continued growth, electric motors remain one of WEG’s main products. Aligned with the market, WEG develops its portfolio of products always thinking about the special features of each application. In order to provide the basis for the success of WEG Motors, this simple and objective guide was created to help those who buy, sell and work with such equipment. It brings important information for the operation of various types of motors. Enjoy your reading. Specification of Electric Motors 3 www.weg.net Table of Contents 1. Fundamental Concepts ......................................6 4. Acceleration Characteristics ..........................25 1.1 Electric Motors ...................................................6 4.1 Torque ..............................................................25 1.2 Basic Concepts ..................................................7
    [Show full text]
  • Electrical Engineering Specialization in Power Electronics And
    Syllabus M. Tech.: Electrical Engineering Specialization in Power Electronics and Electric Drives (Part Time) INSTITUTE: Institute of Technology(IOT) DEPARTMENT: Electrical COURSE: M.Tech (Part Time) (Power Electronics & Electric Drives) Program Learning Objective: PO1 To impart education and train graduate engineers in the field of power electronics & Drives to meet the emerging needs of society. PO2 To study design, analysis and control of power electronic circuits for variable frequency drives application. PO3 To understand and design power electronic and drive systems for different application. PO4 To facilitate graduates in research activities leading to innovative solutions in interfacing of power electronic controllers with renewable energy sources. PO5 To analyze and design switch mode regulators/Power Converters for various industry applications. Program Learning Outcome: PLO1 Will be able to apply the knowledge of science and mathematics in designing, analyzing and using the power converters and drives for various applications that meet specific needs. PLO2 To enable students to develop, construct, operate and test power electronic converters and machine in the laboratory. PLO3 Students will understand current and emerging issues to analyze and evaluate the merits and disadvantages of large power electronic systems. PLO4 To enable students to design, analyze, model, build and test the operation of drives in a lab environment. PLO5 Detailed understanding of the operation, function and interaction between various components and sub-systems used in power electronic converters, electric machines and adjustable-speed drives. STUDY & EVALUATION SCHEME (Effective from the session 2017-2018) M. Tech.: Electrical Engineering (Part Time) Specialization: Power Electronics & Electric Drives I Year: I Semester S.
    [Show full text]
  • Improvement of Electromagnetic Railgun Barrel Performance and Lifetime By
    IMPROVEMENT OF ELECTROMAGNETIC RAILGUN BARREL PERFORMANCE AND LIFETIME BY METHOD OF INTERFACES AND AUGMENTED PROJECTILES A Thesis Presented to the Faculty of California Polytechnic State University San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Aerospace Engineering by Aleksey Pavlov June 2013 c 2013 Aleksey Pavlov ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Improvement of Electromagnetic Rail- gun Barrel Performance and Lifetime by Method of Interfaces and Augmented Pro- jectiles AUTHOR: Aleksey Pavlov DATE SUBMITTED: June 2013 COMMITTEE CHAIR: Kira Abercromby, Ph.D., Associate Professor, Aerospace Engineering COMMITTEE MEMBER: Eric Mehiel, Ph.D., Associate Professor, Aerospace Engineering COMMITTEE MEMBER: Vladimir Prodanov, Ph.D., Assistant Professor, Electrical Engineering COMMITTEE MEMBER: Thomas Guttierez, Ph.D., Associate Professor, Physics iii Abstract Improvement of Electromagnetic Railgun Barrel Performance and Lifetime by Method of Interfaces and Augmented Projectiles Aleksey Pavlov Several methods of increasing railgun barrel performance and lifetime are investigated. These include two different barrel-projectile interface coatings: a solid graphite coating and a liquid eutectic indium-gallium alloy coating. These coatings are characterized and their usability in a railgun application is evaluated. A new type of projectile, in which the electrical conductivity varies as a function of position in order to condition current flow, is proposed and simulated with FEA software. The graphite coating was found to measurably reduce the forces of friction inside the bore but was so thin that it did not improve contact. The added contact resistance of the graphite was measured and gauged to not be problematic on larger scale railguns. The liquid metal was found to greatly improve contact and not introduce extra resistance but its hazardous nature and tremendous cost detracted from its usability.
    [Show full text]
  • Comparative Study of Field Oriented Control and Direct Torque Control of Induction Motor
    ISSN: 2455-2631 © July 2018 IJSDR | Volume 3, Issue 7 COMPARATIVE STUDY OF FIELD ORIENTED CONTROL AND DIRECT TORQUE CONTROL OF INDUCTION MOTOR 1Milan Singh Tekam2 Dr. A. K. Sharma 1,2Department of electrical engineering, Jabalpur engineering college Abstract: Now-a-days induction motor is the main work-horse of the industries. So controlling of performance of induction motor is most precisely required in many high performance applications. Scalar control method gives good steady state response but poor dynamic response. While vector control method gives good steady state as well as dynamic response. But it is complicated in structure so to overcome this difficulty, direct torque control introduced. This paper discusses the comparative study of field oriented control (FOC) and direct torque control (DTC) methods of induction motor according to their working principle, structure complexity, performance, merits and demerits. Keywords: Vector Control, Induction Motor, Direct Torque Control, Field Oriented Control, Decoupling, Separately Excited Dc Motor. I. INTRODUCTION In 1891 at the Frankfurt exhibition, Nikola Tesla first presented a polyphase induction motor. Since then great improvements have been made in the design and performance of the induction motors and numerous types of polyphase and single-phase induction motors have been developed. Due to its simple, rugged and inexpensive construction and excellent operating characteristics induction motor has become very popular in industrial applications. As a rough estimate nearly 90 percent of the world’s AC motors are polyphase induction motors. AC induction motor is the most common motor used in industries and mains powered home appliances. It is biggest industrial load, so widely used.
    [Show full text]
  • DTC a Motor Control Technique for All Seasons DTC a Motor Control Technique for All Seasons
    White Paper DTC A motor control technique for all seasons DTC A motor control technique for all seasons Variable-speed drives (VSDs) have enabled unprecedented motor torque by using armature current. Over time, performance in electric motors and delivered dramatic AC drive designs have evolved offering improved dynamic energy savings by matching motor speed and torque to performance. (One recent, noteworthy discussion of various actual requirements of the driven load. Most VSDs in available AC drive control methods appears in Ref. 1.) the market rely on a modulator stage that conditions voltage and frequency inputs to the motor, but causes inherent Most high-performance VSDs in 1980s relied on pulse-width time delay in processing control signals. In contrast, modulation (PWM). However, one consequence of using the premium VSDs from ABB employ direct torque control a modulator stage is the delay and a need to filter (DTC) — an innovative technology originated by ABB — the measured currents when executing motor control greatly increasing motor torque response. In addition, commands — hence slowing down motor torque response. DTC provides further benefits and has grown into a larger technology brand which includes drive hardware, control In contrast, ABB took a different approach to high- software, and numerous system-level features. performance AC motor control. AC drives from ABB intended for demanding applications use an innovative technology called direct torque control (DTC). The method Electric motors are often at the spearhead of modern directly controls motor torque instead of trying to control production systems, whether in metal processing lines, the currents analogously to DC drives.
    [Show full text]
  • Permanent Magnet Servomotor and Induction Motor Considerations
    Permanent Magnet Servomotor and Induction Motor Considerations Kollmorgen B-104 PM Brushless Servomotor at 0.4 HP Kollmorgen M-828 PM Brushless Rotor Kollmorgen B-802 PM Brushless Servomotor at 15 HP Kollmorgen B-808 PM Brushless Rotor Permanent Magnet Servomotor and Induction Motor Considerations 1 Lee Stephens, Senior Motion Control Engineer Permanent Magnet Servomotor and Induction Motor Considerations Motion long considered a mainstay of induction motors, encroachment in the area of 50 HP and greater have been seen recently for some applications by permanent magnet (PM) servomotors. These applications usually have dynamic considerations that require position-time closed loop and high accelerations. When accelerating large loads, permanent magnet servomotors can work with very high load to inertia ratios and still maintain performance requirements. Having a lower inertia typically will allow for less permanent magnet motor can result in a greater torque energy wasted within the motor. Torque (τ), is the density than an equivalent induction system. If size product of inertia (j) and rotary acceleration (α). If you matters, then perhaps a system should use one require inertia matching, ½ of your energy is wasted technology over another. Speaking of size, the inertia accelerating the motor alone. If the inertia ratio from ratio can be an important figure of merit should motor to load is large, then control schemes must be dynamic needs arise. If you are going to have high dynamic enough to prevent the larger load from driving accelerations and decelerations, the size of the rotor the motor as opposed to the motor controlling the load. will significantly increase the inertia and decrease the Tradeoffs and knowing what can be negotiated.
    [Show full text]