Disease Progression and Pharmacological Intervention in a Nutrient‑Defcient Rat Model of Nonalcoholic Steatohepatitis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products. -
A61p1/16 (2006.01) A61p3/00 (2006.01) Km, Ml, Mr, Ne, Sn, Td, Tg)
( (51) International Patent Classification: TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, A61P1/16 (2006.01) A61P3/00 (2006.01) KM, ML, MR, NE, SN, TD, TG). A61K 31/192 (2006.01) C07C 321/28 (2006.01) Declarations under Rule 4.17: (21) International Application Number: — as to the applicant's entitlement to claim the priority of the PCT/IB2020/000808 earlier application (Rule 4.17(iii)) (22) International Filing Date: Published: 25 September 2020 (25.09.2020) — with international search report (Art. 21(3)) (25) Filing Language: English — before the expiration of the time limit for amending the claims and to be republished in the event of receipt of (26) Publication Language: English amendments (Rule 48.2(h)) (30) Priority Data: 62/906,288 26 September 2019 (26.09.2019) US (71) Applicant: ABIONYX PHARMA SA [FR/FR] ; 33-43 Av¬ enue Georges Pompidou, Batiment D, 31130 Bahna (FR). (72) Inventor: DASSEUX, Jean-Louis, Henri; 7 Allees Charles Malpel, Bat. B, 31300 Toulouse (FR). (74) Agent: HOFFMANN EITLE PATENT- UND RECHTSANWALTE PARTMBB, ASSOCIATION NO. 151; Arabellastrasse 30, 81925 Munich (DE). (81) Designated States (unless otherwise indicated, for every kind of national protection available) : AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW. -
The Opportunities and Challenges of Peroxisome Proliferator-Activated Receptors Ligands in Clinical Drug Discovery and Development
International Journal of Molecular Sciences Review The Opportunities and Challenges of Peroxisome Proliferator-Activated Receptors Ligands in Clinical Drug Discovery and Development Fan Hong 1,2, Pengfei Xu 1,*,† and Yonggong Zhai 1,2,* 1 Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; [email protected] 2 Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China * Correspondence: [email protected] (P.X.); [email protected] (Y.Z.); Tel.: +86-156-005-60991 (P.X.); +86-10-5880-6656 (Y.Z.) † Current address: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA. Received: 22 June 2018; Accepted: 24 July 2018; Published: 27 July 2018 Abstract: Peroxisome proliferator-activated receptors (PPARs) are a well-known pharmacological target for the treatment of multiple diseases, including diabetes mellitus, dyslipidemia, cardiovascular diseases and even primary biliary cholangitis, gout, cancer, Alzheimer’s disease and ulcerative colitis. The three PPAR isoforms (α, β/δ and γ) have emerged as integrators of glucose and lipid metabolic signaling networks. Typically, PPARα is activated by fibrates, which are commonly used therapeutic agents in the treatment of dyslipidemia. The pharmacological activators of PPARγ include thiazolidinediones (TZDs), which are insulin sensitizers used in the treatment of type 2 diabetes mellitus (T2DM), despite some drawbacks. In this review, we summarize 84 types of PPAR synthetic ligands introduced to date for the treatment of metabolic and other diseases and provide a comprehensive analysis of the current applications and problems of these ligands in clinical drug discovery and development. -
Lessons from Liver-Specific PPAR-Null Mice
International Journal of Molecular Sciences Review PPARs as Metabolic Regulators in the Liver: Lessons from Liver-Specific PPAR-Null Mice Yaping Wang 1, Takero Nakajima 1, Frank J. Gonzalez 2 and Naoki Tanaka 1,3,* 1 Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan; [email protected] (Y.W.); [email protected] (T.N.) 2 Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; [email protected] 3 Research Center for Social Systems, Shinshu University, Matsumoto, Nagano 390-8621, Japan * Correspondence: [email protected]; Tel.: +81-263-37-2851 Received: 21 February 2020; Accepted: 9 March 2020; Published: 17 March 2020 Abstract: Peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ modulate lipid homeostasis. PPARα regulates lipid metabolism in the liver, the organ that largely controls whole-body nutrient/energy homeostasis, and its abnormalities may lead to hepatic steatosis, steatohepatitis, steatofibrosis, and liver cancer. PPARβ/δ promotes fatty acid β-oxidation largely in extrahepatic organs, and PPARγ stores triacylglycerol in adipocytes. Investigations using liver-specific PPAR-disrupted mice have revealed major but distinct contributions of the three PPARs in the liver. This review summarizes the findings of liver-specific PPAR-null mice and discusses the role of PPARs in the liver. Keywords: PPAR; NAFLD; NASH; insulin resistance; liver fibrosis 1. Introduction Administration of Wy-14643, nafenopin, and fibrate drugs to rodents results in hepatic peroxisome proliferation. These agents are thus designated as peroxisome proliferators (PPs) [1]. To explain a mechanism of rapid and drastic changes following PP administration, the involvement of transcription factors was assumed and the first peroxisome proliferator-activated receptor (PPAR, later defined as PPARα (NR1C1)) was identified in 1990 [2]. -
Pemafibrate (K-877), a Novel Selective Peroxisome Proliferator-Activated
Fruchart Cardiovasc Diabetol (2017) 16:124 DOI 10.1186/s12933-017-0602-y Cardiovascular Diabetology REVIEW Open Access Pemafbrate (K‑877), a novel selective peroxisome proliferator‑activated receptor alpha modulator for management of atherogenic dyslipidaemia Jean‑Charles Fruchart* Abstract Despite best evidence-based treatment including statins, residual cardiovascular risk poses a major challenge for clini‑ cians in the twenty frst century. Atherogenic dyslipidaemia, in particular elevated triglycerides, a marker for increased triglyceride-rich lipoproteins and their remnants, is an important contributor to lipid-related residual risk, especially in insulin resistant conditions such as type 2 diabetes mellitus. Current therapeutic options include peroxisome proliferator-activated receptor alpha (PPARα) agonists, (fbrates), but these have low potency and limited selectivity for PPARα. Modulating the unique receptor–cofactor binding profle to identify the most potent molecules that induce PPARα-mediated benefcial efects, while at the same time avoiding unwanted side efects, ofers a new therapeutic approach and provides the rationale for development of pemafbrate (K-877, Parmodia™), a novel selective PPARα modulator (SPPARMα). In clinical trials, pemafbrate either as monotherapy or as add-on to statin therapy was efec‑ tive in managing atherogenic dyslipidaemia, with marked reduction of triglycerides, remnant cholesterol and apoli‑ poprotein CIII. Pemafbrate also increased serum fbroblast growth factor 21, implicated in metabolic homeostasis. There were no clinically meaningful adverse efects on hepatic or renal function, including no relevant serum creati‑ nine elevation. A major outcomes study, PROMINENT, will provide defnitive evaluation of the role of pemafbrate for management of residual cardiovascular risk in type 2 diabetes patients with atherogenic dyslipidaemia despite statin therapy. -
Peroxisome Proliferator-Activated Receptors and Their Novel Ligands As Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease
cells Review Peroxisome Proliferator-Activated Receptors and Their Novel Ligands as Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease Anne Fougerat 1,*, Alexandra Montagner 1,2,3, Nicolas Loiseau 1 , Hervé Guillou 1 and Walter Wahli 1,4,5,* 1 Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; [email protected] (A.M.); [email protected] (N.L.); [email protected] (H.G.) 2 Institut National de la Santé et de la Recherche Médicale (Inserm), Institute of Metabolic and Cardiovascular Diseases, UMR1048 Toulouse, France 3 Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, UMR1048 Toulouse, France 4 Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore 5 Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland * Correspondence: [email protected] (A.F.); [email protected] (W.W.); Tel.: +33-582066376 (A.F.); +41-79-6016832 (W.W.) Received: 29 May 2020; Accepted: 4 July 2020; Published: 8 July 2020 Abstract: Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, frequently associated with obesity and type 2 diabetes. Steatosis is the initial stage of the disease, which is characterized by lipid accumulation in hepatocytes, which can progress to non-alcoholic steatohepatitis (NASH) with inflammation and various levels of fibrosis that further increase the risk of developing cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is influenced by interactions between genetic and environmental factors and involves several biological processes in multiple organs. No effective therapy is currently available for the treatment of NAFLD. -
Exploration and Development of PPAR Modulators in Health and Disease: an Update of Clinical Evidence
International Journal of Molecular Sciences Review Exploration and Development of PPAR Modulators in Health and Disease: An Update of Clinical Evidence Hong Sheng Cheng 1,* , Wei Ren Tan 2, Zun Siong Low 2, Charlie Marvalim 1, Justin Yin Hao Lee 2 and Nguan Soon Tan 1,2,* 1 School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; [email protected] 2 Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; [email protected] (W.R.T.); [email protected] (Z.S.L.); [email protected] (J.Y.H.L.) * Correspondence: [email protected] (H.S.C.); [email protected] (N.S.T.); Tel.: +65-6904-1294 (H.S.C.); +65-6904-1295 (N.S.T.) Received: 30 September 2019; Accepted: 10 October 2019; Published: 11 October 2019 Abstract: Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that govern the expression of genes responsible for energy metabolism, cellular development, and differentiation. Their crucial biological roles dictate the significance of PPAR-targeting synthetic ligands in medical research and drug discovery. Clinical implications of PPAR agonists span across a wide range of health conditions, including metabolic diseases, chronic inflammatory diseases, infections, autoimmune diseases, neurological and psychiatric disorders, and malignancies. In this review we aim to consolidate existing clinical evidence of PPAR modulators, highlighting their clinical prospects and challenges. Findings from clinical trials revealed that different agonists of the same PPAR subtype could present different safety profiles and clinical outcomes in a disease-dependent manner. -
Peroxisome Proliferator-Activated Receptors
PPAR Peroxisome proliferator-activated receptors PPARs (Peroxisome proliferator-activated receptors) are ligand-activated transcription factors of nuclear hormone receptor superfamily comprising of the following three subtypes: PPARα, PPARγ, and PPARβ/δ. PPARs play essential roles in the regulation of cellular differentiation, development, and metabolism (carbohydrate, lipid, protein), and tumorigenesis of higher organisms. All PPARs heterodimerize with the retinoid X receptor (RXR) and bind to specific regions on the DNA of target genes. Activation of PPAR-α reduces triglyceride level and is involved in regulation of energy homeostasis. Activation of PPAR-γ enhances glucose metabolism, whereas activation of PPAR-β/δ enhances fatty acids metabolism. www.MedChemExpress.com 1 PPAR Inhibitors, Agonists, Antagonists, Activators & Modulators 13-Oxo-9E,11E-octadecadienoic acid 15-Deoxy-Δ-12,14-prostaglandin J2 Cat. No.: HY-N5097 (15d-PGJ2; 15-Deoxy-Δ12,14-PGJ2) Cat. No.: HY-108568 13-Oxo-9E,11E-octadecadienoic acid, an isomer of 15-Deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2) is a 9-oxo-ODA, is a potent PPARα activator derived cyclopentenone prostaglandin and a metabolite of from tomato juice. 13-Oxo-9E,11E-octadecadienoic PGD2. 15-Deoxy-Δ-12,14-prostaglandin J2 is a acid decreases plasma and hepatic triglyceride in selective PPARγ (EC50 of 2 µM) and a covalent obese diabetic mice. PPARδ agonist. Purity: >98% Purity: ≥96.0% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 1 mg, 5 mg Size: 1 mg, 5 mg 4-O-Methyl honokiol 5-Aminosalicylic Acid Cat. No.: HY-U00450 (Mesalamine; 5-ASA; Mesalazine) Cat. No.: HY-15027 4-O-Methyl honokiol is a natural neolignan 5-Aminosalicylic acid (Mesalamine) acts as a isolated from Magnolia officinalis, acts as a specific PPARγ agonist and also inhibits PPARγ agonist, and inhibtis NF-κB activity, used p21-activated kinase 1 (PAK1) and NF-κB. -
Metabolic Disease
Metabolic Disease Metabolic diseases is defined by a constellation of interconnected physiological, biochemical, clinical, and metabolic factors that directly increases the risk of cardiovascular disease, type 2 diabetes mellitus, and all cause mortality. Associated conditions include hyperuricemia, fatty liver (especially in concurrent obesity) progressing to nonalcoholic fatty liver disease, polycystic ovarian syndrome (in women), erectile dysfunction (in men), and acanthosis nigricans. Metabolic disease modeling is an essential component of biomedical research and a mandatory prerequisite for the treatment of human disease. Somatic genome editing using CRISPR/Cas9 might be used to establish novel metabolic disease models. www.MedChemExpress.com 1 Metabolic Disease Inhibitors & Modulators (-)-(S)-Equol (-)-Fucose Cat. No.: HY-100583 (6-Desoxygalactose; L-(-)-Fucose; L-Galactomethylose) Cat. No.: HY-N1480 Bioactivity: (-)-(S)-Equol is a high affinity ligand for estrogen receptor Bioactivity: (-)-Fucose is classified as a member of the hexoses, plays a role in A and B blood group antigen substructure β with a Ki of 0.73 nM. determination, selectin-mediated leukocyte-endothelial adhesion, and host-microbe interactions. Purity: 99.82% Purity: >98% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10mM x 1mL in DMSO, Size: 10mM x 1mL in DMSO, 5 mg, 10 mg, 25 mg, 50 mg 100 mg (-)-PX20606 trans isomer (24R)-MC 976 ((-)-PX-102 trans isomer; (-)-PX-104) Cat. No.: HY-100443B Cat. No.: HY-15267A Bioactivity: (-)-PX20606 trans isomer is a FXR agonist with EC50s of 18 Bioactivity: (24R)-MC 976 is a Vitamin D3 derivative. and 29 nM for FXR in FRET and M1H assay, respectively. -
Combination for Therapy Non-Alcoholic Steatohepatitis: Rationale, Opportunities and Challenges
Recent advances in clinical practice Combination for therapy non- alcoholic steatohepatitis: rationale, opportunities Gut: first published as 10.1136/gutjnl-2019-319104 on 7 May 2020. Downloaded from and challenges Jean- François Dufour ,1,2 Cyrielle Caussy,3,4 Rohit Loomba5 1Hepatology, Department of ABStract for clinical approval of new drugs for the treat- Clinical Research, University of Non-alcoholic steatohepatitis (NASH) is becoming a ment of NASH, trials should include patients who Bern, Bern, Switzerland 2University Clinic for Visceral leading cause of cirrhosis with the burden of NASH- have significantly higher risk of progression to Surgery and Medicine, related complications projected to increase massively cirrhosis and hepatic decompensation, as defined as Inselspital, Bern, Switzerland over the coming years. Several molecules with different those who have biopsy-proven NASH with stage 2 3 Centre Hospitalier Lyon Sud, mechanisms of action are currently in development to fibrosis or higher. The regulatory approval pathway Endocrinologie Diabète et treat NASH, although reported efficacy to date has been for pharmacological therapies for NASH requires Nutrition, University Lyon 1, Hospices Civils de Lyon, Lyon, limited. Given the complexity of the pathophysiology therapies to show clinical benefit in improving France of NASH, it will take the engagement of several targets liver- related outcomes for full regulatory approval, 4 NAFLD Research Center, and pathways to improve the results of pharmacological which may take several years due to low event rates. University of California at San intervention, which provides a rationale for combination To expedite drug development, liver histological Diego, La Jolla, California, USA 5Division of Gastroenterology therapies in the treatment of NASH. -
Targeting Ppars
Natura Aonss Targeting PPARs: Coacatos Phamaceca Aonss Coeessos Anaonss/Paa Aonss A guide to function and structure PPAR α, δ, γ RR While PPARs display a high degree of homology at the protein level, each subtype exhibits distinct, noninter- PPRE DNA changeable roles in energy metabolism that range from energy burning to energy storage. Learn more about DA nn Hne Tage Gene ranscon their functions as fatty acid sensors and regulators of energy homeostasis at www.caymanchem.com/PPARs. www.caymanchem.com oman reon an nn oman A-1 A-2 NH2 COOH A/ C D E F MUSCLE PPARδ PPARα P se · ↑ Fatty acid oxidation · ↑ Fatty acid oxidation · ↑ Oxidative muscle fibers · ↑ Obesity resistance PPARγ PPARα* PPARδ PPARγ* · ↑ Insulin-mediated 1 99 173 239 466 468 1 71 145 211 439 441 1 136 210 238 503 505 · ↑ Insulin sensitivity glucose uptake A/ C D E F A/ C D E F A/ C D E F · ↑ Energy uncoupling Reesens sofom he canonca seence n nProt Reesens sofom he canonca seence n nProt FAAR NR1C2 Synonyms NR1C1 NR1C3 NUC1 LIVER PPARα PPARγ PPARβ · ↑ Fatty acid oxidation · ↑ Fatty acid storage · ↑ Ketogenesis · ↑ Lipogenesis CREBBP EP300 · ↓ Plasma triglycerides CITED2 FAM120B CREBBP MED1 (PBP/DRIP205/TRAP220) · ↑ Plasma HDL EP300 EP300 NCOA1 (RIP160/SRC-1) NCOA1 (RIP160/SRC-1) MED1 (PBP/DRIP205/TRAP220) NCOA2 (SRC-2) NCOA2 (SRC-2) Coactivators NCOA1 (RIP160/SRC-1) NCOA3 (SRC-3) NCOA3 (SRC-3) NCOA2 (SRC-2) NCOA4 PGC-1α NCOA3 (SRC-3) NCOA6 PGC-1α NCOA7 VESSEL WALL PPARα & PPARγ PGC-1β PGC-1α · ↓ Inflammation PRIC295 PGC-1β · ↑ Reverse cholesterol transport PGC-2 NCOR1 -
FDA-Approved Drug Library Mini (96-Well)
• Inhibitors • Agonists • Screening Libraries www.MedChemExpress.com FDA-Approved Drug Library Mini (96-well) Product Details: Catalog Number: HY-L022M Formulation: A collection of 1559 marketed drugs supplied as pre-dissolved DMSO solutions Container: 96 Well Microplate With Peelable Foil Seal Storage: -80°C Shipping: Blue ice Packaging: Inert gas Plate layout: HY-L022M-1 1 2 3 4 5 6 7 8 9 10 11 12 Plerixafor Zoledronic a Empty Sisomicin Streptomycin (octahydrochl acid Paromomycin Netilmicin Neomycin Levoleucovori Peramivir Capreomycin Empty (sulfate) (sulfate) oride) (monohydrate (sulfate) (sulfate) (sulfate) n (Calcium) (trihydrate) (sulfate) 4- L-Glutamic b Empty Amikacin Stibogluconat Gluconate Histamine Mangafodipir Cromolyn (Aminomethyl acid Citicoline Tranexamic Empty (sulfate) e (sodium) (Calcium) (phosphate) (trisodium) (sodium) )benzoic acid monosodium acid Ozagrel Chloroquine Heparin Sugammadex Citicoline Ribostamycin c Empty sodium (diphosphate) Gadobutrol L-Ornithine (sodium salt) (sodium) Zanamivir sodium salt (sulfate) Glucosamine Empty d Empty L-Arginine Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty e Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty f Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty g Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty h Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty Plate layout: HY-L022M-2 1 2 3 4 5 6 7 8 9 10 11 12 Etomidate Epirubicin Tetramisole a Empty Ibrutinib (hydrochlorid