PPAR Agonists and Metabolic Syndrome: an Established Role?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Us 2018 / 0296525 A1
UN US 20180296525A1 ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2018/ 0296525 A1 ROIZMAN et al. ( 43 ) Pub . Date: Oct. 18 , 2018 ( 54 ) TREATMENT OF AGE - RELATED MACULAR A61K 38 /1709 ( 2013 .01 ) ; A61K 38 / 1866 DEGENERATION AND OTHER EYE (2013 . 01 ) ; A61K 31/ 40 ( 2013 .01 ) DISEASES WITH ONE OR MORE THERAPEUTIC AGENTS (71 ) Applicant: MacRegen , Inc ., San Jose , CA (US ) (57 ) ABSTRACT ( 72 ) Inventors : Keith ROIZMAN , San Jose , CA (US ) ; The present disclosure provides therapeutic agents for the Martin RUDOLF , Luebeck (DE ) treatment of age - related macular degeneration ( AMD ) and other eye disorders. One or more therapeutic agents can be (21 ) Appl. No .: 15 /910 , 992 used to treat any stages ( including the early , intermediate ( 22 ) Filed : Mar. 2 , 2018 and advance stages ) of AMD , and any phenotypes of AMD , including geographic atrophy ( including non -central GA and Related U . S . Application Data central GA ) and neovascularization ( including types 1 , 2 and 3 NV ) . In certain embodiments , an anti - dyslipidemic agent ( 60 ) Provisional application No . 62/ 467 ,073 , filed on Mar . ( e . g . , an apolipoprotein mimetic and / or a statin ) is used 3 , 2017 . alone to treat or slow the progression of atrophic AMD Publication Classification ( including early AMD and intermediate AMD ) , and / or to (51 ) Int. CI. prevent or delay the onset of AMD , advanced AMD and /or A61K 31/ 366 ( 2006 . 01 ) neovascular AMD . In further embodiments , two or more A61P 27 /02 ( 2006 .01 ) therapeutic agents ( e . g ., any combinations of an anti - dys A61K 9 / 00 ( 2006 . 01 ) lipidemic agent, an antioxidant, an anti- inflammatory agent, A61K 31 / 40 ( 2006 .01 ) a complement inhibitor, a neuroprotector and an anti - angio A61K 45 / 06 ( 2006 .01 ) genic agent ) that target multiple underlying factors of AMD A61K 38 / 17 ( 2006 .01 ) ( e . -
Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products. -
Disease Progression and Pharmacological Intervention in a Nutrient‑Defcient Rat Model of Nonalcoholic Steatohepatitis
Digestive Diseases and Sciences https://doi.org/10.1007/s10620-018-5395-7 ORIGINAL ARTICLE Disease Progression and Pharmacological Intervention in a Nutrient‑Defcient Rat Model of Nonalcoholic Steatohepatitis Kirstine S. Tølbøl1,3,4 · Birgit Stierstorfer2 · Jörg F. Rippmann2 · Sanne S. Veidal1 · Kristofer T. G. Rigbolt1 · Tanja Schönberger2 · Matthew P. Gillum4 · Henrik H. Hansen1 · Niels Vrang1 · Jacob Jelsing1 · Michael Feigh1 · Andre Broermann2 Received: 14 June 2018 / Accepted: 22 November 2018 © The Author(s) 2018 Abstract Background There is a marked need for improved animal models of nonalcoholic steatohepatitis (NASH) to facilitate the development of more efcacious drug therapies for the disease. Methods Here, we investigated the development of fbrotic NASH in male Wistar rats fed a choline-defcient L-amino acid- defned (CDAA) diet with or without cholesterol supplementation for subsequent assessment of drug treatment efcacy in NASH biopsy-confrmed rats. The metabolic profle and liver histopathology were evaluated after 4, 8, and 12 weeks of dieting. Subsequently, rats with biopsy-confrmed NASH were selected for pharmacological intervention with vehicle, elafbranor (30 mg/kg/day) or obeticholic acid (OCA, 30 mg/kg/day) for 5 weeks. Results The CDAA diet led to marked hepatomegaly and fbrosis already after 4 weeks of feeding, with further progression of collagen deposition and fbrogenesis-associated gene expression during the 12-week feeding period. Cholesterol supple- mentation enhanced the stimulatory efect of CDAA on gene transcripts associated with fbrogenesis without signifcantly increasing collagen deposition. Pharmacological intervention with elafbranor, but not OCA, signifcantly reduced stea- tohepatitis scores, and fbrosis-associated gene expression, however, was unable to prevent progression in fbrosis scores. -
Pemafibrate, a Novel Selective Peroxisome Proliferator-Activated
www.nature.com/scientificreports OPEN Pemafibrate, a novel selective peroxisome proliferator-activated receptor alpha modulator, Received: 25 July 2016 Accepted: 11 January 2017 improves the pathogenesis in Published: 14 February 2017 a rodent model of nonalcoholic steatohepatitis Yasushi Honda1, Takaomi Kessoku1, Yuji Ogawa1, Wataru Tomeno1, Kento Imajo1, Koji Fujita1, Masato Yoneda1, Toshiaki Takizawa2, Satoru Saito1, Yoji Nagashima3 & Atsushi Nakajima1 The efficacy of peroxisome proliferator-activated receptorα -agonists (e.g., fibrates) against nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) in humans is not known. Pemafibrate is a novel selective peroxisome proliferator-activated receptorα modulator that can maximize the beneficial effects and minimize the adverse effects of fibrates used currently. In a phase-2 study, pemafibrate was shown to improve liver dysfunction in patients with dyslipidaemia. In the present study, we first investigated the effect of pemafibrate on rodent models of NASH. Pemafibrate efficacy was assessed in a diet-induced rodent model of NASH compared with fenofibrate. Pemafibrate and fenofibrate improved obesity, dyslipidaemia, liver dysfunction, and the pathological condition of NASH. Pemafibrate improved insulin resistance and increased energy expenditure significantly. To investigate the effects of pemafibrate, we analysed the gene expressions and protein levels involved in lipid metabolism. We also analysed uncoupling protein 3 (UCP3) expression. Pemafibrate stimulated lipid turnover and upregulated UCP3 expression in the liver. Levels of acyl-CoA oxidase 1 and UCP3 protein were increased by pemafibrate significantly. Pemafibrate can improve the pathogenesis of NASH by modulation of lipid turnover and energy metabolism in the liver. Pemafibrate is a promising therapeutic agent for NAFLD/NASH. The incidence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. -
A61p1/16 (2006.01) A61p3/00 (2006.01) Km, Ml, Mr, Ne, Sn, Td, Tg)
( (51) International Patent Classification: TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, A61P1/16 (2006.01) A61P3/00 (2006.01) KM, ML, MR, NE, SN, TD, TG). A61K 31/192 (2006.01) C07C 321/28 (2006.01) Declarations under Rule 4.17: (21) International Application Number: — as to the applicant's entitlement to claim the priority of the PCT/IB2020/000808 earlier application (Rule 4.17(iii)) (22) International Filing Date: Published: 25 September 2020 (25.09.2020) — with international search report (Art. 21(3)) (25) Filing Language: English — before the expiration of the time limit for amending the claims and to be republished in the event of receipt of (26) Publication Language: English amendments (Rule 48.2(h)) (30) Priority Data: 62/906,288 26 September 2019 (26.09.2019) US (71) Applicant: ABIONYX PHARMA SA [FR/FR] ; 33-43 Av¬ enue Georges Pompidou, Batiment D, 31130 Bahna (FR). (72) Inventor: DASSEUX, Jean-Louis, Henri; 7 Allees Charles Malpel, Bat. B, 31300 Toulouse (FR). (74) Agent: HOFFMANN EITLE PATENT- UND RECHTSANWALTE PARTMBB, ASSOCIATION NO. 151; Arabellastrasse 30, 81925 Munich (DE). (81) Designated States (unless otherwise indicated, for every kind of national protection available) : AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW. -
The Opportunities and Challenges of Peroxisome Proliferator-Activated Receptors Ligands in Clinical Drug Discovery and Development
International Journal of Molecular Sciences Review The Opportunities and Challenges of Peroxisome Proliferator-Activated Receptors Ligands in Clinical Drug Discovery and Development Fan Hong 1,2, Pengfei Xu 1,*,† and Yonggong Zhai 1,2,* 1 Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; [email protected] 2 Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China * Correspondence: [email protected] (P.X.); [email protected] (Y.Z.); Tel.: +86-156-005-60991 (P.X.); +86-10-5880-6656 (Y.Z.) † Current address: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA. Received: 22 June 2018; Accepted: 24 July 2018; Published: 27 July 2018 Abstract: Peroxisome proliferator-activated receptors (PPARs) are a well-known pharmacological target for the treatment of multiple diseases, including diabetes mellitus, dyslipidemia, cardiovascular diseases and even primary biliary cholangitis, gout, cancer, Alzheimer’s disease and ulcerative colitis. The three PPAR isoforms (α, β/δ and γ) have emerged as integrators of glucose and lipid metabolic signaling networks. Typically, PPARα is activated by fibrates, which are commonly used therapeutic agents in the treatment of dyslipidemia. The pharmacological activators of PPARγ include thiazolidinediones (TZDs), which are insulin sensitizers used in the treatment of type 2 diabetes mellitus (T2DM), despite some drawbacks. In this review, we summarize 84 types of PPAR synthetic ligands introduced to date for the treatment of metabolic and other diseases and provide a comprehensive analysis of the current applications and problems of these ligands in clinical drug discovery and development. -
Integrative and Systemic Approaches for Evaluating Pparβ/Δ (PPARD)
Integrative and systemic approaches for evaluating PPAR β/δ (PPARD) function Greta MP Giordano Attianese and Béatrice Desvergne Center for Integrative Genomics, University of Lausanne, Switzerland Footnotes: Corresponding author, BD: [email protected] Competing interests: The authors declare no competing financial interests Author contributions: Both authors have been involved in drafting the manuscript and revising it critically. Received December 5, 2014; Accepted March 9, 2015; Published April 27, 2015 Copyright © 2015 Giordano Attianese and Desvergne. This is an open-access article distributed under the terms of the Creative Commons Non-Commercial Attribution License, which permits unrestricted non-commercial use distribution and reproduction in any medium, provided the original work is properly cited. Abbreviations: αMyHC, α-Myosin Heavy Chain; BCL6, B-cell lymphoma 6 protein; BAT, Brown adipose tissue; ChIP, Chromatin Immunoprecipitation; CHD, Coronary heart disease; DBD, DNA-binding domain; FAO, Fatty Acid Oxidation; FA, Fatty Acid; GSIS, Glucose-stimulated insulin secretion; HSC, Hematopoietic Stem cells; H&E, Hematoxylin and Eosin; HDAC1, Histone deacetylase 1; LBD, Ligand binding domain; MCP1, Monocyte chemotactic protein 1; NFkB, Nuclear factor kappa-light-chain- enhancer of activated B cells; NR, Nuclear Receptor; NCoR1, Nuclear receptor co-repressor 1; PPARs, Peroxisome proliferator- activated receptors; PPRE, PPAR-responsive element; RER, Respiratory Exchange Ratio; RA, Retinoic Acid; RXR, Retinoid X receptor; SMRT, Silencing mediator of retinoic acid and thyroid hormone receptors; SNPs, Single Nucleotide Polymorphisms; SUMO, Small Ubiquitin-like Modifier; TZDs, Thiazolidinediones; TR, Thyroid hormone receptor; TG, Triglycerides; VLDL, Very large density lipoprotein; WOSCOPS, West of Scotland Coronary Prevention Study; WAT, White adipose tissue. Citation: Giordano Attianese G and Desvergne B (2015) Integrative and systemic approaches for evaluating PPAR β/δ (PPARD) function. -
Muraglitazar Bristol-Myers Squibb/Merck Daniella Barlocco
Muraglitazar Bristol-Myers Squibb/Merck Daniella Barlocco Address Originator Bristol-Myers Squibb Co University of Milan . Istituto di Chimica Farmaceutica e Tossicologica Viale Abruzzi 42 Licensee Merck & Co Inc 20131 Milano . Italy Status Pre-registration Email: [email protected] . Indications Metabolic disorder, Non-insulin-dependent Current Opinion in Investigational Drugs 2005 6(4): diabetes © The Thomson Corporation ISSN 1472-4472 . Actions Antihyperlipidemic agent, Hypoglycemic agent, Bristol-Myers Squibb and Merck & Co are co-developing Insulin sensitizer, PPARα agonist, PPARγ agonist muraglitazar, a dual peroxisome proliferator-activated receptor-α/γ . agonist, for the potential treatment of type 2 diabetes and other Synonym BMS-298585 metabolic disorders. In November 2004, approval was anticipated as early as mid-2005. Registry No: 331741-94-7 Introduction [579218], [579221], [579457], [579459]. PPARγ is expressed in Type 2 diabetes is a complex metabolic disorder that is adipose tissue, lower intestine and cells involved in characterized by hyperglycemia, insulin resistance and immunity. Activation of PPARγ regulates glucose and lipid defects in insulin secretion. The disease is associated with homeostasis, and triggers insulin sensitization [579216], older age, obesity, a family history of diabetes and physical [579218], [579458], [579461]. PPARδ is expressed inactivity. The prevalence of type 2 diabetes is increasing ubiquitously and has been found to be effective in rapidly, and the World Health Organization warns that, controlling dyslipidemia and cardiovascular diseases unless appropriate action is taken, the number of sufferers [579216]. PPARα agonists are used as potent hypolipidemic will double to over 350 million individuals by the year compounds, increasing plasma high-density lipoprotein 2030. Worryingly, it is estimated that only half of sufferers (HDL)-cholesterol and reducing free fatty acids, are diagnosed with the condition [www.who.int]. -
Effects of Pemafibrate on Glucose Metabolism Markers and Liver
Yokote et al. Cardiovasc Diabetol (2021) 20:96 https://doi.org/10.1186/s12933-021-01291-w Cardiovascular Diabetology ORIGINAL INVESTIGATION Open Access Efects of pemafbrate on glucose metabolism markers and liver function tests in patients with hypertriglyceridemia: a pooled analysis of six phase 2 and phase 3 randomized double‐blind placebo‐controlled clinical trials Koutaro Yokote1,2*, Shizuya Yamashita3, Hidenori Arai4, Eiichi Araki5, Mitsunori Matsushita6, Toshiaki Nojima7, Hideki Suganami7 and Shun Ishibashi8 Abstract Background: Increased risk of cardiovascular events is associated not only with dyslipidemias, but also with abnor- malities in glucose metabolism and liver function. This study uses pooled analysis to explore the in-depth efects of pemafbrate, a selective peroxisome proliferator-activated receptor α modulator (SPPARMα) already known to decrease elevated triglycerides, on glucose metabolism and liver function in patients with hypertriglyceridemia. Methods: We performed a post-hoc analysis of six phase 2 and phase 3 Japanese randomized double-blind placebo- controlled trials that examined the efects of daily pemafbrate 0.1 mg, 0.2 mg, and 0.4 mg on glucose metabolism markers and liver function tests (LFTs). Primary endpoints were changes in glucose metabolism markers and LFTs from baseline after 12 weeks of pemafbrate treatment. All adverse events and adverse drug reactions were recorded as safety endpoints. Results: The study population was 1253 patients randomized to placebo (n 298) or pemafbrate 0.1 mg/day (n 127), 0.2 mg/day (n 584), or 0.4 mg/day (n 244). Participant mean age= was 54.3 years, 65.4 % had BMI 25 kg/ m2=, 35.8 % had type 2 diabetes,= and 42.6 % had fatty= liver. -
7-Azaindoles and Their Use As Ppar Agonists 7-Azaindole Und Ihre Verwendung Als Ppar-Agonisten 7-Azaindoles Et Leur Utilisation Comme Agonistes De Ppar
(19) TZZ___T (11) EP 1 794 159 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 471/04 (2006.01) A61K 31/437 (2006.01) 01.08.2012 Bulletin 2012/31 A61P 3/10 (2006.01) (21) Application number: 05778246.8 (86) International application number: PCT/EP2005/009269 (22) Date of filing: 27.08.2005 (87) International publication number: WO 2006/029699 (23.03.2006 Gazette 2006/12) (54) 7-AZAINDOLES AND THEIR USE AS PPAR AGONISTS 7-AZAINDOLE UND IHRE VERWENDUNG ALS PPAR-AGONISTEN 7-AZAINDOLES ET LEUR UTILISATION COMME AGONISTES DE PPAR (84) Designated Contracting States: • GLIEN, Maike AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 65195 Wiesbaden (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • SCHAEFER, Hans-Ludwig SK TR 65239 Hochheim (DE) • WENDLER, Wolfgang (30) Priority: 11.09.2004 EP 04021667 65618 Selters (DE) • BERNARDELLI, Patrick (43) Date of publication of application: F-78450 Villepreux (FR) 13.06.2007 Bulletin 2007/24 • TERRIER, Corinne F-93190 Livry Gargan (FR) (73) Proprietor: Sanofi-Aventis Deutschland GmbH • RONAN, Baptiste 65929 Frankfurt am Main (DE) F-92140 Clamart (FR) (72) Inventors: (56) References cited: • KEIL, Stefanie EP-A- 1 445 258 WO-A-2004/074284 65719 Hofheim (DE) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. -
Development of Novel Synthetic Routes to the Epoxyketooctadecanoic Acids
DEVELOPMENT OF NOVEL SYNTHETIC ROUTES TO THE EPOXYKETOOCTADECANOIC ACIDS (EKODES) AND THEIR BIOLOGICAL EVALUATION AS ACTIVATORS OF THE PPAR FAMILY OF NUCLEAR RECEPTORS By ROOZBEH ESKANDARI Submitted in partial fulfillment of the requirements for The Degree of Doctor of Philosophy Thesis Advisor: Gregory P. Tochtrop, Ph.D. Department of Chemistry CASE WESTERN RESERVE UNIVERSITY January, 2016 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of ROOZBEH ESKANDARI Candidate for the Ph.D degree *. (signed) Anthony J. Pearson, PhD (Chair of the committee) Gregory P. Tochtrop, PhD (Advisor) Michael G. Zagorski, PhD Blanton S. Tolbert, PhD Witold K. Surewicz, PhD (Department of Physiology and Biophysics) (date) 14th July, 2015 *We also certify that written approval has been obtained for any proprietary material contained therein. I dedicate this work to my sister Table of Contents Table of Contents ........................................................................................................................ i List of Tables .............................................................................................................................. vi List of Figures ........................................................................................................................... vii List of Schemes .......................................................................................................................... ix Acknowledgements .................................................................................................................. -
Cellular and Pharmacological Selectivity of the Peroxisome Proliferator-Activated Receptor-ß/Δ Antagonist GSK3787
0026-895X/10/7803-419–430 MOLECULAR PHARMACOLOGY Vol. 78, No. 3 U.S. Government work not protected by U.S. copyright 65508/3613101 Mol Pharmacol 78:419–430, 2010 Printed in U.S.A. Cellular and Pharmacological Selectivity of the Peroxisome Proliferator-Activated Receptor-/␦ Antagonist GSK3787□S Prajakta S. Palkar, Michael G. Borland, Simone Naruhn, Christina H. Ferry, Christina Lee, Ugir H. Sk, Arun K. Sharma, Shantu Amin, Iain A. Murray, Cherie R. Anderson, Gary H. Perdew, Frank J. Gonzalez, Rolf Mu¨ ller, and Jeffrey M. Peters Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, the Pennsylvania State University, University Park, Pennsylvania (P.S.P., M.G.B., C.H.F., C.L., I.A.M., C.R.A., G.H.P., J.M.P.); Institute of Molecular Biology and Tumor Research, Philipps University, Marburg, Germany (S.N., R.M.); Department of Pharmacology, Penn State Hershey Cancer Institute, the Pennsylvania State University, Milton S. Hershey Medical Center, Hershey, Pennsylvania (A.K.S., U.H.S., S.A.); and Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland (F.J. G.) Received April 9, 2010; accepted June 1, 2010 ABSTRACT The availability of high-affinity agonists for peroxisome prolifera- PPAR␣ activity. Time-resolved fluorescence resonance energy tor-activated receptor-/␦ (PPAR/␦) has led to significant ad- transfer assays confirmed the ability of GSK3787 to modulate the vances in our understanding of the functional role of PPAR/␦.In association of both PPAR/␦ and PPAR␥ coregulator peptides in this study, a new PPAR/␦ antagonist, 4-chloro-N-(2-{[5-tri- response to ligand activation, consistent with reporter assays.