Effects of Pemafibrate on Glucose Metabolism Markers and Liver

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Pemafibrate on Glucose Metabolism Markers and Liver Yokote et al. Cardiovasc Diabetol (2021) 20:96 https://doi.org/10.1186/s12933-021-01291-w Cardiovascular Diabetology ORIGINAL INVESTIGATION Open Access Efects of pemafbrate on glucose metabolism markers and liver function tests in patients with hypertriglyceridemia: a pooled analysis of six phase 2 and phase 3 randomized double‐blind placebo‐controlled clinical trials Koutaro Yokote1,2*, Shizuya Yamashita3, Hidenori Arai4, Eiichi Araki5, Mitsunori Matsushita6, Toshiaki Nojima7, Hideki Suganami7 and Shun Ishibashi8 Abstract Background: Increased risk of cardiovascular events is associated not only with dyslipidemias, but also with abnor- malities in glucose metabolism and liver function. This study uses pooled analysis to explore the in-depth efects of pemafbrate, a selective peroxisome proliferator-activated receptor α modulator (SPPARMα) already known to decrease elevated triglycerides, on glucose metabolism and liver function in patients with hypertriglyceridemia. Methods: We performed a post-hoc analysis of six phase 2 and phase 3 Japanese randomized double-blind placebo- controlled trials that examined the efects of daily pemafbrate 0.1 mg, 0.2 mg, and 0.4 mg on glucose metabolism markers and liver function tests (LFTs). Primary endpoints were changes in glucose metabolism markers and LFTs from baseline after 12 weeks of pemafbrate treatment. All adverse events and adverse drug reactions were recorded as safety endpoints. Results: The study population was 1253 patients randomized to placebo (n 298) or pemafbrate 0.1 mg/day (n 127), 0.2 mg/day (n 584), or 0.4 mg/day (n 244). Participant mean age= was 54.3 years, 65.4 % had BMI 25 kg/ m2=, 35.8 % had type 2 diabetes,= and 42.6 % had fatty= liver. Fasting glucose, fasting insulin, and HOMA-IR decreased≥ signifcantly in all pemafbrate groups compared to placebo. The greatest decrease was for pemafbrate 0.4 mg/day: least square (LS) mean change from baseline in fasting glucose 0.25 mmol/L; fasting insulin 3.31 µU/mL; HOMA-IR 1.28. ALT, γ-GT, ALP, and total bilirubin decreased signifcantly −at all pemafbrate doses vs. placebo,− with the greatest decrease− in the pemafbrate 0.4 mg/day group: LS mean change from baseline in ALT 7.6 U/L; γ-GT 37.3 U/L; ALP 84.7 U/L; and total bilirubin 2.27 µmol/L. Changes in HbA1c and AST did not difer− signifcantly from− placebo in any− pemafbrate groups in the− overall study population. The decreases from baseline in LFTs and glucose metabolism markers except for HbA1c were notable among patients with higher baseline values. FGF21 increased signifcantly *Correspondence: [email protected] 1 Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan Full list of author information is available at the end of the article © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Yokote et al. Cardiovasc Diabetol (2021) 20:96 Page 2 of 13 in all pemafbrate groups compared to placebo, with the greatest increase in the pemafbrate 0.4 mg/day group. Adverse event rates were similar in all groups including placebo. Conclusions: In patients with hypertriglyceridemia, pemafbrate can improve glucose metabolism and liver function, and increase FGF21, without increasing adverse event risk. Keywords: Pemafbrate, Glucose metabolism, Liver function, FGF21 Background To gain more insight into these efects of pemafbrate, Dyslipidemia is frequently associated with type 2 dia- we applied a post-hoc analysis to fndings from six pla- betes (T2D) and with non-alcoholic fatty liver disease cebo-controlled studies of pemafbrate in Japanese hyper- (NAFLD) [1, 2], and hypertriglyceridemia is a known triglyceridemic subjects. We focused on how pemafbrate risk factor for developing newly onset T2D and NAFLD afected glucose metabolism and LFTs in relation to [3, 4]. Cardiovascular events are common not only in baseline values, the presence of T2D and fatty liver, and patients with T2D and NAFLD [5, 6] but also even in changes in TG. We also investigated the relationships patients with milder abnormalities of laboratory tests between FGF21 and glucose metabolism or liver function such as glucose metabolism and liver function [7, 8], in those patients. suggesting that insulin resistance may contribute to increased risk of cardiovascular diseases. Tese fnd- Methods ings emphasize the importance of identifying patients Study design and setting with abnormal laboratory results in glucose metabo- We performed a post-hoc analysis on data combined lism, liver function and plasma lipids as part of ongoing from six phase 2 and phase 3 Japanese randomized eforts toward cardiovascular disease prevention. double-blind placebo-controlled studies in patients with Peroxisome proliferator-activated receptor (PPAR) hypertriglyceridemia [16–19, 29]. Te studies enrolled α agonists can reduce triglyceride (TG) and TG-rich a placebo group and pemafbrate groups (0.1 mg/day, lipoprotein cholesterol levels and improve atherogenic 0.2 mg/day, and 0.4 mg/day). Te drug was taken twice dyslipidemia [9]. Pemafbrate, also known as K-877, was daily. Te six individual studies are summarized in developed as a selective PPARα modulator (SPPARMα), Table S1 in Additional fle 1. Each study was approved which provides a favorable beneft-risk ratio supe- by the Institutional Review Board for that study site. All rior to that of other conventional PPARα agonists [10, studies were conducted in accordance with the Declara- 11]. Te high specifcity and selectivity of pemafbrate tion of Helsinki after written informed consent had been as SPPARMα are achieved by its Y-shaped molecu- obtained from each subject. Tis pooled analysis was lar structure, which allows pemafbrate to bind opti- approved by the Ethics Committee of Chiba University mally to the PPARα ligand binding domain [12, 13]. Graduate School of Medicine. After binding to the PPARα, pemafbrate up-regulates the expression of specifc genes involved in fatty acid Endpoints metabolism, primarily in human hepatocytes [14]. Te primary endpoints consisted of changes from base- Pemafbrate reduces TG by 45–51 %, while increas- line in glucose metabolism markers (fasting plasma ing high-density lipoprotein cholesterol (HDL-C) by glucose, fasting serum insulin, the homeostatic model 12–20 % [15]. Pemafbrate also decreases the value of assessment of insulin resistance [HOMA-IR], and hemo- liver function tests (LFTs) such as alanine aminotrans- globin A1c [HbA1c]) and the LFTs (ALP, aspartate ami- ferase (ALT), γ-glutamyl transferase (γ-GT), and notransferase [AST], ALT, γ-GT, and total bilirubin). alkaline phosphatase (ALP), and fasting plasma glu- HOMA-IR was calculated using the following formula: cose levels, and improves insulin sensitivity [16–23]. HOMA-IR = fasting serum insulin (µU/mL) × fasting Although pemafbrate provides uniquely favorable plasma glucose (mmol/L)/22.5. efects on the parameters of glucose metabolism and Te secondary endpoints included the changes from liver functions, few reports have addressed these issues baseline in glucose metabolism markers and LFTs as systematically. In addition, the efects of pemafbrate analyzed in subgroups of patients with high baseline lev- on glucose metabolism may be mediated by its efects els for glucose metabolism or liver function, and on the on plasma levels of fbroblast growth factor (FGF) 21, presence or absence of T2D or fatty liver. Te diagnosis a member of the FGF family that improves energy of T2D or fatty liver was made by individual clinicians metabolism and that is induced in response to fasting at each study site. Te group with high baseline values or PPARα activation [24–28]. for glucose metabolism markers consisted of patients Yokote et al. Cardiovasc Diabetol (2021) 20:96 Page 3 of 13 with baseline fasting plasma glucose ≥ 7.0 mmol/L (dia- analysis in this study. SAS ver. 9.4 was used for the betes as defned by the World Health Organization’s analyses. diagnostic criteria) or fasting serum insulin 15 µU/mL ≥ Results or HOMA-IR ≥ 2.5 (insulin resistance as defned by the Japanese Diabetes Treatment Guideline) [30]. Te group Patient characteristics with high baseline values for LFTs consisted of patients Te FAS population consisted of 1253 patients from whose LFTs values exceeded the upper normal limits the six studies, of whom 298 were randomized to pla- (AST > 40 U/L, ALT > 45 U/L, γ-GT > 80 U/L for males cebo, 127 to pemafbrate 0.1 mg/day, 584 to pemafbrate or > 30 U/L for females, respectively, ALP > 325 U/L, and 0.2 mg/day, and 244 to pemafbrate 0.4 mg/day (Addi- total bilirubin > 20.5 µmol/L [1.2 mg/dL]). Additional sec- tional fle 1: Figure S1). ondary endpoints were the proportion of patients having Te mean age was 54.3 years, 14.7 % were female, 2 high baseline LFTs that were reduced to normal levels; 65.4 % had body mass index (BMI) ≥ 25 kg/m , 35.8 % the percent changes in TG and HDL-C from baseline; the were diagnosed with T2D, and 42.6 % had fatty liver.
Recommended publications
  • Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
    CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products.
    [Show full text]
  • Pemafibrate, a Novel Selective Peroxisome Proliferator-Activated
    www.nature.com/scientificreports OPEN Pemafibrate, a novel selective peroxisome proliferator-activated receptor alpha modulator, Received: 25 July 2016 Accepted: 11 January 2017 improves the pathogenesis in Published: 14 February 2017 a rodent model of nonalcoholic steatohepatitis Yasushi Honda1, Takaomi Kessoku1, Yuji Ogawa1, Wataru Tomeno1, Kento Imajo1, Koji Fujita1, Masato Yoneda1, Toshiaki Takizawa2, Satoru Saito1, Yoji Nagashima3 & Atsushi Nakajima1 The efficacy of peroxisome proliferator-activated receptorα -agonists (e.g., fibrates) against nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) in humans is not known. Pemafibrate is a novel selective peroxisome proliferator-activated receptorα modulator that can maximize the beneficial effects and minimize the adverse effects of fibrates used currently. In a phase-2 study, pemafibrate was shown to improve liver dysfunction in patients with dyslipidaemia. In the present study, we first investigated the effect of pemafibrate on rodent models of NASH. Pemafibrate efficacy was assessed in a diet-induced rodent model of NASH compared with fenofibrate. Pemafibrate and fenofibrate improved obesity, dyslipidaemia, liver dysfunction, and the pathological condition of NASH. Pemafibrate improved insulin resistance and increased energy expenditure significantly. To investigate the effects of pemafibrate, we analysed the gene expressions and protein levels involved in lipid metabolism. We also analysed uncoupling protein 3 (UCP3) expression. Pemafibrate stimulated lipid turnover and upregulated UCP3 expression in the liver. Levels of acyl-CoA oxidase 1 and UCP3 protein were increased by pemafibrate significantly. Pemafibrate can improve the pathogenesis of NASH by modulation of lipid turnover and energy metabolism in the liver. Pemafibrate is a promising therapeutic agent for NAFLD/NASH. The incidence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide.
    [Show full text]
  • A61p1/16 (2006.01) A61p3/00 (2006.01) Km, Ml, Mr, Ne, Sn, Td, Tg)
    ( (51) International Patent Classification: TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, A61P1/16 (2006.01) A61P3/00 (2006.01) KM, ML, MR, NE, SN, TD, TG). A61K 31/192 (2006.01) C07C 321/28 (2006.01) Declarations under Rule 4.17: (21) International Application Number: — as to the applicant's entitlement to claim the priority of the PCT/IB2020/000808 earlier application (Rule 4.17(iii)) (22) International Filing Date: Published: 25 September 2020 (25.09.2020) — with international search report (Art. 21(3)) (25) Filing Language: English — before the expiration of the time limit for amending the claims and to be republished in the event of receipt of (26) Publication Language: English amendments (Rule 48.2(h)) (30) Priority Data: 62/906,288 26 September 2019 (26.09.2019) US (71) Applicant: ABIONYX PHARMA SA [FR/FR] ; 33-43 Av¬ enue Georges Pompidou, Batiment D, 31130 Bahna (FR). (72) Inventor: DASSEUX, Jean-Louis, Henri; 7 Allees Charles Malpel, Bat. B, 31300 Toulouse (FR). (74) Agent: HOFFMANN EITLE PATENT- UND RECHTSANWALTE PARTMBB, ASSOCIATION NO. 151; Arabellastrasse 30, 81925 Munich (DE). (81) Designated States (unless otherwise indicated, for every kind of national protection available) : AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.
    [Show full text]
  • Efficacy and Safety of Pemafibrate Administration in Patients With
    Ida et al. Cardiovasc Diabetol (2019) 18:38 https://doi.org/10.1186/s12933-019-0845-x Cardiovascular Diabetology ORIGINAL INVESTIGATION Open Access Efcacy and safety of pemafbrate administration in patients with dyslipidemia: a systematic review and meta-analysis Satoshi Ida*, Ryutaro Kaneko and Kazuya Murata Abstract Background: Using a meta-analysis of randomized controlled trials (RCTs), this study aimed to investigate the ef- cacy and safety of pemafbrate, a novel selective peroxisome proliferator-activated receptor α modulator, in patients with dyslipidemia. Methods: A search was performed using the MEDLINE, Cochrane Controlled Trials Registry, and ClinicalTrials.gov databases. We decided to employ RCTs to evaluate the efects of pemafbrate on lipid and glucose metabolism- related parameters in patients with dyslipidemia. For statistical analysis, standardized mean diference (SMD) or odds ratio (OR) and 95% confdence intervals (CIs) were calculated using the random efect model. Results: Our search yielded seven RCTs (with a total of 1623 patients) that satisfed the eligibility criteria of this study; hence, those studies were incorporated into this meta-analysis. The triglyceride concentration signifcantly decreased in the pemafbrate group (SMD, 1.38; 95% CI, 1.63 to 1.12; P < 0.001) than in the placebo group, with a reduc- tion efect similar to that exhibited− by fenofbrate.− Compared− with the placebo group, the pemafbrate group also showed improvements in high-density and non-high-density lipoprotein cholesterol levels as well as in homeostasis model assessment for insulin resistance. Furthermore, the pemafbrate group showed a signifcant decrease in hepa- tobiliary enzyme activity compared with the placebo and fenofbrate groups; and, total adverse events (AEs) were signifcantly lower in the pemafbrate group than in the fenofbrate group (OR, 0.60; 95% CI, 0.49–0.73; P < 0.001).
    [Show full text]
  • Pemafibrate (K-877), a Novel Selective Peroxisome Proliferator-Activated
    Fruchart Cardiovasc Diabetol (2017) 16:124 DOI 10.1186/s12933-017-0602-y Cardiovascular Diabetology REVIEW Open Access Pemafbrate (K‑877), a novel selective peroxisome proliferator‑activated receptor alpha modulator for management of atherogenic dyslipidaemia Jean‑Charles Fruchart* Abstract Despite best evidence-based treatment including statins, residual cardiovascular risk poses a major challenge for clini‑ cians in the twenty frst century. Atherogenic dyslipidaemia, in particular elevated triglycerides, a marker for increased triglyceride-rich lipoproteins and their remnants, is an important contributor to lipid-related residual risk, especially in insulin resistant conditions such as type 2 diabetes mellitus. Current therapeutic options include peroxisome proliferator-activated receptor alpha (PPARα) agonists, (fbrates), but these have low potency and limited selectivity for PPARα. Modulating the unique receptor–cofactor binding profle to identify the most potent molecules that induce PPARα-mediated benefcial efects, while at the same time avoiding unwanted side efects, ofers a new therapeutic approach and provides the rationale for development of pemafbrate (K-877, Parmodia™), a novel selective PPARα modulator (SPPARMα). In clinical trials, pemafbrate either as monotherapy or as add-on to statin therapy was efec‑ tive in managing atherogenic dyslipidaemia, with marked reduction of triglycerides, remnant cholesterol and apoli‑ poprotein CIII. Pemafbrate also increased serum fbroblast growth factor 21, implicated in metabolic homeostasis. There were no clinically meaningful adverse efects on hepatic or renal function, including no relevant serum creati‑ nine elevation. A major outcomes study, PROMINENT, will provide defnitive evaluation of the role of pemafbrate for management of residual cardiovascular risk in type 2 diabetes patients with atherogenic dyslipidaemia despite statin therapy.
    [Show full text]
  • Review J Atheroscler Thromb, 2019; 26: 389-402
    The official journal of the Japan Atherosclerosis Society and the Asian Pacific Society of Atherosclerosis and Vascular Diseases Review J Atheroscler Thromb, 2019; 26: 389-402. http://doi.org/10.5551/jat.48918 Clinical Applications of a Novel Selective PPARα Modulator, Pemafibrate, in Dyslipidemia and Metabolic Diseases Shizuya Yamashita1, 2, 3, Daisaku Masuda1 and Yuji Matsuzawa4 1Department of Cardiology, Rinku General Medical Center, Osaka, Japan 2Department of Community Medicine, Osaka University Graduate School of Medicine, Osaka, Japan 3Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan 4Sumitomo Hospital, Osaka, Japan Fasting and postprandial hypertriglyceridemia is a risk factor for atherosclerotic cardiovascular diseases (ASCVD). Fibrates have been used to treat dyslipidemia, particularly hypertriglyceridemia, and low HDL-choles- terol (HDL-C). However, conventional fibrates have low selectivity for peroxisome proliferator-activated receptor (PPAR)α. Fibrates’ clinical use causes side effects such as worsening liver function and elevating the creatinine level. Large-scale clinical trials of fibrates have shown negative results for prevention of ASCVD. To overcome these issues, the concept of the selective PPARα modulator (SPPARMα), with a superior balance of efficacy and safety, has been proposed. A SPPARMα, pemafibrate (K-877), was synthesized by Kowa Company, Ltd. for bet- ter efficacy and safety. Clinical trials conducted in Japan confirmed the superior effects of pemafibrate on triglyc- eride reduction and HDL-C elevation. Conventional fibrates showed elevated liver function test values and worsened kidney function test values, while pemafibrate demonstrated improved liver function test values and was less likely to increase serum creati- nine or decrease the estimated glomerular filtration rate.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • NLA-TG Therapies DIXON
    Therapeutic Options for Triglyceride Lowering Dave L. Dixon, PharmD, BCPS, CDE, CLS, AACC, FNLA Associate Professor and Vice-Chair of Clinical Services Department of Pharmacotherapy & Outcomes Science Disclosures • Novartis – Speaker’s Bureau • Sanofi – Received speaker honorarium Objectives • Summarize current guideline recommendations on the management of hypertriglyceridemia. • Compare and contrast the safety, efficacy, and tolerability of available lipid-lowering therapies that lower triglycerides. • Discuss emerging triglyceride-lowering therapies. AHA Scientific Statement: Triglycerides and Cardiovascular Disease Fasting Triglyceride Level (mg/dL) Recommendations 150-199 200-499 ≥500* Weight Loss Up to 5% 5-10% 5-10% Carbohydrates 50-60% 50-55% 45-50% • Added sugar <10% 5-10% <5% • Fructose <100g 50-100g <50g Protein 15% 15-20% 20% Fat 25-35% 30-35% 30-35% • Trans Avoid Avoid Avoid • Saturated <7% <5% <5% • Monounsaturated 10-20% 10-20% 10-20% • Polyunsaturated 10-20% 10-20% 10-20% • EPA/DHA 0.5-1 g 1-2g >2g Aerobic Activity At least 2 times weekly * Drug therapy to prevent pancreatitis Circulation. 2011;123:2292-2333 ACC/AHA Cholesterol Guideline • Reader directed to the 2011 AHA Scientific Statement on TG (see previous slide) • Treatment of elevated TG listed as a critical question for consideration in future guideline updates… Circulation. 2014;129[suppl 2]:S1:S45. NLA Recommendations • TG >1000 mg/dL – Primary goal: reduce pancreatitis risk – TG-lowering therapy O3FA, fibrates, or niacin • TG 500-999 mg/dL – Primary goal: reduce pancreatitis risk – Statin monotherapy “OK” if no h/o pancreatitis – O3FA, fibrates, or niacin preferred as initial therapy in patients with h/o pancreatitis J Clin Lipidol.
    [Show full text]
  • Trends in Lipid-Modifying Agent Use in 83 Countries
    medRxiv preprint doi: https://doi.org/10.1101/2021.01.10.21249523; this version posted January 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Trends in lipid-modifying agent use in 83 countries Authors (ORCID) Joseph E Blais (0000-0001-7895-198X)1; Yue Wei (NA)1; Kevin KW Yap (NA)2; Hassan Alwafi (NA)3; Tian-Tian Ma (0000-0003-1361-4055)3; Ruth Brauer (0000- 0001-8934-347X)3; Wallis CY Lau (0000-0003-2320-0470)3; Kenneth KC Man (0000- 0001-8645-1942)3; Chung Wah Siu (0000-0002-5570-983X)4; Kathryn C Tan (0000- 0001-9037-0416)5; Ian CK Wong (0000-0001-8242-0014)1,3; Li Wei (0000-0001- 8840-7267)3; Esther W Chan (0000-0002-7602-9470)1 Affiliations 1 Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China 2 Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China 3 Research Department of Practice and Policy, UCL School of Pharmacy, London, UK 4 Division of Cardiology, Department of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China 5 Department of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China Correspondence Esther W Chan, PhD Centre for Safe Medication Practice and Research Department of Pharmacology and Pharmacy NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
    [Show full text]
  • Long-Term Efficacy and Safety of Pemafibrate, a Novel Selective
    International Journal of Molecular Sciences Article Long-Term Efficacy and Safety of Pemafibrate, a Novel Selective Peroxisome Proliferator-Activated Receptor-α Modulator (SPPARMα), in Dyslipidemic Patients with Renal Impairment Koutaro Yokote 1,2,*, Shizuya Yamashita 3,4, Hidenori Arai 5, Eiichi Araki 6, Hideki Suganami 7, Shun Ishibashi 8 and on Behalf of the K-877 Study Group 1 Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba 260-8670, Japan 2 Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan 3 Department of Community Medicine and Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan; [email protected] 4 Rinku General Medical Center, Osaka 598-8577, Japan 5 National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan; [email protected] 6 Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; [email protected] 7 Clinical Data Science Department, Kowa Company, Ltd., Tokyo 103-8433, Japan; [email protected] 8 Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-43-226-2089 Received: 9 January 2019; Accepted: 3 February 2019; Published: 6 February 2019 Abstract: Pemafibrate (K-877) is a novel selective peroxisome proliferator-activated receptor-α modulator (SPPARMα) with a favorable benefit-risk balance. Previous clinical trials of pemafibrate used stringent exclusion criteria related to renal functions. Therefore, we investigated its safety and efficacy in a broader range of patients, including those with chronic kidney disease (CKD).
    [Show full text]
  • Emerging New Lipid-Lowering Therapies in the Statin Era
    Cardiometab Syndr J. 2021 Mar;1(1):66-75 https://doi.org/10.51789/cmsj.2021.1.e5 pISSN 2734-1143·eISSN 2765-3749 View Point Emerging New Lipid-Lowering Therapies in the Statin Era Albert Youngwoo Jang , MD1, Sang-Ho Jo , MD, PhD2, and Kwang Kon Koh, MD, PhD1 1Division of Cardiovascular Disease, Gachon Cardiovascular Research Institute, Gachon University Gil Hospital, Incheon, Korea 2Cardiovascular Center, Hallym University Sacred Heart Hospital, Anyang, Korea Received: Dec 18, 2020 Revised: Jan 12, 2021 ABSTRACT Accepted: Jan 17, 2021 Statins have become the backbone of lipid-lowering therapy today by dramatically improving Correspondence to cardiovascular (CV) outcomes. Despite well-controlled low-density lipoprotein cholesterol Kwang Kon Koh, MD, PhD (LDL-C) through statins, up to 40% patients still experience CV diseases. New therapeutic Cardiometabolic Syndrome Unit, Division of Cardiology, Gachon University Gil Hospital, 774 agents to target such residual cholesterol risk by lowering not only LDL-C but triglyceride beon-gil 21, Namdong-daero, Namdong-gu, (TG), TG-rich lipoproteins (TRL), or lipoprotein(a) (Lp[a]) are being newly introduced. Incheon 21565, Korea. Proprotein convertase subtilisin/kexin type 9 (PCSK9) small interference RNA (siRNA) and E-mail: [email protected] bempedoic acid therapies adding to statin therapies have shown additional improvement Copyright © 2021. Korean Society of in CV outcomes. Recent trials investigating eicosapentaenoic acid to patients with high CardioMetabolic Syndrome TG despite statin therapy have also demonstrated significant CV benefit. Antisense This is an Open Access article distributed oligonucleotide (ASO) therapies with hepatocyte-specific targeting modifications are now under the terms of the Creative Commons being newly introduced with promising lipid-lowering effects.
    [Show full text]
  • Pparα Activation Directly Upregulates Thrombomodulin in the Diabetic Retina
    www.nature.com/scientificreports OPEN PPARα activation directly upregulates thrombomodulin in the diabetic retina Akira Shiono1, Hiroki Sasaki1, Reio Sekine1, Yohei Abe2, Yoshihiro Matsumura2, Takeshi Inagaki3, Toshiya Tanaka4, Tatsuhiko Kodama4, Hiroyuki Aburatani5, Juro Sakai2,6 & Hitoshi Takagi1* Two large clinical studies showed that fenofbrate, a commonly used peroxisome proliferator- activated receptor α (PPARα) agonist, has protective efects against diabetic retinopathy. However, the underlying mechanism has not been clarifed. We performed genome-wide analyses of gene expression and PPARα binding sites in vascular endothelial cells treated with the selective PPARα modulator pemafbrate and identifed 221 target genes of PPARα including THBD, which encodes thrombomodulin (TM). ChIP-qPCR and luciferase reporter analyses showed that PPARα directly regulated THBD expression via binding to the promoter. In the rat diabetic retina, treatment with pemafbrate inhibited the expression of infammatory molecules such as VCAM-1 and MCP1, and these efects were attenuated by intravitreal injection of small interfering RNA targeted to THBD. Furthermore, pemafbrate treatment inhibited diabetes-induced vascular leukostasis and leakage through the upregulation of THBD. Our results indicate that PPARα activation inhibits infammatory and vasopermeable responses in the diabetic retina through the upregulation of TM. Diabetic retinopathy (DR) is the main cause of blindness among working-age adults, and the worldwide preva- lence is approximately 35% in patients with diabetes1. DR is characterized by the combination of increased vessel permeability and progressive vascular occlusion. However, the molecular mechanisms underlying the pathways associated with DR have not been fully elucidated. Several biochemical mechanisms have been proposed to modulate the pathogenesis of DR through efects on cellular metabolism, signaling, and growth factors 2.
    [Show full text]