Emerging New Lipid-Lowering Therapies in the Statin Era

Total Page:16

File Type:pdf, Size:1020Kb

Emerging New Lipid-Lowering Therapies in the Statin Era Cardiometab Syndr J. 2021 Mar;1(1):66-75 https://doi.org/10.51789/cmsj.2021.1.e5 pISSN 2734-1143·eISSN 2765-3749 View Point Emerging New Lipid-Lowering Therapies in the Statin Era Albert Youngwoo Jang , MD1, Sang-Ho Jo , MD, PhD2, and Kwang Kon Koh, MD, PhD1 1Division of Cardiovascular Disease, Gachon Cardiovascular Research Institute, Gachon University Gil Hospital, Incheon, Korea 2Cardiovascular Center, Hallym University Sacred Heart Hospital, Anyang, Korea Received: Dec 18, 2020 Revised: Jan 12, 2021 ABSTRACT Accepted: Jan 17, 2021 Statins have become the backbone of lipid-lowering therapy today by dramatically improving Correspondence to cardiovascular (CV) outcomes. Despite well-controlled low-density lipoprotein cholesterol Kwang Kon Koh, MD, PhD (LDL-C) through statins, up to 40% patients still experience CV diseases. New therapeutic Cardiometabolic Syndrome Unit, Division of Cardiology, Gachon University Gil Hospital, 774 agents to target such residual cholesterol risk by lowering not only LDL-C but triglyceride beon-gil 21, Namdong-daero, Namdong-gu, (TG), TG-rich lipoproteins (TRL), or lipoprotein(a) (Lp[a]) are being newly introduced. Incheon 21565, Korea. Proprotein convertase subtilisin/kexin type 9 (PCSK9) small interference RNA (siRNA) and E-mail: [email protected] bempedoic acid therapies adding to statin therapies have shown additional improvement Copyright © 2021. Korean Society of in CV outcomes. Recent trials investigating eicosapentaenoic acid to patients with high CardioMetabolic Syndrome TG despite statin therapy have also demonstrated significant CV benefit. Antisense This is an Open Access article distributed oligonucleotide (ASO) therapies with hepatocyte-specific targeting modifications are now under the terms of the Creative Commons being newly introduced with promising lipid-lowering effects. ASOs targeting TG/TRL, such Attribution Non-Commercial License (https:// as angiopoietin-like 3 or 4 (ANGPTL3 or ANGPTL4), apolipoprotein C-III (APOC3), or Lp(a) creativecommons.org/licenses/by-nc/4.0/) have effectively lowered the corresponding lipids without requiring high or frequent doses. which permits unrestricted non-commercial use, distribution, and reproduction in any Clinical outcomes from such novel therapeutics are yet to be proven. In this article, we review medium, provided the original work is properly emerging therapeutics targeting LDL-C, TG, TRL, and Lp(a) to reduce the residual risk. cited. Keywords: Dyslipidemia; Cardiovascular disease; Residual risk; Treatment ORCID iDs Albert Youngwoo Jang https://orcid.org/0000-0002-8802-268X Sang-Ho Jo INTRODUCTION https://orcid.org/0000-0002-2063-1542 Funding Many investigators have demonstrated the beneficial effects of low-density lipoprotein This work was supported by a grant from the cholesterol (LDL-C) lowering statins on reducing coronary artery disease (CAD) events Korean Society of CardioMetabolic Syndrome. in patients with or without CV disease (CVD).1,2 Despite significant improvement in CV outcomes since the advent of statins, up to 40% of statin-treated patients continue to suffer Conflict of Interest from life-threatening CV events even with adequately controlled LDL-C targets by intensive The authors have no financial conflicts of 3,4 interest. Dr. Koh holds a certificate of patent, statin treatment. The remaining CV risk in such patients is called the ‘residual risk.’ In 10-1579656 (pravastatin+valsartan). this article, we review emerging therapeutics targeting LDL-C, triglyceride (TG), TG-rich lipoproteins (TRL), and lipoprotein(a) (Lp[a]) for residual cholesterol risk reduction. Author Contributions Conceptualization: Koh KK, Jang AW; Writing - original draft: Koh KK, Jang AW; Writing - review & editing: Koh KK, Jang AW, Jo SH. https://e-cmsj.org 66 New Lipid-Lowering Therapies RESIDUAL CHOLESTEROL RISK DESPITE OF STATIN THERAPY Total cholesterol is composed of high-density lipoprotein cholesterol (HDL-C) and atherogenic lipoproteins (LDL-C and TRL cholesterol [TRL-C]), which contain apolipoprotein B100 molecule (apoB) (Figure 1). Among LDL-C, small dense LDL is characterized as cholesterol-depleted LDL particles. Lp(a) is also an atherogenic lipoprotein that contains apoB. Lp(a) consists of a covalent link between apoB-containing LDL-like particle and apolipoprotein (a) (apo[a]). Because the level of TG is significantly correlated with the amount of remnant cholesterol in TRLs, TG is a biomarker for circulating TRLs and their metabolic remnants.3,4 Recently, increased TRL-C levels were shown to be associated with increased CV risk.5,6 For these reasons, TRL-C may account, at least in part, for the residual cholesterol risk. Mendelian randomization studies demonstrated that genetic variants that mimic LDL-C- and TG- lowering therapies were associated with the same extent of reduction in atherosclerotic cardiovascular disease (ASCVD) risk as long as the per-unit decrease in apoB concentration was similar, regardless of the type of variant.2 These data strongly suggest that the risk of ASCVD is determined by the total concentration of circulating apoB particles irrespective of the lipid content they carry. Accordingly, the clinical benefit of any lipid-lowering therapy should be proportional to the absolute achieved reduction in apoB concentration regardless Artery lumen Artery wall LDL ApoB ApoB Lipolysis Trigger :LPL VLDL TRLs macrophage ApoB CE CETP TG Foam cell Production of nascent HDL Lipid exchange and formation and HDL Dysfunctional delivery of HDL inflammation→ HDL constituents atherosclerosis Endothelial junction Lipolysis :LPL ApoB TRLs Chylomicron ApoB Figure 1. The production of TRLs, remnant cholesterol which induce formation of atherosclerosis. Because TG can be degraded by most cells, but cholesterol cannot be degraded by any cell, the cholesterol content of TRLs is more likely to be the cause of atherosclerosis and cardiovascular disease rather than raised TG per se. Indeed, remnant lipoproteins like LDL can enter the arterial intima. LPL activity at the surface of remnant particles, either at the surface of vascular endothelium or within the intima, leads to liberation of free fatty acids, monoacylglycerols, and other molecules for energy use and storage. Some apoB lipoproteins in LDL and TRLs can become trapped in the artery wall and cause local injury and inflammation. High triglyceride concentrations are a marker for raised TRLs, remnant cholesterol which, upon entrance into the intima, leads to low-grade inflammation, foam cell formation, atherosclerotic plaques, and ultimately cardiovascular disease and increased mortality. apoB = apolipoprotein B100 molecule; CE = cholesterol ester; CETP = cholesteryl ester transfer protein; HDL = high-density lipoprotein; IDL = intermediate- density lipoprotein; LDL = low-density lipoprotein; LPL = lipoprotein lipase; VLDL = very low-density lipoprotein; TG = triglyceride; TRL = triglyceride rich lipoprotein.Reprinted with permission from Jang et al.19 https://e-cmsj.org https://doi.org/10.51789/cmsj.2021.1.e5 67 New Lipid-Lowering Therapies of the corresponding decrease in LDL-C or TGs. In other words, targeting TRL-C and non- HDL-C is essential in patients with CV risk factors because it can be as effective as lowering LDL-C to very low concentrations for residual CV risk reduction.3,4,7 EMERGING LDL-C-LOWERING THERAPIES PCSK9 small interference RNA The proprotein convertase subtilisin-kexin type 9 (PCSK9) small interference RNA (siRNA) decreases atherogenic lipoprotein levels, particularly LDL-C, through attenuation of LDL-C receptor degradation. Inclisiran is a newly developed drug using siRNA technology designed to inhibit PCSK9 production through neutralizing the messenger RNA of the PCSK9 gene (Table 1).8 Inclisiran is siRNAs conjugated to a triantennary N-acetylgalactosamine (GalNAc), designed to deliver the drug specifically to liver cells PCSK9 is mainly produced. Thus, a much lower amount of drug is required for liver cell-targeting therapeutics, maximizing drug efficacy and durability while reducing side effects.9 The impact of the drug is persisted for at least 180 days after initiation of treatment. This enables inclisiran to be administration every 3 or 6 months, compared with the PCSK9 mAbs injected every 2 or 4 weeks, although the LDL-C lowering effects are similar. Inclisiran successfully lowered LDL-C levels by 40 to 50% over 1.5 years in subjects with familial hypercholesterolemia (FH)10 or elevated LDL-C levels without FH.11 Adverse events were generally similar in the inclisiran and placebo groups in each trial, although injection-site adverse events were more frequent with inclisiran than with placebo; such reactions were generally mild, and none were severe or persistent. Phase 3 outcome studies are currently underway (ClinicalTrials.gov NCT03705234). Bempedoic acid Bempedoic acid also reduces LDL-C levels by attenuating ATP citrate lyase, an enzyme upstream of HMG-CoA reductase, crucial in the biosynthesis of cholesterol. The Cholesterol Lowering via Bempedoic Acid, an ACL-Inhibiting Regimen (CLEAR) Harmony trial, enrolled Table 1. A summary of clinical trials targeted on lowering LDL-C Trial name Drug and dose Sample Inclusion Duration Primary endpoint LDL-C reduction Outcome (95% CI) size (yr) (mg/dL) ORION-910 Inclisiran 284 mg SC n=482 FH patients on 1.5 1. Percent change from baseline in 58.7 58.7%* (PCSK9 siRNA) injection on day 1, maximal statin dose LDL-C at day 510 90, 270, and 450 with or without 2. Time-adjusted percent change 37.7%
Recommended publications
  • Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
    CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products.
    [Show full text]
  • N-Acetyl Galactosamine-Conjugated Antisense Drug to APOC3 Mrna, Triglycerides and Atherogenic Lipoprotein Levels
    European Heart Journal (2019) 40, 2785–2796 CLINICAL RESEARCH doi:10.1093/eurheartj/ehz209 Lipids N-acetyl galactosamine-conjugated antisense drug to APOC3 mRNA, triglycerides and atherogenic lipoprotein levels Veronica J. Alexander1, Shuting Xia1, Eunju Hurh2, Steven G. Hughes1, Louis O’Dea2, Richard S. Geary1, Joseph L. Witztum3, and Sotirios Tsimikas1,4* 1Ionis Pharmaceuticals, Inc., 2855 Gazelle Ct, Carlsbad, CA 92010, USA; 2Akcea Therapeutics, 22 Boston Wharf Road, 9th Floor, Boston, MA 02210, USA; 3Division of Endocrinology and Metabolism, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0682, USA; and 4Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, Vascular Medicine Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0682, USA Received 15 January 2019; revised 8 March 2019; editorial decision 25 March 2019; accepted 4 April 2019; online publish-ahead-of-print 24 April 2019 See page 2797 for the editorial comment on this article (doi: 10.1093/eurheartj/ehz321) Aims Elevated apolipoprotein C-III (apoC-III) levels are associated with hypertriglyceridaemia and coronary heart disease. AKCEA-APOCIII-LRx is an N-acetyl galactosamine-conjugated antisense oligonucleotide targeted to the liver that selectively inhibits apoC-III protein synthesis. ................................................................................................................................................................................................... Methods The safety, tolerability, and efficacy of AKCEA-APOCIII-LRx was assessed in a double-blind, placebo-controlled, and results dose-escalation Phase 1/2a study in healthy volunteers (ages 18–65) with triglyceride levels >_90 or >_200 mg/dL. Single-dose cohorts were treated with 10, 30, 60, 90, and 120 mg subcutaneously (sc) and multiple-dose cohorts were treated with 15 and 30 mg weekly sc for 6 weeks or 60 mg every 4 weeks sc for 3 months.
    [Show full text]
  • Pemafibrate, a Novel Selective Peroxisome Proliferator-Activated
    www.nature.com/scientificreports OPEN Pemafibrate, a novel selective peroxisome proliferator-activated receptor alpha modulator, Received: 25 July 2016 Accepted: 11 January 2017 improves the pathogenesis in Published: 14 February 2017 a rodent model of nonalcoholic steatohepatitis Yasushi Honda1, Takaomi Kessoku1, Yuji Ogawa1, Wataru Tomeno1, Kento Imajo1, Koji Fujita1, Masato Yoneda1, Toshiaki Takizawa2, Satoru Saito1, Yoji Nagashima3 & Atsushi Nakajima1 The efficacy of peroxisome proliferator-activated receptorα -agonists (e.g., fibrates) against nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) in humans is not known. Pemafibrate is a novel selective peroxisome proliferator-activated receptorα modulator that can maximize the beneficial effects and minimize the adverse effects of fibrates used currently. In a phase-2 study, pemafibrate was shown to improve liver dysfunction in patients with dyslipidaemia. In the present study, we first investigated the effect of pemafibrate on rodent models of NASH. Pemafibrate efficacy was assessed in a diet-induced rodent model of NASH compared with fenofibrate. Pemafibrate and fenofibrate improved obesity, dyslipidaemia, liver dysfunction, and the pathological condition of NASH. Pemafibrate improved insulin resistance and increased energy expenditure significantly. To investigate the effects of pemafibrate, we analysed the gene expressions and protein levels involved in lipid metabolism. We also analysed uncoupling protein 3 (UCP3) expression. Pemafibrate stimulated lipid turnover and upregulated UCP3 expression in the liver. Levels of acyl-CoA oxidase 1 and UCP3 protein were increased by pemafibrate significantly. Pemafibrate can improve the pathogenesis of NASH by modulation of lipid turnover and energy metabolism in the liver. Pemafibrate is a promising therapeutic agent for NAFLD/NASH. The incidence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide.
    [Show full text]
  • A61p1/16 (2006.01) A61p3/00 (2006.01) Km, Ml, Mr, Ne, Sn, Td, Tg)
    ( (51) International Patent Classification: TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, A61P1/16 (2006.01) A61P3/00 (2006.01) KM, ML, MR, NE, SN, TD, TG). A61K 31/192 (2006.01) C07C 321/28 (2006.01) Declarations under Rule 4.17: (21) International Application Number: — as to the applicant's entitlement to claim the priority of the PCT/IB2020/000808 earlier application (Rule 4.17(iii)) (22) International Filing Date: Published: 25 September 2020 (25.09.2020) — with international search report (Art. 21(3)) (25) Filing Language: English — before the expiration of the time limit for amending the claims and to be republished in the event of receipt of (26) Publication Language: English amendments (Rule 48.2(h)) (30) Priority Data: 62/906,288 26 September 2019 (26.09.2019) US (71) Applicant: ABIONYX PHARMA SA [FR/FR] ; 33-43 Av¬ enue Georges Pompidou, Batiment D, 31130 Bahna (FR). (72) Inventor: DASSEUX, Jean-Louis, Henri; 7 Allees Charles Malpel, Bat. B, 31300 Toulouse (FR). (74) Agent: HOFFMANN EITLE PATENT- UND RECHTSANWALTE PARTMBB, ASSOCIATION NO. 151; Arabellastrasse 30, 81925 Munich (DE). (81) Designated States (unless otherwise indicated, for every kind of national protection available) : AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.
    [Show full text]
  • Statin-Induced Myopathy: Translational Studies from Preclinical to Clinical Evidence
    International Journal of Molecular Sciences Review Statin-Induced Myopathy: Translational Studies from Preclinical to Clinical Evidence Giulia Maria Camerino 1, Nancy Tarantino 1 , Ileana Canfora 1 , Michela De Bellis 1, Olimpia Musumeci 2 and Sabata Pierno 1,* 1 Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; [email protected] (G.M.C.); [email protected] (N.T.); [email protected] (I.C.); [email protected] (M.D.B.) 2 Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; [email protected] * Correspondence: [email protected] Abstract: Statins are the most prescribed and effective drugs to treat cardiovascular diseases (CVD). Nevertheless, these drugs can be responsible for skeletal muscle toxicity which leads to reduced compliance. The discontinuation of therapy increases the incidence of CVD. Thus, it is essential to assess the risk. In fact, many studies have been performed at preclinical and clinical level to investigate pathophysiological mechanisms and clinical implications of statin myotoxicity. Conse- quently, new toxicological aspects and new biomarkers have arisen. Indeed, these drugs may affect gene transcription and ion transport and contribute to muscle function impairment. Identifying a marker of toxicity is important to prevent or to cure statin induced myopathy while assuring the right therapy for hypercholesterolemia and counteracting CVD. In this review we focused on the mechanisms of muscle damage discovered in preclinical and clinical studies and highlighted the Citation: Camerino, G.M.; Tarantino, pathological situations in which statin therapy should be avoided.
    [Show full text]
  • Effects of Pemafibrate on Glucose Metabolism Markers and Liver
    Yokote et al. Cardiovasc Diabetol (2021) 20:96 https://doi.org/10.1186/s12933-021-01291-w Cardiovascular Diabetology ORIGINAL INVESTIGATION Open Access Efects of pemafbrate on glucose metabolism markers and liver function tests in patients with hypertriglyceridemia: a pooled analysis of six phase 2 and phase 3 randomized double‐blind placebo‐controlled clinical trials Koutaro Yokote1,2*, Shizuya Yamashita3, Hidenori Arai4, Eiichi Araki5, Mitsunori Matsushita6, Toshiaki Nojima7, Hideki Suganami7 and Shun Ishibashi8 Abstract Background: Increased risk of cardiovascular events is associated not only with dyslipidemias, but also with abnor- malities in glucose metabolism and liver function. This study uses pooled analysis to explore the in-depth efects of pemafbrate, a selective peroxisome proliferator-activated receptor α modulator (SPPARMα) already known to decrease elevated triglycerides, on glucose metabolism and liver function in patients with hypertriglyceridemia. Methods: We performed a post-hoc analysis of six phase 2 and phase 3 Japanese randomized double-blind placebo- controlled trials that examined the efects of daily pemafbrate 0.1 mg, 0.2 mg, and 0.4 mg on glucose metabolism markers and liver function tests (LFTs). Primary endpoints were changes in glucose metabolism markers and LFTs from baseline after 12 weeks of pemafbrate treatment. All adverse events and adverse drug reactions were recorded as safety endpoints. Results: The study population was 1253 patients randomized to placebo (n 298) or pemafbrate 0.1 mg/day (n 127), 0.2 mg/day (n 584), or 0.4 mg/day (n 244). Participant mean age= was 54.3 years, 65.4 % had BMI 25 kg/ m2=, 35.8 % had type 2 diabetes,= and 42.6 % had fatty= liver.
    [Show full text]
  • Volanesorsen Fdaadvisory Committee Meeting Briefing Document
    VOLANESORSEN FDA ADVISORY COMMITTEE MEETING BRIEFING DOCUMENT ENDOCRINE AND METABOLIC DRUGS ADVISORY COMMITTEE MEETING DATE: 10 MAY 2018 ADVISORY COMMITTEE BRIEFING MATERIALS: AVAILABLE FOR PUBLIC RELEASE Volanesorsen (ISIS 304801) Akcea Therapeutics Endocrine and Metabolic Drugs Advisory Committee Briefing Document 10 May 2018 Meeting TABLE OF CONTENTS TABLE OF CONTENTS .................................................................................................................2 TABLE OF TABLES ......................................................................................................................6 TABLE OF FIGURES .....................................................................................................................9 LIST OF ABBREVIATIONS ........................................................................................................10 1. EXECUTIVE SUMMARY ........................................................................................11 1.1 Familial Chylomicronemia Syndrome ........................................................................12 1.1.1 Overview of the Disease and Impact of Elevated Triglyceride Levels ......................12 1.1.2 Current Treatment Options .........................................................................................14 1.2 Volanesorsen Clinical Development Program ............................................................15 1.3 Efficacy and Safety of Volanesorsen ..........................................................................15
    [Show full text]
  • News from European Society of Cardiology Aug31-Sept4
    The future of lipid-lowering drugs Vasculaire geneeskunde ‘From bench to bedside’ 11 september 2020 Hotel Theater Figi, Zeist Jan Albert Kuivenhoven Department of Pediatrics, Section Molecular Genetics University Medical Center Groningen, the Netherlands A current plethora of lipid-lowering drugs...... Registered ACL Five evidence-based drugs HMGCR to reduce LDLc* Treating homozygous familial hypercholesterolemia ∗ INCLIRISAN Treating rare monogenic disorders - lysosomal adic lipase deficiency - familial LCAT deficiency - lipoprotein lipase deficiency - familial chylomicronemia syndrome ∗ Under development NPC1L1 ABE Treating homozygous familial June, 2020 hypercholesterolemia Adapted from HegeleRA, CircRes 2019 ∗ Increasing cellular chol.efflux Phase II & III clinical trials to reduce high Lp(a), Tg, LDLc ∗ * Validated with Mendelian Randomization studies * Bempedoic acid/Ezetimibe - NDA filed Febr 2019 Lipid-lowering drugs • To reduce - LDL cholesterol - reduce atherosclerotic cardiovascular disease (ASCVD) - Triglycerides - ASCVD - severe hypertriglyceridemia - patients witn insulin resistance - Lipoprotein(a) - ASCVD • To treat rare monogenic disorders of lipid metabolism • To modulate steps in the reverse cholesterol pathway to reduce atherosclerosis Managing very severe hypercholesterolemia Extracorporeal removal of lipoproteins Nonspecific plasma exchange / plasmapheresis / specific targeted approaches to remove LDL/Lp(a). No randomized ASCVD outcome trials Block hepatic production of VLDL (precursor of LDL) Mipomersen – antisense
    [Show full text]
  • Efficacy and Safety of Pemafibrate Administration in Patients With
    Ida et al. Cardiovasc Diabetol (2019) 18:38 https://doi.org/10.1186/s12933-019-0845-x Cardiovascular Diabetology ORIGINAL INVESTIGATION Open Access Efcacy and safety of pemafbrate administration in patients with dyslipidemia: a systematic review and meta-analysis Satoshi Ida*, Ryutaro Kaneko and Kazuya Murata Abstract Background: Using a meta-analysis of randomized controlled trials (RCTs), this study aimed to investigate the ef- cacy and safety of pemafbrate, a novel selective peroxisome proliferator-activated receptor α modulator, in patients with dyslipidemia. Methods: A search was performed using the MEDLINE, Cochrane Controlled Trials Registry, and ClinicalTrials.gov databases. We decided to employ RCTs to evaluate the efects of pemafbrate on lipid and glucose metabolism- related parameters in patients with dyslipidemia. For statistical analysis, standardized mean diference (SMD) or odds ratio (OR) and 95% confdence intervals (CIs) were calculated using the random efect model. Results: Our search yielded seven RCTs (with a total of 1623 patients) that satisfed the eligibility criteria of this study; hence, those studies were incorporated into this meta-analysis. The triglyceride concentration signifcantly decreased in the pemafbrate group (SMD, 1.38; 95% CI, 1.63 to 1.12; P < 0.001) than in the placebo group, with a reduc- tion efect similar to that exhibited− by fenofbrate.− Compared− with the placebo group, the pemafbrate group also showed improvements in high-density and non-high-density lipoprotein cholesterol levels as well as in homeostasis model assessment for insulin resistance. Furthermore, the pemafbrate group showed a signifcant decrease in hepa- tobiliary enzyme activity compared with the placebo and fenofbrate groups; and, total adverse events (AEs) were signifcantly lower in the pemafbrate group than in the fenofbrate group (OR, 0.60; 95% CI, 0.49–0.73; P < 0.001).
    [Show full text]
  • Anatomical Classification Guidelines V2021 EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2021
    EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2021 Anatomical Classification Guidelines V2021 "The Anatomical Classification of Pharmaceutical Products has been developed and maintained by the European Pharmaceutical Marketing Research Association (EphMRA) and is therefore the intellectual property of this Association. EphMRA's Classification Committee prepares the guidelines for this classification system and takes care for new entries, changes and improvements in consultation with the product's manufacturer. The contents of the Anatomical Classification of Pharmaceutical Products remain the copyright to EphMRA. Permission for use need not be sought and no fee is required. We would appreciate, however, the acknowledgement of EphMRA Copyright in publications etc. Users of this classification system should keep in mind that Pharmaceutical markets can be segmented according to numerous criteria." © EphMRA 2021 Anatomical Classification Guidelines V2021 CONTENTS PAGE INTRODUCTION A ALIMENTARY TRACT AND METABOLISM 1 B BLOOD AND BLOOD FORMING ORGANS 28 C CARDIOVASCULAR SYSTEM 36 D DERMATOLOGICALS 51 G GENITO-URINARY SYSTEM AND SEX HORMONES 58 H SYSTEMIC HORMONAL PREPARATIONS (EXCLUDING SEX HORMONES) 68 J GENERAL ANTI-INFECTIVES SYSTEMIC 72 K HOSPITAL SOLUTIONS 88 L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 96 M MUSCULO-SKELETAL SYSTEM 106 N NERVOUS SYSTEM 111 P PARASITOLOGY 122 R RESPIRATORY SYSTEM 124 S SENSORY ORGANS 136 T DIAGNOSTIC AGENTS 143 V VARIOUS 145 Anatomical Classification Guidelines V2021 INTRODUCTION The Anatomical Classification was initiated in 1971 by EphMRA. It has been developed jointly by Intellus/PBIRG and EphMRA. It is a subjective method of grouping certain pharmaceutical products and does not represent any particular market, as would be the case with any other classification system.
    [Show full text]
  • Pemafibrate (K-877), a Novel Selective Peroxisome Proliferator-Activated
    Fruchart Cardiovasc Diabetol (2017) 16:124 DOI 10.1186/s12933-017-0602-y Cardiovascular Diabetology REVIEW Open Access Pemafbrate (K‑877), a novel selective peroxisome proliferator‑activated receptor alpha modulator for management of atherogenic dyslipidaemia Jean‑Charles Fruchart* Abstract Despite best evidence-based treatment including statins, residual cardiovascular risk poses a major challenge for clini‑ cians in the twenty frst century. Atherogenic dyslipidaemia, in particular elevated triglycerides, a marker for increased triglyceride-rich lipoproteins and their remnants, is an important contributor to lipid-related residual risk, especially in insulin resistant conditions such as type 2 diabetes mellitus. Current therapeutic options include peroxisome proliferator-activated receptor alpha (PPARα) agonists, (fbrates), but these have low potency and limited selectivity for PPARα. Modulating the unique receptor–cofactor binding profle to identify the most potent molecules that induce PPARα-mediated benefcial efects, while at the same time avoiding unwanted side efects, ofers a new therapeutic approach and provides the rationale for development of pemafbrate (K-877, Parmodia™), a novel selective PPARα modulator (SPPARMα). In clinical trials, pemafbrate either as monotherapy or as add-on to statin therapy was efec‑ tive in managing atherogenic dyslipidaemia, with marked reduction of triglycerides, remnant cholesterol and apoli‑ poprotein CIII. Pemafbrate also increased serum fbroblast growth factor 21, implicated in metabolic homeostasis. There were no clinically meaningful adverse efects on hepatic or renal function, including no relevant serum creati‑ nine elevation. A major outcomes study, PROMINENT, will provide defnitive evaluation of the role of pemafbrate for management of residual cardiovascular risk in type 2 diabetes patients with atherogenic dyslipidaemia despite statin therapy.
    [Show full text]
  • Review J Atheroscler Thromb, 2019; 26: 389-402
    The official journal of the Japan Atherosclerosis Society and the Asian Pacific Society of Atherosclerosis and Vascular Diseases Review J Atheroscler Thromb, 2019; 26: 389-402. http://doi.org/10.5551/jat.48918 Clinical Applications of a Novel Selective PPARα Modulator, Pemafibrate, in Dyslipidemia and Metabolic Diseases Shizuya Yamashita1, 2, 3, Daisaku Masuda1 and Yuji Matsuzawa4 1Department of Cardiology, Rinku General Medical Center, Osaka, Japan 2Department of Community Medicine, Osaka University Graduate School of Medicine, Osaka, Japan 3Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan 4Sumitomo Hospital, Osaka, Japan Fasting and postprandial hypertriglyceridemia is a risk factor for atherosclerotic cardiovascular diseases (ASCVD). Fibrates have been used to treat dyslipidemia, particularly hypertriglyceridemia, and low HDL-choles- terol (HDL-C). However, conventional fibrates have low selectivity for peroxisome proliferator-activated receptor (PPAR)α. Fibrates’ clinical use causes side effects such as worsening liver function and elevating the creatinine level. Large-scale clinical trials of fibrates have shown negative results for prevention of ASCVD. To overcome these issues, the concept of the selective PPARα modulator (SPPARMα), with a superior balance of efficacy and safety, has been proposed. A SPPARMα, pemafibrate (K-877), was synthesized by Kowa Company, Ltd. for bet- ter efficacy and safety. Clinical trials conducted in Japan confirmed the superior effects of pemafibrate on triglyc- eride reduction and HDL-C elevation. Conventional fibrates showed elevated liver function test values and worsened kidney function test values, while pemafibrate demonstrated improved liver function test values and was less likely to increase serum creati- nine or decrease the estimated glomerular filtration rate.
    [Show full text]