Volanesorsen Fdaadvisory Committee Meeting Briefing Document

Total Page:16

File Type:pdf, Size:1020Kb

Volanesorsen Fdaadvisory Committee Meeting Briefing Document VOLANESORSEN FDA ADVISORY COMMITTEE MEETING BRIEFING DOCUMENT ENDOCRINE AND METABOLIC DRUGS ADVISORY COMMITTEE MEETING DATE: 10 MAY 2018 ADVISORY COMMITTEE BRIEFING MATERIALS: AVAILABLE FOR PUBLIC RELEASE Volanesorsen (ISIS 304801) Akcea Therapeutics Endocrine and Metabolic Drugs Advisory Committee Briefing Document 10 May 2018 Meeting TABLE OF CONTENTS TABLE OF CONTENTS .................................................................................................................2 TABLE OF TABLES ......................................................................................................................6 TABLE OF FIGURES .....................................................................................................................9 LIST OF ABBREVIATIONS ........................................................................................................10 1. EXECUTIVE SUMMARY ........................................................................................11 1.1 Familial Chylomicronemia Syndrome ........................................................................12 1.1.1 Overview of the Disease and Impact of Elevated Triglyceride Levels ......................12 1.1.2 Current Treatment Options .........................................................................................14 1.2 Volanesorsen Clinical Development Program ............................................................15 1.3 Efficacy and Safety of Volanesorsen ..........................................................................15 1.3.1 Phase 3 Safety and Efficacy Pivotal Study - Study ISIS 304801-CS6 .......................16 1.3.2 Phase 3 Open-label Extension Study ISIS 304801-CS7.............................................24 1.3.3 Phase 3 Study ISIS 304801-CS16 ..............................................................................27 1.3.4 Safety of Volanesorsen Treatment ..............................................................................28 1.4 Risk Mitigation ...........................................................................................................30 1.5 Benefit and Risks Conclusions ...................................................................................31 2. BACKGROUND ON FAMILIAL CHYLOMICRONEMIA SYNDROME .............33 2.1 Overview of Familial Chylomicronemia Syndrome ...................................................33 2.2 Clinical Features of FCS .............................................................................................33 2.2.1 FCS Disease Complications .......................................................................................34 2.2.2 Platelet Variability in FCS ..........................................................................................37 2.3 FCS Unmet Medical Need ..........................................................................................37 3. PRODUCT DESCRIPTION .......................................................................................39 3.1 Proposed Indication and Dosing Regimen .................................................................39 3.2 Mechanism of Action .................................................................................................39 4. REGULATORY AND DEVELOPMENT HISTORY ...............................................41 4.1 Regulatory Milestones ................................................................................................41 4.2 Clinical Development Program ..................................................................................41 5. NONCLINICAL SUMMARY ...................................................................................47 06 April 2018 Page 2 of 144 ADVISORY COMMITTEE BRIEFING MATERIALS: AVAILABLE FOR PUBLIC RELEASE Volanesorsen (ISIS 304801) Akcea Therapeutics Endocrine and Metabolic Drugs Advisory Committee Briefing Document 10 May 2018 Meeting 6. CLINICAL PHARMACOLOGY ...............................................................................49 6.1 Pharmacokinetics ........................................................................................................49 6.1.1 Absorption, Distribution, Clearance, Metabolism, and Elimination ..........................50 6.1.2 Dose-Proportionality of Pharmacokinetics .................................................................50 6.1.3 Effect of Intrinsic Factors on Pharmacokinetics .........................................................50 6.1.4 Effect of Extrinsic Factors on Pharmacokinetics ........................................................52 6.2 Anti-Drug Antibodies .................................................................................................52 6.3 Pharmacodynamics .....................................................................................................52 6.3.1 Concentration-Effect Relationships ............................................................................52 6.3.2 Pharmacodynamic Drug-Drug Interactions ................................................................53 7. OVERVIEW OF THE PIVOTAL AND SUPPORTIVE STUDIES ..........................54 7.1 Key Design Features of the Pivotal Phase 3 Study ISIS 304801-CS6 .......................54 7.1.1 Overview .....................................................................................................................54 7.1.2 Key Inclusion/Exclusion Criteria ...............................................................................56 7.1.3 Endpoints, Analysis Sets, and Statistical Methods .....................................................57 7.1.4 Discussion of Key Design Features ............................................................................60 7.2 Key Design Features of Study ISIS 304801-CS7 .......................................................60 7.3 Key Design Features of Study ISIS 304801-CS16 .....................................................61 8. CLINICAL EFFICACY .............................................................................................62 8.1 Phase 2 Study ISIS 304801-CS2 ................................................................................63 8.2 Phase 3 Safety and Efficacy Pivotal Study - Study ISIS 304801-CS6 .......................64 8.2.1 Study Enrollment and Disposition ..............................................................................64 8.2.2 Discontinuations .........................................................................................................65 8.2.3 Dose Frequency Changes/Dose Pauses ......................................................................66 8.2.4 Medication Exposure and Treatment Duration ...........................................................67 8.2.5 Demographics and Baseline Disease Characteristics .................................................67 8.2.6 Primary Endpoint – Percent Change in Fasting Triglycerides from Baseline to Month 3...................................................................................................................69 8.2.7 Secondary Endpoints ..................................................................................................70 8.2.8 Exploratory Endpoints: Remaining Secondary Endpoints .........................................72 8.2.9 Exploratory Endpoints: Post-hoc Analyses ................................................................76 06 April 2018 Page 3 of 144 ADVISORY COMMITTEE BRIEFING MATERIALS: AVAILABLE FOR PUBLIC RELEASE Volanesorsen (ISIS 304801) Akcea Therapeutics Endocrine and Metabolic Drugs Advisory Committee Briefing Document 10 May 2018 Meeting 8.2.10 Efficacy Following Dose Adjustments .......................................................................82 8.2.11 Comparison of Results in Subpopulations ..................................................................84 8.3 Phase 3 Open-label Extension Study ISIS 304801-CS7.............................................85 8.3.1 Study Enrollment and Disposition ..............................................................................85 8.3.2 Dose Adjustments and Dose Pauses ...........................................................................86 8.3.3 Demographics and Baseline Characteristics ...............................................................86 8.3.4 Efficacy Results ..........................................................................................................86 8.4 Study ISIS 304801-CS16 ............................................................................................88 8.4.1 Study Enrollment and Disposition ..............................................................................88 8.4.2 Demographics and Baseline Disease Characteristics .................................................88 8.4.3 Efficacy Results ..........................................................................................................88 8.4.4 Effect on Triglycerides ...............................................................................................88 8.4.5 Acute Pancreatitis .......................................................................................................90 8.5 Quality of Life – ReFOCUS .......................................................................................90 9. SAFETY .....................................................................................................................92 9.1 Safety Monitoring in Clinical Studies ........................................................................92 9.2 Treatment
Recommended publications
  • A Novel Therapeutic Drug for the Treatment of Familial Hypercholesterolemia, Hyperlipidaemia, and Hypercholesterolemia
    International Journal of Pharmacy and Pharmaceutical Sciences ISSN- 0975-1491 Vol 8, Issue 3, 2016 Review Article MIPOMERSEN: A NOVEL THERAPEUTIC DRUG FOR THE TREATMENT OF FAMILIAL HYPERCHOLESTEROLEMIA, HYPERLIPIDAEMIA, AND HYPERCHOLESTEROLEMIA AJAY KUMAR1, ARUN ACHARYA2, DINOBANDHU NANDI3, NEHA SHARMA4, EKTA CHITKARA1* 1Department of Paramedical Sciences, Lovely Professional University, Phagwara-144411, Punjab (India) Email: [email protected] Received: 25 Dec 2015 Revised and Accepted: 13 Jan 2016 ABSTRACT Familial Hypercholesterolemia (FH) is one of the most common autosomal dominant disorders which exist in either heterozygous form or a homozygous form. These two forms are prevalent in 1 in 500 and 1 in a million population respectively. FH results in premature atherosclerosis; as early as childhood in case of homozygous (HoFH) form and in adults in case of heterozygous (HeFH) form. In case of HoFH both the alleles for LDL- receptor are defective, whereas the mutation in the single allele is the cause for HeFH. Both the forms of the disease are associated with high levels of LDL-C and lipoprotein (a) in plasma, with high morbidity and mortality rate caused by cardiovascular disease. In several past years, different lipid-lowering drugs like Statins (HMG-coenzyme-A reductase inhibitor), MTTP inhibitor, CETP inhibitors, PCSK9 inhibitor, thyroid mimetics, niacin, bile acid sequestrants and lipid apheresis were administered to patients with FH, to achieve the goal of reducing plasma LDL-C and lipoprotein (a). However, such drugs proved inefficient to achieve the goals because of several reasons. Mipomersen is a 20 nucleotide antisense oligonucleotide; a novel lipid-lowering therapeutic drug currently enrolled in the treatment of patients with HoFH, HeFH and other forms of hypercholesterolemia.
    [Show full text]
  • Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
    CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products.
    [Show full text]
  • N-Acetyl Galactosamine-Conjugated Antisense Drug to APOC3 Mrna, Triglycerides and Atherogenic Lipoprotein Levels
    European Heart Journal (2019) 40, 2785–2796 CLINICAL RESEARCH doi:10.1093/eurheartj/ehz209 Lipids N-acetyl galactosamine-conjugated antisense drug to APOC3 mRNA, triglycerides and atherogenic lipoprotein levels Veronica J. Alexander1, Shuting Xia1, Eunju Hurh2, Steven G. Hughes1, Louis O’Dea2, Richard S. Geary1, Joseph L. Witztum3, and Sotirios Tsimikas1,4* 1Ionis Pharmaceuticals, Inc., 2855 Gazelle Ct, Carlsbad, CA 92010, USA; 2Akcea Therapeutics, 22 Boston Wharf Road, 9th Floor, Boston, MA 02210, USA; 3Division of Endocrinology and Metabolism, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0682, USA; and 4Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, Vascular Medicine Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0682, USA Received 15 January 2019; revised 8 March 2019; editorial decision 25 March 2019; accepted 4 April 2019; online publish-ahead-of-print 24 April 2019 See page 2797 for the editorial comment on this article (doi: 10.1093/eurheartj/ehz321) Aims Elevated apolipoprotein C-III (apoC-III) levels are associated with hypertriglyceridaemia and coronary heart disease. AKCEA-APOCIII-LRx is an N-acetyl galactosamine-conjugated antisense oligonucleotide targeted to the liver that selectively inhibits apoC-III protein synthesis. ................................................................................................................................................................................................... Methods The safety, tolerability, and efficacy of AKCEA-APOCIII-LRx was assessed in a double-blind, placebo-controlled, and results dose-escalation Phase 1/2a study in healthy volunteers (ages 18–65) with triglyceride levels >_90 or >_200 mg/dL. Single-dose cohorts were treated with 10, 30, 60, 90, and 120 mg subcutaneously (sc) and multiple-dose cohorts were treated with 15 and 30 mg weekly sc for 6 weeks or 60 mg every 4 weeks sc for 3 months.
    [Show full text]
  • Statin-Induced Myopathy: Translational Studies from Preclinical to Clinical Evidence
    International Journal of Molecular Sciences Review Statin-Induced Myopathy: Translational Studies from Preclinical to Clinical Evidence Giulia Maria Camerino 1, Nancy Tarantino 1 , Ileana Canfora 1 , Michela De Bellis 1, Olimpia Musumeci 2 and Sabata Pierno 1,* 1 Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; [email protected] (G.M.C.); [email protected] (N.T.); [email protected] (I.C.); [email protected] (M.D.B.) 2 Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; [email protected] * Correspondence: [email protected] Abstract: Statins are the most prescribed and effective drugs to treat cardiovascular diseases (CVD). Nevertheless, these drugs can be responsible for skeletal muscle toxicity which leads to reduced compliance. The discontinuation of therapy increases the incidence of CVD. Thus, it is essential to assess the risk. In fact, many studies have been performed at preclinical and clinical level to investigate pathophysiological mechanisms and clinical implications of statin myotoxicity. Conse- quently, new toxicological aspects and new biomarkers have arisen. Indeed, these drugs may affect gene transcription and ion transport and contribute to muscle function impairment. Identifying a marker of toxicity is important to prevent or to cure statin induced myopathy while assuring the right therapy for hypercholesterolemia and counteracting CVD. In this review we focused on the mechanisms of muscle damage discovered in preclinical and clinical studies and highlighted the Citation: Camerino, G.M.; Tarantino, pathological situations in which statin therapy should be avoided.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Annexes of the Annual Report 2011
    1 June 2012 EMA/363033/2012 Office of the Executive Director Annexes of the annual report 2011 The main body of this report is available on the website of the European Medicines Agency (EMA) here. 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7418 8416 E-mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2012. Reproduction is authorised provided the source is acknowledged. Table of contents Annex 1 – Members of the Management Board ................................................... 3 Annex 2 – Members of the Committee for Medicinal Products for Human Use ......... 5 Annex 3 – Members of the Committee for Medicinal Products for Veterinary Use .... 9 Annex 4 – Members of the Committee for Orphan Medicinal Products.................. 11 Annex 5 – Members of the Committee on Herbal Medicinal Products ................... 13 Annex 6 – Members of the Paediatric Committee .............................................. 16 Annex 7 – Members of the Committee for Advanced Therapies ........................... 18 Annex 8 – National competent authority partners ............................................. 20 Annex 9 – Budget summaries 2010–2011........................................................ 31 Annex 10 – Establishment plan ...................................................................... 32 Annex 11 – CHMP opinions in 2011 on medicinal products for human use ............ 33 Annex 12 – CVMP opinions in 2011
    [Show full text]
  • News from European Society of Cardiology Aug31-Sept4
    The future of lipid-lowering drugs Vasculaire geneeskunde ‘From bench to bedside’ 11 september 2020 Hotel Theater Figi, Zeist Jan Albert Kuivenhoven Department of Pediatrics, Section Molecular Genetics University Medical Center Groningen, the Netherlands A current plethora of lipid-lowering drugs...... Registered ACL Five evidence-based drugs HMGCR to reduce LDLc* Treating homozygous familial hypercholesterolemia ∗ INCLIRISAN Treating rare monogenic disorders - lysosomal adic lipase deficiency - familial LCAT deficiency - lipoprotein lipase deficiency - familial chylomicronemia syndrome ∗ Under development NPC1L1 ABE Treating homozygous familial June, 2020 hypercholesterolemia Adapted from HegeleRA, CircRes 2019 ∗ Increasing cellular chol.efflux Phase II & III clinical trials to reduce high Lp(a), Tg, LDLc ∗ * Validated with Mendelian Randomization studies * Bempedoic acid/Ezetimibe - NDA filed Febr 2019 Lipid-lowering drugs • To reduce - LDL cholesterol - reduce atherosclerotic cardiovascular disease (ASCVD) - Triglycerides - ASCVD - severe hypertriglyceridemia - patients witn insulin resistance - Lipoprotein(a) - ASCVD • To treat rare monogenic disorders of lipid metabolism • To modulate steps in the reverse cholesterol pathway to reduce atherosclerosis Managing very severe hypercholesterolemia Extracorporeal removal of lipoproteins Nonspecific plasma exchange / plasmapheresis / specific targeted approaches to remove LDL/Lp(a). No randomized ASCVD outcome trials Block hepatic production of VLDL (precursor of LDL) Mipomersen – antisense
    [Show full text]
  • Mipomersen (KYNAMRO®) Monograph
    Mipomersen (KYNAMRO®) Monograph Mipomersen (KYNAMRO®) National Drug Monograph May 2015 VA Pharmacy Benefits Management Services, Medical Advisory Panel, and VISN Pharmacist Executives The purpose of VA PBM Services drug monographs is to provide a focused drug review for making formulary decisions. Updates will be made when new clinical data warrant additional formulary discussion. Documents will be placed in the Archive section when the information is deemed to be no longer current. FDA Approval Information1 Description/Mechanism of Mipomersen (KYNAMRO) is the first-in-class antisense oligonucleotide Action (ASO) inhibitor directed at inhibiting the production of human apolipoprotein B-100 (ApoB). Apoliprotein B is the major structural lipoprotein of very low- density lipoprotein cholesterol (VLDL-C). Reduced availability of ApoB results in reduced production of VLDL in the liver and therefore less VLDL is released into the circulation. Reduced VLDL results in lower levels of low-density lipoprotein cholesterol (LDL-C) and other lipoproteins. Additionally, VLDL transports triglycerides (TGs) from the liver into the circulation. Therefore, lower levels of VLDL results in accumulation of TGs in the liver. Indication(s) Under Review in Mipomersen is approved as an adjunct to lipid-lowering medications and diet to this document (may include reduce LDL-C, ApoB, total cholesterol (TC) and non-high density lipoprotein off label) cholesterol (HDL-C) in patients with homozygous familial hypercholesterolemia (HoFH). The safety and effectiveness of mipomersen has not been established in patients with hypercholesterolemia who do not have HoFH. The safety and effectiveness of mipomersen as an adjunct to LDL apheresis is unknown; and therefore the treatment combination is not recommended.
    [Show full text]
  • Anatomical Classification Guidelines V2021 EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2021
    EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2021 Anatomical Classification Guidelines V2021 "The Anatomical Classification of Pharmaceutical Products has been developed and maintained by the European Pharmaceutical Marketing Research Association (EphMRA) and is therefore the intellectual property of this Association. EphMRA's Classification Committee prepares the guidelines for this classification system and takes care for new entries, changes and improvements in consultation with the product's manufacturer. The contents of the Anatomical Classification of Pharmaceutical Products remain the copyright to EphMRA. Permission for use need not be sought and no fee is required. We would appreciate, however, the acknowledgement of EphMRA Copyright in publications etc. Users of this classification system should keep in mind that Pharmaceutical markets can be segmented according to numerous criteria." © EphMRA 2021 Anatomical Classification Guidelines V2021 CONTENTS PAGE INTRODUCTION A ALIMENTARY TRACT AND METABOLISM 1 B BLOOD AND BLOOD FORMING ORGANS 28 C CARDIOVASCULAR SYSTEM 36 D DERMATOLOGICALS 51 G GENITO-URINARY SYSTEM AND SEX HORMONES 58 H SYSTEMIC HORMONAL PREPARATIONS (EXCLUDING SEX HORMONES) 68 J GENERAL ANTI-INFECTIVES SYSTEMIC 72 K HOSPITAL SOLUTIONS 88 L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 96 M MUSCULO-SKELETAL SYSTEM 106 N NERVOUS SYSTEM 111 P PARASITOLOGY 122 R RESPIRATORY SYSTEM 124 S SENSORY ORGANS 136 T DIAGNOSTIC AGENTS 143 V VARIOUS 145 Anatomical Classification Guidelines V2021 INTRODUCTION The Anatomical Classification was initiated in 1971 by EphMRA. It has been developed jointly by Intellus/PBIRG and EphMRA. It is a subjective method of grouping certain pharmaceutical products and does not represent any particular market, as would be the case with any other classification system.
    [Show full text]
  • Mipomersen Sodium Manufacturer1: Genzyme Corp. Drug Class1,2
    Brand Name: Kynamro ® Generic Name: Mipomersen Sodium Manufacturer1: Genzyme Corp. Drug Class1,2: Apo B Synthesis Inhibitor1,2 Uses: Labeled Uses1,2,3,4,: Homozygous familial hypercholesterolemia Unlabeled Uses4: Coronary arteriosclerosis; heterozygous familial hypercholesterolemia Mechanism of Action:1,2,3,4, Mipomersen sodium is an oligonucleotide inhibitor of apo B-100 synthesis, inhibiting synthesis of apo B by sequence-specific binding to its messenger ribonucleic acid (mRNA) through enzyme-mediated pathways or disruption of mRNA function through binding alone. Its binding to apo B mRNA as a complement in the coding region of the apo B-100 mRNA allows hybridization of mipomersen to the cognate mRNA and RNase H- mediated degradation of the cognate mRNA with inhibition of translation of the apo B-100 protein resulting in decreased LDL and VLDL levels Pharmacokinetics1,2,3,4: Absorption: Tmax 3-4 hours Vd Not reported t ½ 1-2 months Clearance Not reported Protein binding >90% Bioavailability 54-78% Metabolism: Mipomersen is metabolized in tissues by endonucleases to form shorter oligonucleotides that are then substrates for additional metabolism by exonucleases. Mipomersen is not a substrate for cytochrome P450 metabolism. Elimination: The elimination of mipomersen involves metabolism in tissues and excretion primarily in the urine. Both mipomersen and putative shorter oligonucleotide metabolites were identified in human urine. Urinary recovery was limited in humans with less than 4% within the 24 hours postdose. Efficacy: McGowan MP, Tardif JC, Ceska R, Burgess LJ, Soran H, Gouni-Berthold I, Wagener G, Chasan-Taber S. Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy.
    [Show full text]
  • Treatment Strategy for Dyslipidemia in Cardiovascular Disease Prevention: Focus on Old and New Drugs
    pharmacy Article Treatment Strategy for Dyslipidemia in Cardiovascular Disease Prevention: Focus on Old and New Drugs Donatella Zodda 1,*, Rosario Giammona 2 and Silvia Schifilliti 2 1 Drug Department of Local Health Unit (ASP), Viale Giostra, 98168 Messina, Italy 2 Clinical Pharmacy Fellowship, University of Messina, Viale Annunziata, 98168 Messina, Italy; [email protected] (R.G.); silvia.schifi[email protected] (S.S.) * Correspondence: [email protected]; Tel.: +39-090-3653902 Received: 12 November 2017; Accepted: 11 January 2018; Published: 21 January 2018 Abstract: Prevention and treatment of dyslipidemia should be considered as an integral part of individual cardiovascular prevention interventions, which should be addressed primarily to those at higher risk who benefit most. To date, statins remain the first-choice therapy, as they have been shown to reduce the risk of major vascular events by lowering low-density lipoprotein cholesterol (LDL-C). However, due to adherence to statin therapy or statin resistance, many patients do not reach LDL-C target levels. Ezetimibe, fibrates, and nicotinic acid represent the second-choice drugs to be used in combination with statins if lipid targets cannot be reached. In addition, anti-PCSK9 drugs (evolocumab and alirocumab) provide an effective solution for patients with familial hypercholesterolemia (FH) and statin intolerance at very high cardiovascular risk. Recently, studies demonstrated the effects of two novel lipid-lowering agents (lomitapide and mipomersen) for the management of homozygous FH by decreasing LDL-C values and reducing cardiovascular events. However, the costs for these new therapies made the cost–effectiveness debate more complicated. Keywords: lipid lowering therapy; dyslipidemia; statins; fibrate; PCSK9 inhibitors; lomitapide 1.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]