The Effect of Antidiabetic Medications on Non-Alcoholic Fatty Liver Disease
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Rosiglitazone-Associated Fractures in Type 2 Diabetes an Analysis from a Diabetes Outcome Progression Trial (ADOPT)
Clinical Care/Education/Nutrition/Psychosocial Research ORIGINAL ARTICLE Rosiglitazone-Associated Fractures in Type 2 Diabetes An analysis from A Diabetes Outcome Progression Trial (ADOPT) 1 7 STEVEN E. KAHN, MB, CHB DAHONG YU, PHD preclinical data and better understand the 2 7 BERNARD ZINMAN, MD MARK A. HEISE, PHD clinical implications of and possible interven- 3 7 JOHN M. LACHIN, SCD R. PAUL AFTRING, MD, PHD tions for these findings. 4 8 STEVEN M. HAFFNER, MD GIANCARLO VIBERTI, MD 5 WILLIAM H. HERMAN, MD FOR THE ADIABETES OUTCOME Diabetes Care 31:845–851, 2008 6 RURY R. HOLMAN, MD PROGRESSION TRIAL (ADOPT) STUDY 7 BARBARA G. KRAVITZ, MS GROUP* ype 2 diabetes is associated with an increased risk of fractures, with the risk increasing with longer duration OBJECTIVE — The purpose of this study was to examine possible factors associated with the T increased risk of fractures observed with rosiglitazone in A Diabetes Outcome Progression Trial of disease (1,2). These fractures affect pre- (ADOPT). dominantly the hip, arm, and foot (1–5) and occur despite the fact that bone min- RESEARCH DESIGN AND METHODS — Data from the 1,840 women and 2,511 men eral density is either normal or even in- randomly assigned in ADOPT to rosiglitazone, metformin, or glyburide for a median of 4.0 years creased in patients with type 2 diabetes were examined with respect to time to first fracture, rates of occurrence, and sites of fractures. compared with those who are not hyper- glycemic (5–7). Although the reason for RESULTS — In men, fracture rates did not differ between treatment groups. -
The Antidiabetic Drug Lobeglitazone Has the Potential to Inhibit PTP1B T Activity ⁎ Ruth F
Bioorganic Chemistry 100 (2020) 103927 Contents lists available at ScienceDirect Bioorganic Chemistry journal homepage: www.elsevier.com/locate/bioorg The antidiabetic drug lobeglitazone has the potential to inhibit PTP1B T activity ⁎ Ruth F. Rochaa, Tiago Rodriguesc, Angela C.O. Menegattia,b, , Gonçalo J.L. Bernardesc,d, Hernán Terenzia a Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC, Brazil b Universidade Federal do Piauí, CPCE, 64900-000 Bom Jesus, PI, Brazil c Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal d Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK ARTICLE INFO ABSTRACT Keywords: Protein tyrosine phosphatase 1B (PTP1B) is considered a potential therapeutic target for the treatment of type 2 Thiazolidinediones diabetes mellitus (T2DM), since this enzyme plays a significant role to down-regulate insulin and leptin sig- Lobeglitazone nalling and its over expression has been implicated in the development of insulin resistance, T2DM and obesity. PPAR-γ Some thiazolidinediones (TZD) derivatives have been reported as promising PTP1B inhibitors with anti hy- PTP1B perglycemic effects. Recently, lobeglitazone, a new TZD, was described as an antidiabetic drug that targetsthe Non-competitive inhibitors PPAR-γ (peroxisome γ proliferator-activated receptor) pathway, but no information on its effects on PTP1B have been reported to date. We investigated the effects of lobeglitazone on PTP1B activity in vitro. Surprisingly, lobeglitazone led to moderate inhibition on PTP1B (IC50 42.8 ± 3.8 µM) activity and to a non-competitive reversible mechanism of action. -
Diabetes Mellitus: Patterns of Pharmaceutical Use in Manitoba
Diabetes Mellitus: Patterns of Pharmaceutical Use in Manitoba by Kim¡ T. G. Guilbert A Thesis submitted to The Faculty of Graduate Studies in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Faculty of Pharmacy The University of Manitoba Winnipeg, Manitoba @ Kimi T.G. Guilbert, March 2005 TIIE UMYERSITY OF MANITOBA F'ACULTY OF GRADUATE STTJDIES +g+ù+ COPYRIGIIT PERMISSION PAGE Diabetes Mellitus: Patterns of Pharmaceutical Use in Manitoba BY Kimi T.G. Guilbert A ThesisÆracticum submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE KIMI T.G. GTIILBERT O2()O5 Permission has been granted to the Library of The University of Manitoba to lend or sell copies of this thesis/practicum, to the National Library of Canada to microfïlm this thesis and to lend or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this thesis/practicum. The author reserves other publication rights, and neither this thesis/practicum nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission. Acknowledgements Upon initiation of this project I had a clear objective in mind--to learn more. As with many endeavors in life that are worthwhile, the path I have followed has brought me many places I did not anticipate at the beginning of my journey. ln reaching the end, it is without a doubt that I did learn more, and the knowledge I have been able to take with me includes a wider spectrum than the topic of population health and medication utilization. -
Identification of a Novel Selective Agonist of Pparc with No Promotion
OPEN Identification of a novel selective agonist c SUBJECT AREAS: of PPAR with no promotion of DRUG DISCOVERY ENDOCRINE SYSTEM AND adipogenesis and less inhibition of METABOLIC DISEASES osteoblastogenesis Received 28 October 2014 Chang Liu, Tingting Feng, Ningyu Zhu, Peng Liu, Xiaowan Han, Minghua Chen, Xiao Wang, Ni Li, Yongzhen Li, Yanni Xu & Shuyi Si Accepted 5 March 2015 Published Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China. 1 April 2015 Nuclear receptor peroxisome proliferator-activated receptor c (PPARc) plays an important role in the regulation of glucose homeostasis and lipid metabolism. However, current PPARc-targeting drugs such as Correspondence and thiazolidinediones (TZDs) are associated with undesirable side effects. We identified a small molecular requests for materials compound, F12016, as a selective PPARc agonist by virtual screening, which showed moderate PPARc should be addressed to agonistic activity and binding ability for PPARc. F12016 did not activate other PPAR subtypes at 30 mM and S.S. (sisyimb@hotmail. selectively modulated PPARc target gene expression. In diabetic KKAy mice, F12016 had insulin-sensitizing com) or Y.X. and glucose-lowering properties, and suppressed weight gain. In vitro, F12016 effectively increased glucose c (xuyanniwendeng@ uptake and blocked cyclin-dependent kinase 5-mediated phosphorylation of PPAR at Ser273, but slightly triggered adipogenesis and less inhibited osteoblastogenesis than rosiglitazone. Moreover, compared with hotmail.com) the full agonist rosiglitazone, F12016 had a distinct group of coregulators and a different predicted binding mode for the PPARc ligand-binding domain. A site mutation assay confirmed the key epitopes, especially Tyr473 in AF-2. -
Dualism of Peroxisome Proliferator-Activated Receptor Α/Γ: a Potent Clincher in Insulin Resistance
AEGAEUM JOURNAL ISSN NO: 0776-3808 Dualism of Peroxisome Proliferator-Activated Receptor α/γ: A Potent Clincher in Insulin Resistance Mr. Ravikumar R. Thakar1 and Dr. Nilesh J. Patel1* 1Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Gujarat, India. [email protected] Abstract: Diabetes mellitus is clinical syndrome which is signalised by augmenting level of sugar in blood stream, which produced through lacking of insulin level and defective insulin activity or both. As per worldwide epidemiology data suggested that the numbers of people with T2DM living in developing countries is increasing with 80% of people with T2DM. Peroxisome proliferator-activated receptors are a family of ligand-activated transcription factors; modulate the expression of many genes. PPARs have three isoforms namely PPARα, PPARβ/δ and PPARγ that play a central role in regulating glucose, lipid and cholesterol metabolism where imbalance can lead to obesity, T2DM and CV ailments. It have pathogenic role in diabetes. PPARα is regulates the metabolism of lipids, carbohydrates, and amino acids, activated by ligands such as polyunsaturated fatty acids, and drugs used as Lipid lowering agents. PPAR β/δ could envision as a therapeutic option for the correction of diabetes and a variety of inflammatory conditions. PPARγ is well categorized, an element of the PPARs, also pharmacological effective as an insulin resistance lowering agents, are used as a remedy for insulin resistance integrated with type- 2 diabetes mellitus. There are mechanistic role of PPARα, PPARβ/δ and PPARγ in diabetes mellitus and insulin resistance. From mechanistic way, it revealed that dual PPAR-α/γ agonist play important role in regulating both lipids as well as glycemic levels with essential safety issues. -
Corporate Presentation June 2019 Disclaimer
Corporate Presentation June 2019 Disclaimer Some of the statements contained in this presentation constitute forward-looking statements. Statements that are not historical facts are forward-looking statements. Forward-looking statements generally can be identified by the use of forward-looking terminology such as “may”, “will”, “expect”, “intend”, “estimate”, “anticipate”, “believe”, “continue” or similar terminology. These statements are based on the Company’s current strategy, plans, objectives, assumptions, estimates and projections. Investors should therefore not place undue reliance on those statements. The Company makes no representation, warranty or prediction that the results anticipated by such forward- looking statements will be achieved, and such forward-looking statements represent, in each case, only one of many possible scenarios and should not be viewed as the most likely or standard scenario. Forward-looking statements speak only as of the date that they are made and the Company does not undertake to update any forward-looking statements in light of new information or future events. Forward-looking statements involve inherent risks and uncertainties. The Company cautions that a number of important factors could cause actual results to differ materially from those contained in any forward-looking statement. 2 Well Diversified Mid-to-Late Stage Metabolic Pipeline for Large Market Opportunities Global partnerships secured for late stage clinical program in type 2 diabetes • Imeglimin: First in class oral drug candidate targeting -
CDR Clinical Review Report for Soliqua
CADTH COMMON DRUG REVIEW Clinical Review Report Insulin glargine and lixisenatide injection (Soliqua) (Sanofi-Aventis) Indication: adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus inadequately controlled on basal insulin (less than 60 units daily) alone or in combination with metformin. Service Line: CADTH Common Drug Review Version: Final (with redactions) Publication Date: January 2019 Report Length: 118 Pages Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services. While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up-to-date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect. CADTH does not guarantee and is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in any third-party materials used in preparing this document. -
Lobeglitazone
2013 International Conference on Diabetes and Metabolism Lobeglitazone, A Novel PPAR-γ agonist with balanced efficacy and safety Kim, Sin Gon. MD, PhD. Professor, Division of Endocrinology and Metabolism Department of Internal Medicine, Korea University College of Medicine. Disclosure of Financial Relationships This symposium is sponsored by Chong Kun Dang Pharmaceutical Corp. I have received lecture and consultation fees from Chong Kun Dang. Pros & Cons of PPAR-γ agonist Pros Cons • Good glucose lowering • Adverse effects • Durability (ADOPT) (edema, weight gain, • Insulin sensitizing CHF, fracture or rare effects (especially in MS, macular edema etc) NAFLD, PCOS etc) • Possible safety issues • Prevention of new- (risk of MI? – Rosi or onset diabetes (DREAM, bladder cancer? - Pio) ACT-NOW) • LessSo, hypoglycemiathere is a need to develop PPAR-γ • Few GI troubles agonist• Outcome with data balanced efficacy and safety (PROactive) Insulin Sensitizers : Several Issues Rosi, Peak sale ($3.3 billion) DREAM Dr. Nissen Dr. Nissen ADOPT META analysis BARI-2D (5,8) Rosi, lipid profiles RECORD 1994 1997 1999 2000 2002 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Tro out d/t FDA, All diabetes hepatotoxicity drug CV safety Rosi (5) FDA, Black box Rosi, Rosi , CV safety warning - REMS in USA = no evidence - Europe out Pio (7) PIO, bladder cancer CKD 501 Lobeglitazone 2000.6-2004.6 2004.11-2007.1 2007.3-2008.10 2009.11-2011.04 Discovery& Preclinical study Phase I Phase II Phase III Developmental Strategy Efficacy • PPAR activity Discovery & Preclinical study • In vitro & vivo efficacy • Potent efficacy 2000.06 - 2004.06 Phase I 2004.11 - 2007.01 • In vitro screening • Repeated dose toxicity • Metabolites • Geno toxicity • Phase II CYP 450 • Reproductive toxicity 2007.03 - 2008.10 • DDI • Carcinogenic toxicity ADME Phase III Safety 2009.11 - 2011.04 CV Safety / (Bladder) Cancer / Liver Toxicity / Bone loss Lobeglitazone (Duvie) 1. -
Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products. -
Disease Progression and Pharmacological Intervention in a Nutrient‑Defcient Rat Model of Nonalcoholic Steatohepatitis
Digestive Diseases and Sciences https://doi.org/10.1007/s10620-018-5395-7 ORIGINAL ARTICLE Disease Progression and Pharmacological Intervention in a Nutrient‑Defcient Rat Model of Nonalcoholic Steatohepatitis Kirstine S. Tølbøl1,3,4 · Birgit Stierstorfer2 · Jörg F. Rippmann2 · Sanne S. Veidal1 · Kristofer T. G. Rigbolt1 · Tanja Schönberger2 · Matthew P. Gillum4 · Henrik H. Hansen1 · Niels Vrang1 · Jacob Jelsing1 · Michael Feigh1 · Andre Broermann2 Received: 14 June 2018 / Accepted: 22 November 2018 © The Author(s) 2018 Abstract Background There is a marked need for improved animal models of nonalcoholic steatohepatitis (NASH) to facilitate the development of more efcacious drug therapies for the disease. Methods Here, we investigated the development of fbrotic NASH in male Wistar rats fed a choline-defcient L-amino acid- defned (CDAA) diet with or without cholesterol supplementation for subsequent assessment of drug treatment efcacy in NASH biopsy-confrmed rats. The metabolic profle and liver histopathology were evaluated after 4, 8, and 12 weeks of dieting. Subsequently, rats with biopsy-confrmed NASH were selected for pharmacological intervention with vehicle, elafbranor (30 mg/kg/day) or obeticholic acid (OCA, 30 mg/kg/day) for 5 weeks. Results The CDAA diet led to marked hepatomegaly and fbrosis already after 4 weeks of feeding, with further progression of collagen deposition and fbrogenesis-associated gene expression during the 12-week feeding period. Cholesterol supple- mentation enhanced the stimulatory efect of CDAA on gene transcripts associated with fbrogenesis without signifcantly increasing collagen deposition. Pharmacological intervention with elafbranor, but not OCA, signifcantly reduced stea- tohepatitis scores, and fbrosis-associated gene expression, however, was unable to prevent progression in fbrosis scores. -
AVANDIA (Rosiglitazone Maleate Tablets), for Oral Use Ischemic Cardiovascular (CV) Events Relative to Placebo, Not Confirmed in Initial U.S
HIGHLIGHTS OF PRESCRIBING INFORMATION ----------------------- WARNINGS AND PRECAUTIONS ----------------------- These highlights do not include all the information needed to use • Fluid retention, which may exacerbate or lead to heart failure, may occur. AVANDIA safely and effectively. See full prescribing information for Combination use with insulin and use in congestive heart failure NYHA AVANDIA. Class I and II may increase risk of other cardiovascular effects. (5.1) • Meta-analysis of 52 mostly short-term trials suggested a potential risk of AVANDIA (rosiglitazone maleate tablets), for oral use ischemic cardiovascular (CV) events relative to placebo, not confirmed in Initial U.S. Approval: 1999 a long-term CV outcome trial versus metformin or sulfonylurea. (5.2) • Dose-related edema (5.3) and weight gain (5.4) may occur. WARNING: CONGESTIVE HEART FAILURE • Measure liver enzymes prior to initiation and periodically thereafter. Do See full prescribing information for complete boxed warning. not initiate therapy in patients with increased baseline liver enzyme levels ● Thiazolidinediones, including rosiglitazone, cause or exacerbate (ALT >2.5X upper limit of normal). Discontinue therapy if ALT levels congestive heart failure in some patients (5.1). After initiation of remain >3X the upper limit of normal or if jaundice is observed. (5.5) AVANDIA, and after dose increases, observe patients carefully for signs • Macular edema has been reported. (5.6) and symptoms of heart failure (including excessive, rapid weight gain; • Increased incidence of bone fracture was observed in long-term trials. dyspnea; and/or edema). If these signs and symptoms develop, the heart (5.7) failure should be managed according to current standards of care. -
The Effect of Rosiglitazone on Overweight Subjects with Type 1 Diabetes
Clinical Care/Education/Nutrition ORIGINAL ARTICLE The Effect of Rosiglitazone on Overweight Subjects With Type 1 Diabetes SUZANNE M. STROWIG, MSN, RN the potentially serious consequences of PHILIP RASKIN, MD excessive weight gain and insulin- induced hypoglycemia, investigators con- tinue to search for treatments that address both the treatment of insulin deficiency as well as other metabolic abnormalities that OBJECTIVE — To evaluate the safety and effectiveness of rosiglitazone in the treatment of are associated with diabetes (5). overweight subjects with type 1 diabetes. Insulin resistance, a metabolic abnor- mality common in type 2 diabetes, ap- RESEARCH DESIGN AND METHODS — A total of 50 adult type 1 diabetic subjects 2 pears to be present in individuals with with a baseline BMI Ն27 kg/m were randomly assigned in a double-blind fashion to take insulin and placebo (n ϭ 25) or insulin and rosiglitazone 4 mg twice daily (n ϭ 25) for a period of 8 type 1 diabetes, as well. Although insulin months. Insulin regimen and dosage were modified in all subjects to achieve near-normal resistance in type 2 diabetes is generally glycemic control. associated with obesity, hypertension, dyslipidemia, and other metabolic disor- RESULTS — Both groups experienced a significant reduction in HbA1c (A1C) level (rosigli- ders, studies have shown that overweight tazone: 7.9 Ϯ 1.3 to 6.9 Ϯ 0.7%, P Ͻ 0.0001; placebo: 7.7 Ϯ 0.8 to 7.0 Ϯ 0.9%, P ϭ 0.002) and as well as normal-weight adults with type a significant increase in weight (rosiglitazone: 97.2 Ϯ 11.8 to 100.6 Ϯ 16.0 kg, P ϭ 0.008; 1 diabetes can have peripheral and he- Ϯ Ϯ ϭ ϭ placebo: 96.4 12.2 to 99.1 15.0, P 0.016).