AVANDIA® (Rosiglitazone Maleate) Tablets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rosiglitazone-Associated Fractures in Type 2 Diabetes an Analysis from a Diabetes Outcome Progression Trial (ADOPT)
Clinical Care/Education/Nutrition/Psychosocial Research ORIGINAL ARTICLE Rosiglitazone-Associated Fractures in Type 2 Diabetes An analysis from A Diabetes Outcome Progression Trial (ADOPT) 1 7 STEVEN E. KAHN, MB, CHB DAHONG YU, PHD preclinical data and better understand the 2 7 BERNARD ZINMAN, MD MARK A. HEISE, PHD clinical implications of and possible interven- 3 7 JOHN M. LACHIN, SCD R. PAUL AFTRING, MD, PHD tions for these findings. 4 8 STEVEN M. HAFFNER, MD GIANCARLO VIBERTI, MD 5 WILLIAM H. HERMAN, MD FOR THE ADIABETES OUTCOME Diabetes Care 31:845–851, 2008 6 RURY R. HOLMAN, MD PROGRESSION TRIAL (ADOPT) STUDY 7 BARBARA G. KRAVITZ, MS GROUP* ype 2 diabetes is associated with an increased risk of fractures, with the risk increasing with longer duration OBJECTIVE — The purpose of this study was to examine possible factors associated with the T increased risk of fractures observed with rosiglitazone in A Diabetes Outcome Progression Trial of disease (1,2). These fractures affect pre- (ADOPT). dominantly the hip, arm, and foot (1–5) and occur despite the fact that bone min- RESEARCH DESIGN AND METHODS — Data from the 1,840 women and 2,511 men eral density is either normal or even in- randomly assigned in ADOPT to rosiglitazone, metformin, or glyburide for a median of 4.0 years creased in patients with type 2 diabetes were examined with respect to time to first fracture, rates of occurrence, and sites of fractures. compared with those who are not hyper- glycemic (5–7). Although the reason for RESULTS — In men, fracture rates did not differ between treatment groups. -
The Antidiabetic Drug Lobeglitazone Has the Potential to Inhibit PTP1B T Activity ⁎ Ruth F
Bioorganic Chemistry 100 (2020) 103927 Contents lists available at ScienceDirect Bioorganic Chemistry journal homepage: www.elsevier.com/locate/bioorg The antidiabetic drug lobeglitazone has the potential to inhibit PTP1B T activity ⁎ Ruth F. Rochaa, Tiago Rodriguesc, Angela C.O. Menegattia,b, , Gonçalo J.L. Bernardesc,d, Hernán Terenzia a Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC, Brazil b Universidade Federal do Piauí, CPCE, 64900-000 Bom Jesus, PI, Brazil c Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal d Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK ARTICLE INFO ABSTRACT Keywords: Protein tyrosine phosphatase 1B (PTP1B) is considered a potential therapeutic target for the treatment of type 2 Thiazolidinediones diabetes mellitus (T2DM), since this enzyme plays a significant role to down-regulate insulin and leptin sig- Lobeglitazone nalling and its over expression has been implicated in the development of insulin resistance, T2DM and obesity. PPAR-γ Some thiazolidinediones (TZD) derivatives have been reported as promising PTP1B inhibitors with anti hy- PTP1B perglycemic effects. Recently, lobeglitazone, a new TZD, was described as an antidiabetic drug that targetsthe Non-competitive inhibitors PPAR-γ (peroxisome γ proliferator-activated receptor) pathway, but no information on its effects on PTP1B have been reported to date. We investigated the effects of lobeglitazone on PTP1B activity in vitro. Surprisingly, lobeglitazone led to moderate inhibition on PTP1B (IC50 42.8 ± 3.8 µM) activity and to a non-competitive reversible mechanism of action. -
Diabetes Mellitus: Patterns of Pharmaceutical Use in Manitoba
Diabetes Mellitus: Patterns of Pharmaceutical Use in Manitoba by Kim¡ T. G. Guilbert A Thesis submitted to The Faculty of Graduate Studies in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Faculty of Pharmacy The University of Manitoba Winnipeg, Manitoba @ Kimi T.G. Guilbert, March 2005 TIIE UMYERSITY OF MANITOBA F'ACULTY OF GRADUATE STTJDIES +g+ù+ COPYRIGIIT PERMISSION PAGE Diabetes Mellitus: Patterns of Pharmaceutical Use in Manitoba BY Kimi T.G. Guilbert A ThesisÆracticum submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE KIMI T.G. GTIILBERT O2()O5 Permission has been granted to the Library of The University of Manitoba to lend or sell copies of this thesis/practicum, to the National Library of Canada to microfïlm this thesis and to lend or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this thesis/practicum. The author reserves other publication rights, and neither this thesis/practicum nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission. Acknowledgements Upon initiation of this project I had a clear objective in mind--to learn more. As with many endeavors in life that are worthwhile, the path I have followed has brought me many places I did not anticipate at the beginning of my journey. ln reaching the end, it is without a doubt that I did learn more, and the knowledge I have been able to take with me includes a wider spectrum than the topic of population health and medication utilization. -
Identification of a Novel Selective Agonist of Pparc with No Promotion
OPEN Identification of a novel selective agonist c SUBJECT AREAS: of PPAR with no promotion of DRUG DISCOVERY ENDOCRINE SYSTEM AND adipogenesis and less inhibition of METABOLIC DISEASES osteoblastogenesis Received 28 October 2014 Chang Liu, Tingting Feng, Ningyu Zhu, Peng Liu, Xiaowan Han, Minghua Chen, Xiao Wang, Ni Li, Yongzhen Li, Yanni Xu & Shuyi Si Accepted 5 March 2015 Published Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China. 1 April 2015 Nuclear receptor peroxisome proliferator-activated receptor c (PPARc) plays an important role in the regulation of glucose homeostasis and lipid metabolism. However, current PPARc-targeting drugs such as Correspondence and thiazolidinediones (TZDs) are associated with undesirable side effects. We identified a small molecular requests for materials compound, F12016, as a selective PPARc agonist by virtual screening, which showed moderate PPARc should be addressed to agonistic activity and binding ability for PPARc. F12016 did not activate other PPAR subtypes at 30 mM and S.S. (sisyimb@hotmail. selectively modulated PPARc target gene expression. In diabetic KKAy mice, F12016 had insulin-sensitizing com) or Y.X. and glucose-lowering properties, and suppressed weight gain. In vitro, F12016 effectively increased glucose c (xuyanniwendeng@ uptake and blocked cyclin-dependent kinase 5-mediated phosphorylation of PPAR at Ser273, but slightly triggered adipogenesis and less inhibited osteoblastogenesis than rosiglitazone. Moreover, compared with hotmail.com) the full agonist rosiglitazone, F12016 had a distinct group of coregulators and a different predicted binding mode for the PPARc ligand-binding domain. A site mutation assay confirmed the key epitopes, especially Tyr473 in AF-2. -
Endocrine Drugs
PharmacologyPharmacologyPharmacology DrugsDrugs thatthat AffectAffect thethe EndocrineEndocrine SystemSystem TopicsTopicsTopics •• Pituitary Pituitary DrugsDrugs •• Parathyroid/Thyroid Parathyroid/Thyroid DrugsDrugs •• Adrenal Adrenal DrugsDrugs •• Pancreatic Pancreatic DrugsDrugs •• Reproductive Reproductive DrugsDrugs •• Sexual Sexual BehaviorBehavior DrugsDrugs FunctionsFunctionsFunctions •• Regulation Regulation •• Control Control GlandsGlandsGlands ExocrineExocrine EndocrineEndocrine •• Secrete Secrete enzymesenzymes •• Secrete Secrete hormoneshormones •• Close Close toto organsorgans •• Transport Transport viavia bloodstreambloodstream •• Require Require receptorsreceptors NervousNervous EndocrineEndocrine WiredWired WirelessWireless NeurotransmittersNeurotransmitters HormonesHormones ShortShort DistanceDistance LongLong Distance Distance ClosenessCloseness ReceptorReceptor Specificity Specificity RapidRapid OnsetOnset DelayedDelayed Onset Onset ShortShort DurationDuration ProlongedProlonged Duration Duration RapidRapid ResponseResponse RegulationRegulation MechanismMechanismMechanism ofofof ActionActionAction HypothalamusHypothalamusHypothalamus HypothalamicHypothalamicHypothalamic ControlControlControl PituitaryPituitaryPituitary PosteriorPosteriorPosterior PituitaryPituitaryPituitary Target Actions Oxytocin Uterus ↑ Contraction Mammary ↑ Milk let-down ADH Kidneys ↑ Water reabsorption AnteriorAnteriorAnterior PituitaryPituitaryPituitary Target Action GH Most tissue ↑ Growth TSH Thyroid ↑ TH secretion ACTH Adrenal ↑ Cortisol Cortex -
Effect of Chronic Treatment with Rosiglitazone on Leydig Cell Steroidogenesis in Rats
Couto et al. Reproductive Biology and Endocrinology 2010, 8:13 http://www.rbej.com/content/8/1/13 RESEARCH Open Access Effect of chronic treatment with Rosiglitazone on Leydig cell steroidogenesis in rats: In vivo and ex vivo studies Janaína A Couto1, Karina LA Saraiva2, Cleiton D Barros3, Daniel P Udrisar4, Christina A Peixoto2, Juliany SB César Vieira4, Maria C Lima3, Suely L Galdino3, Ivan R Pitta3, Maria I Wanderley4* Abstract Background: The present study was designed to examine the effect of chronic treatment with rosiglitazone - thiazolidinedione used in the treatment of type 2 diabetes mellitus for its insulin sensitizing effects - on the Leydig cell steroidogenic capacity and expression of the steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme (P450scc) in normal adult rats. Methods: Twelve adult male Wistar rats were treated with rosiglitazone (5 mg/kg) administered by gavage for 15 days. Twelve control animals were treated with the vehicle. The ability of rosiglitazone to directly affect the production of testosterone by Leydig cells ex vivo was evaluated using isolated Leydig cells from rosiglitazone- treated rats. Testosterone production was induced either by activators of the cAMP/PKA pathway (hCG and dbcAMP) or substrates of steroidogenesis [22(R)-hydroxy-cholesterol (22(R)-OH-C), which is a substrate for the P450scc enzyme, and pregnenolone, which is the product of the P450scc-catalyzed step]. Testosterone in plasma and in incubation medium was measured by radioimmunoassay. The StAR and P450scc expression was detected by immunocytochemistry. Results: The levels of total circulating testosterone were not altered by rosiglitazone treatment. A decrease in basal or induced testosterone production occurred in the Leydig cells of rosiglitazone-treated rats. -
AVANDIA (Rosiglitazone Maleate Tablets), for Oral Use Ischemic Cardiovascular (CV) Events Relative to Placebo, Not Confirmed in Initial U.S
HIGHLIGHTS OF PRESCRIBING INFORMATION ----------------------- WARNINGS AND PRECAUTIONS ----------------------- These highlights do not include all the information needed to use • Fluid retention, which may exacerbate or lead to heart failure, may occur. AVANDIA safely and effectively. See full prescribing information for Combination use with insulin and use in congestive heart failure NYHA AVANDIA. Class I and II may increase risk of other cardiovascular effects. (5.1) • Meta-analysis of 52 mostly short-term trials suggested a potential risk of AVANDIA (rosiglitazone maleate tablets), for oral use ischemic cardiovascular (CV) events relative to placebo, not confirmed in Initial U.S. Approval: 1999 a long-term CV outcome trial versus metformin or sulfonylurea. (5.2) • Dose-related edema (5.3) and weight gain (5.4) may occur. WARNING: CONGESTIVE HEART FAILURE • Measure liver enzymes prior to initiation and periodically thereafter. Do See full prescribing information for complete boxed warning. not initiate therapy in patients with increased baseline liver enzyme levels ● Thiazolidinediones, including rosiglitazone, cause or exacerbate (ALT >2.5X upper limit of normal). Discontinue therapy if ALT levels congestive heart failure in some patients (5.1). After initiation of remain >3X the upper limit of normal or if jaundice is observed. (5.5) AVANDIA, and after dose increases, observe patients carefully for signs • Macular edema has been reported. (5.6) and symptoms of heart failure (including excessive, rapid weight gain; • Increased incidence of bone fracture was observed in long-term trials. dyspnea; and/or edema). If these signs and symptoms develop, the heart (5.7) failure should be managed according to current standards of care. -
The Effect of Rosiglitazone on Overweight Subjects with Type 1 Diabetes
Clinical Care/Education/Nutrition ORIGINAL ARTICLE The Effect of Rosiglitazone on Overweight Subjects With Type 1 Diabetes SUZANNE M. STROWIG, MSN, RN the potentially serious consequences of PHILIP RASKIN, MD excessive weight gain and insulin- induced hypoglycemia, investigators con- tinue to search for treatments that address both the treatment of insulin deficiency as well as other metabolic abnormalities that OBJECTIVE — To evaluate the safety and effectiveness of rosiglitazone in the treatment of are associated with diabetes (5). overweight subjects with type 1 diabetes. Insulin resistance, a metabolic abnor- mality common in type 2 diabetes, ap- RESEARCH DESIGN AND METHODS — A total of 50 adult type 1 diabetic subjects 2 pears to be present in individuals with with a baseline BMI Ն27 kg/m were randomly assigned in a double-blind fashion to take insulin and placebo (n ϭ 25) or insulin and rosiglitazone 4 mg twice daily (n ϭ 25) for a period of 8 type 1 diabetes, as well. Although insulin months. Insulin regimen and dosage were modified in all subjects to achieve near-normal resistance in type 2 diabetes is generally glycemic control. associated with obesity, hypertension, dyslipidemia, and other metabolic disor- RESULTS — Both groups experienced a significant reduction in HbA1c (A1C) level (rosigli- ders, studies have shown that overweight tazone: 7.9 Ϯ 1.3 to 6.9 Ϯ 0.7%, P Ͻ 0.0001; placebo: 7.7 Ϯ 0.8 to 7.0 Ϯ 0.9%, P ϭ 0.002) and as well as normal-weight adults with type a significant increase in weight (rosiglitazone: 97.2 Ϯ 11.8 to 100.6 Ϯ 16.0 kg, P ϭ 0.008; 1 diabetes can have peripheral and he- Ϯ Ϯ ϭ ϭ placebo: 96.4 12.2 to 99.1 15.0, P 0.016). -
Inhibition of Mitochondrial Fatty Acid Oxidation in Drug-Induced Hepatic Steatosis*
Liver Research 3 (2019) 157e169 Contents lists available at ScienceDirect Liver Research journal homepage: http://www.keaipublishing.com/en/journals/liver-research Review Article Inhibition of mitochondrial fatty acid oxidation in drug-induced hepatic steatosis* Bernard Fromenty INSERM, UMR 1241, Universite de Rennes 1, Rennes, France article info abstract Article history: Mitochondrial fatty acid oxidation (mtFAO) is a key metabolic pathway required for energy production in Received 17 April 2019 the liver, in particular during periods of fasting. One major consequence of drug-induced impairment of Received in revised form mtFAO is hepatic steatosis, which is characterized by an accumulation of triglycerides and other lipid 16 May 2019 species, such as acyl-carnitines. Actually, the severity of this liver lesion is dependent on the residual Accepted 14 June 2019 mitochondrial b-oxidation flux. Indeed, a severe inhibition of mtFAO leads to microvesicular steatosis, hypoglycemia and liver failure. In contrast, moderate impairment of mtFAO can cause macrovacuolar Keywords: steatosis, which is a benign lesion in the short term. Because some drugs can induce both microvesicular Drug-induced liver injury (DILI) Steatosis and macrovacuolar steatosis, it is surmised that severe mitochondrial dysfunction could be favored in Mitochondria some patients by non-genetic factors (e.g., high doses and polymedication), or genetic predispositions b-Oxidation involving genes that encode proteins playing directly or indirectly a role in the mtFAO pathway. Example Acetaminophen (APAP) of drugs inducing steatosis include acetaminophen (APAP), amiodarone, ibuprofen, linezolid, nucleoside Troglitazone reverse transcriptase inhibitors, such as stavudine and didanosine, perhexiline, tamoxifen, tetracyclines, troglitazone and valproic acid. Because several previous articles reviewed in depth the mechanism(s) whereby most of these drugs are able to inhibit mtFAO and induce steatosis, the present review is rather focused on APAP, linezolid and troglitazone. -
Conjugated Estrogens Sustained Release Tablets) 0.3 Mg, 0.625 Mg, and 1.25 Mg
PRODUCT MONOGRAPH PrPREMARIN® (conjugated estrogens sustained release tablets) 0.3 mg, 0.625 mg, and 1.25 mg ESTROGENIC HORMONES ® Wyeth Canada Date of Revision: Pfizer Canada Inc., Licensee December 1, 2014 17,300 Trans-Canada Highway Kirkland, Quebec H9J 2M5 Submission Control No: 177429 PREMARIN (conjugated estrogens sustained release tablets) Page 1 of 46 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION .........................................................3 SUMMARY PRODUCT INFORMATION ...........................................................................3 INDICATIONS AND CLINICAL USE ................................................................................3 CONTRAINDICATIONS ......................................................................................................4 WARNINGS AND PRECAUTIONS ....................................................................................4 ADVERSE REACTIONS ....................................................................................................14 DRUG INTERACTIONS ....................................................................................................20 DOSAGE AND ADMINISTRATION ................................................................................23 OVERDOSAGE ...................................................................................................................25 ACTION AND CLINICAL PHARMACOLOGY ...............................................................25 STORAGE AND STABILITY ............................................................................................28 -
Guidance for Industry Drug-Induced Liver Injury: Premarketing Clinical Evaluation, Final, July 2009
Guidance for Industry Drug-Induced Liver Injury: Premarketing Clinical Evaluation U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) July 2009 Drug Safety Guidance for Industry Drug-Induced Liver Injury: Premarketing Clinical Evaluation Additional copies are available from: Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave., Bldg. 51, rm. 2201 Silver Spring, MD 20993-0002 Tel: 301-796-3400; Fax: 301-847-8714; E-mail: [email protected] http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm or Office of Communication, Outreach, and Development, HFM-40 Center for Biologics Evaluation and Research Food and Drug Administration 1401 Rockville Pike, Rockville, MD 20852-1448 Tel: 800-835-4709 or 301-827-1800 http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) July 2009 Drug Safety TABLE OF CONTENTS I. INTRODUCTION............................................................................................................. 1 II. BACKGROUND: DILI ................................................................................................... 2 III. SIGNALS OF DILI AND HY’S -
Hepatobiliary Disposition of Troglitazone and Metabolites in Rat
0022-3565/10/3321-26–34$20.00 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Vol. 332, No. 1 Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics 156653/3540910 JPET 332:26–34, 2010 Printed in U.S.A. Hepatobiliary Disposition of Troglitazone and Metabolites in Rat and Human Sandwich-Cultured Hepatocytes: Use of Monte Carlo Simulations to Assess the Impact of Changes in Biliary Excretion on Troglitazone Sulfate Accumulation Jin Kyung Lee, Tracy L. Marion, Koji Abe, Changwon Lim, Gary M. Pollock, and Kim L. R. Brouwer Division of Pharmacotherapy and Experimental Therapeutics, The University of North Carolina at Chapel Hill Eshelman School of Pharmacy, Chapel Hill, North Carolina (J.K.L., K.A., G.M.P., K.L.R.B.); Curriculum in Toxicology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.L.M., G.M.P., K.L.R.B.); and Department of Statistics and Operations Research, College of Arts and Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.) Received May 25, 2009; accepted October 1, 2009 ABSTRACT This study examined the hepatobiliary disposition of troglita- TS and TGZ concentrations ranged from 136 to 160 M and zone (TGZ) and metabolites [TGZ sulfate (TS), TGZ glucuronide from 49.4 to 84.7 M, respectively. Pharmacokinetic modeling (TG), and TGZ quinone (TQ)] over time in rat and human sand- and Monte Carlo simulations were used to evaluate the impact wich-cultured hepatocytes (SCH). Cells were incubated with of modulating the biliary excretion rate constant (Kbile) for TS on TGZ; samples were analyzed for TGZ and metabolites by liquid TS accumulation in hepatocytes and medium.