Dualism of Peroxisome Proliferator-Activated Receptor Α/Γ: a Potent Clincher in Insulin Resistance

Total Page:16

File Type:pdf, Size:1020Kb

Dualism of Peroxisome Proliferator-Activated Receptor Α/Γ: a Potent Clincher in Insulin Resistance AEGAEUM JOURNAL ISSN NO: 0776-3808 Dualism of Peroxisome Proliferator-Activated Receptor α/γ: A Potent Clincher in Insulin Resistance Mr. Ravikumar R. Thakar1 and Dr. Nilesh J. Patel1* 1Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Gujarat, India. [email protected] Abstract: Diabetes mellitus is clinical syndrome which is signalised by augmenting level of sugar in blood stream, which produced through lacking of insulin level and defective insulin activity or both. As per worldwide epidemiology data suggested that the numbers of people with T2DM living in developing countries is increasing with 80% of people with T2DM. Peroxisome proliferator-activated receptors are a family of ligand-activated transcription factors; modulate the expression of many genes. PPARs have three isoforms namely PPARα, PPARβ/δ and PPARγ that play a central role in regulating glucose, lipid and cholesterol metabolism where imbalance can lead to obesity, T2DM and CV ailments. It have pathogenic role in diabetes. PPARα is regulates the metabolism of lipids, carbohydrates, and amino acids, activated by ligands such as polyunsaturated fatty acids, and drugs used as Lipid lowering agents. PPAR β/δ could envision as a therapeutic option for the correction of diabetes and a variety of inflammatory conditions. PPARγ is well categorized, an element of the PPARs, also pharmacological effective as an insulin resistance lowering agents, are used as a remedy for insulin resistance integrated with type- 2 diabetes mellitus. There are mechanistic role of PPARα, PPARβ/δ and PPARγ in diabetes mellitus and insulin resistance. From mechanistic way, it revealed that dual PPAR-α/γ agonist play important role in regulating both lipids as well as glycemic levels with essential safety issues. Certain clinical and epidemiological data showed beneficial effects and limitation of dual PPAR-α/γ agonists in insulin resistance lowering through regulation of diabetes mellitus with some safety precaution. Keywords: PPAR agonist, Dual PPAR α/γ, Type 2 Diabetes Mellitus, Insulin Resistance Introduction: Diabetes Mellitus is a chronic clinical complex, affiliated with hyperglycemia, T2DM initiated by either insufficiency in insulin release, insulin unable to generate its activity and/or both at cell level. Uninterrupted hyperglycemia damaged the diverse vital body organs specifically nerves, kidneys, heart, eyes and blood vessels that lead to complications namely stroke, neuropathy, renal failure, retinopathy, blindness, amputations, 1 Dr. Nilesh J. Patel Associate Professor, Head of Pharmacology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University – 384012 Email Id:- [email protected] Page 1 of 27 Volume 8, Issue 3, 2020 http://aegaeum.com/ Page No: 965 AEGAEUM JOURNAL ISSN NO: 0776-3808 peripheral vascular diseases, cardiovascular diseases, etc. T2DM are categories into three types, IDDM (type 1), NIDDM (type 2) and Gestational diabetes. IDDM resulted by autoimmune destruction of the β cell of pancreas. NIDDM caused by insufficiency of insulin release and resistance towards the activity of insulin. [1,2] Worldwide current epidemiological data exhibits that approximately 366 million people had T2DM and 4.6 million deaths in 2011; it would have enhanced and reaches to 552 million in 2030. The numbers of people with T2DM living in low and middle-income countries is enhancing with 80% of people with T2DM.[3] The occurrence of T2DM diversifies from one geographical territory to the other through ecosystem as well as lifestyle predisposing factors.[4] India is the leader of the world with enormous number of diabetic patients earning the unreliable segregation of being designated the “World diabetes stock”. Honouring to the Diabetes Atlas 2006 circulated by the IDF, the number of population with diabetes in India currently around 40.9 million is predicted to uplift to 69.9 million by 2025 unless crucial preventive steps are taken. The “Asian Indian Phenotype” mentions that Indian has certain idiosyncratic clinical and biochemical deviations which encompass reduced insulin sensitivity, significant abdominal adiposity regardless of poor body mass index, lessen adiponectin and elevated high sensitive C-reactive protein levels. Elevated frequency of diabetes mellitus often outcome from in revises in food compositions and lack of physical functions in the urban population.[5] T2DM is fast capturing the status of a capable pandemic in India with greater than 62 million patients currently diagnosed with diabetic.[6,7]In the year of 2000, India exceeded the world with higher patients who have T2DM followed by China and the United States in second and third place respectively. Honouring to Wild et al. 2004, the universality of T2DM is expected to double ubiquitously from 171 to 366 million since 2006 to 2030 with a maximum rate in India. [8,9] IDDM is chiefly provoked by environmental factors. The important factors that play significant role in the development of T2DM comprise obesity[10],less physical activity and smoking. Obesity and poor socioeconomic level can convoyed enhancement of endemic of diabetes because of urbanisation, westernization and their affiliated lack of healthy food intake, lack of physical activity, unnutritional habits.[11,12]Weight of body is one of the most salient alterable etiologies in T2DM. Obesity is an unconventional etiology for dyslipidemia, elevated blood pressure, enhances the peril of CVDs and mortality in T2DM patients. [13] The pancreas of an elder’s individual doesn’t eject insulin as systematic as eject by adolescent. Higher blood pressure and inflated cholesterol level also contribute in T2DM.[14] INSULIN RESISTANCE: Insulin resistance is one of major factor for initialization of T2DM.It is referred as a clinical circumstances of diminished sensibility of tissues towards insulin, notwithstanding its balance or uplifted level into blood stream; the ailment principally materialize in adipose tissue, skeletal muscle cells, and liver.[15,16]After the induction of insulin resistance in body as a results of this diminished glucose uptake, elevated efficiency of gluconeogenesis, and enhanced lipolysis by tissues.[17] There are various factors have been recommended for the elucidation of insulin resistance mechanism, which incorporate obesity, inflammation, mitochondrial dysfunction, hyperinsulinemia, hyperlipidemia, genetic background, stress of endoplasmic reticulum, aging, oxidative stress, fatty liver, hypoxia, lipodystrophy and pregnancy. These factors are affiliated with obesity Volume 8, Issue 3, 2020 http://aegaeum.com/ Page No: 966 AEGAEUM JOURNAL ISSN NO: 0776-3808 that are crucial etiology for insulin resistance, have possible roles in the pathogenesis of insulin resistance.[18–20] Mechanism of insulin resistance at cellular level carried out by inadequate signaling is caused through diverse changes, which includes mutations and/or post-translational transformation in the receptors of insulin, IRS or in downregulating situated effect or molecules. Most common insulin resistance changes inclusive of a alleviate in insulin receptor numbers and their catalytic actions, an enhanced Ser/Thr phosphorylation phase in insulin receptor and IRS, an enhance tyrosine phosphatase action, mainly PTP-1B that take part in receptor and insulin receptor substrate dephosphorylation, a reduced in PI3K and Akt kinases effect, and defects in GLUT-4 expression and physiology.[21]Theses changes alleviate glucose uptake in adipose tissues, muscles and foster the changes at the metabolism level. An important factor play a central role for insulin resistance is Ser/Thr hyperphosphorylation of insulin receptor substrate and alleviates its phosphorylation in Tyrosine and lessen its interaction with PI3K, however changing Akt kinase phosphorylation and stimulation and IRS phosphorylation escalate its deterioration.Various agents likewise cytokines, saturated FAs, endothelin 1, angiotensin II, amino acids and states if elevated insulin levels in plasma.[22–24],It also enhance actions of kinases namely JNK stress kinase, mTOR, 70-kDa S6 ribosomal protein kinase, MAPK, diverse isoforms of PKC and PKA that phosphorylate insulin receptor substrate.[25] In addition, the development of ceramides because of saturated FAs metabolism enhanced likewise palmitate can control Akt action through modifying phosphor protein phosphatase 2A effect that dephosphorylate and immobilize it [26,27]and PKC effects that also phosphorylates it in Ser[28]and retards its translocation to the membrane in order to stimulated that mechanism control by at Akt level have been recognized.[29–31] PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS: In the journey of venturing, to particularize the methods via which few chemicals persuade peroxisome proliferation in experimental animals (rodents), as a receptor, peroxisome proliferator- activated receptor (PPAR) brought into light[32] and subsequently in short of time two others subtypes were identified that PPARβ/δ, PPARγ too. They diverse in expression, tissue allotment as well as ligand specificness.[33] PPARs synchronize a various biological actions in specific tissues that track down by specialism experimentation,[34] triggered by structurally numerous chemicals depends on as enlargement of size and/or quantity of peroxisome in the rodent liver acknowledged as peroxisome proliferators [35] The cloned receptor found that have structural
Recommended publications
  • The Antidiabetic Drug Lobeglitazone Has the Potential to Inhibit PTP1B T Activity ⁎ Ruth F
    Bioorganic Chemistry 100 (2020) 103927 Contents lists available at ScienceDirect Bioorganic Chemistry journal homepage: www.elsevier.com/locate/bioorg The antidiabetic drug lobeglitazone has the potential to inhibit PTP1B T activity ⁎ Ruth F. Rochaa, Tiago Rodriguesc, Angela C.O. Menegattia,b, , Gonçalo J.L. Bernardesc,d, Hernán Terenzia a Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC, Brazil b Universidade Federal do Piauí, CPCE, 64900-000 Bom Jesus, PI, Brazil c Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal d Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK ARTICLE INFO ABSTRACT Keywords: Protein tyrosine phosphatase 1B (PTP1B) is considered a potential therapeutic target for the treatment of type 2 Thiazolidinediones diabetes mellitus (T2DM), since this enzyme plays a significant role to down-regulate insulin and leptin sig- Lobeglitazone nalling and its over expression has been implicated in the development of insulin resistance, T2DM and obesity. PPAR-γ Some thiazolidinediones (TZD) derivatives have been reported as promising PTP1B inhibitors with anti hy- PTP1B perglycemic effects. Recently, lobeglitazone, a new TZD, was described as an antidiabetic drug that targetsthe Non-competitive inhibitors PPAR-γ (peroxisome γ proliferator-activated receptor) pathway, but no information on its effects on PTP1B have been reported to date. We investigated the effects of lobeglitazone on PTP1B activity in vitro. Surprisingly, lobeglitazone led to moderate inhibition on PTP1B (IC50 42.8 ± 3.8 µM) activity and to a non-competitive reversible mechanism of action.
    [Show full text]
  • Comparative Transcriptional Network Modeling of Three PPAR-A/C Co-Agonists Reveals Distinct Metabolic Gene Signatures in Primary Human Hepatocytes
    Comparative Transcriptional Network Modeling of Three PPAR-a/c Co-Agonists Reveals Distinct Metabolic Gene Signatures in Primary Human Hepatocytes Rene´e Deehan1, Pia Maerz-Weiss2, Natalie L. Catlett1, Guido Steiner2, Ben Wong1, Matthew B. Wright2*, Gil Blander1¤a, Keith O. Elliston1¤b, William Ladd1, Maria Bobadilla2, Jacques Mizrahi2, Carolina Haefliger2, Alan Edgar{2 1 Selventa, Cambridge, Massachusetts, United States of America, 2 F. Hoffmann-La Roche AG, Basel, Switzerland Abstract Aims: To compare the molecular and biologic signatures of a balanced dual peroxisome proliferator-activated receptor (PPAR)-a/c agonist, aleglitazar, with tesaglitazar (a dual PPAR-a/c agonist) or a combination of pioglitazone (Pio; PPAR-c agonist) and fenofibrate (Feno; PPAR-a agonist) in human hepatocytes. Methods and Results: Gene expression microarray profiles were obtained from primary human hepatocytes treated with EC50-aligned low, medium and high concentrations of the three treatments. A systems biology approach, Causal Network Modeling, was used to model the data to infer upstream molecular mechanisms that may explain the observed changes in gene expression. Aleglitazar, tesaglitazar and Pio/Feno each induced unique transcriptional signatures, despite comparable core PPAR signaling. Although all treatments inferred qualitatively similar PPAR-a signaling, aleglitazar was inferred to have greater effects on high- and low-density lipoprotein cholesterol levels than tesaglitazar and Pio/Feno, due to a greater number of gene expression changes in pathways related to high-density and low-density lipoprotein metabolism. Distinct transcriptional and biologic signatures were also inferred for stress responses, which appeared to be less affected by aleglitazar than the comparators. In particular, Pio/Feno was inferred to increase NFE2L2 activity, a key component of the stress response pathway, while aleglitazar had no significant effect.
    [Show full text]
  • Corporate Presentation June 2019 Disclaimer
    Corporate Presentation June 2019 Disclaimer Some of the statements contained in this presentation constitute forward-looking statements. Statements that are not historical facts are forward-looking statements. Forward-looking statements generally can be identified by the use of forward-looking terminology such as “may”, “will”, “expect”, “intend”, “estimate”, “anticipate”, “believe”, “continue” or similar terminology. These statements are based on the Company’s current strategy, plans, objectives, assumptions, estimates and projections. Investors should therefore not place undue reliance on those statements. The Company makes no representation, warranty or prediction that the results anticipated by such forward- looking statements will be achieved, and such forward-looking statements represent, in each case, only one of many possible scenarios and should not be viewed as the most likely or standard scenario. Forward-looking statements speak only as of the date that they are made and the Company does not undertake to update any forward-looking statements in light of new information or future events. Forward-looking statements involve inherent risks and uncertainties. The Company cautions that a number of important factors could cause actual results to differ materially from those contained in any forward-looking statement. 2 Well Diversified Mid-to-Late Stage Metabolic Pipeline for Large Market Opportunities Global partnerships secured for late stage clinical program in type 2 diabetes • Imeglimin: First in class oral drug candidate targeting
    [Show full text]
  • CDR Clinical Review Report for Soliqua
    CADTH COMMON DRUG REVIEW Clinical Review Report Insulin glargine and lixisenatide injection (Soliqua) (Sanofi-Aventis) Indication: adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus inadequately controlled on basal insulin (less than 60 units daily) alone or in combination with metformin. Service Line: CADTH Common Drug Review Version: Final (with redactions) Publication Date: January 2019 Report Length: 118 Pages Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services. While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up-to-date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect. CADTH does not guarantee and is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in any third-party materials used in preparing this document.
    [Show full text]
  • Lobeglitazone
    2013 International Conference on Diabetes and Metabolism Lobeglitazone, A Novel PPAR-γ agonist with balanced efficacy and safety Kim, Sin Gon. MD, PhD. Professor, Division of Endocrinology and Metabolism Department of Internal Medicine, Korea University College of Medicine. Disclosure of Financial Relationships This symposium is sponsored by Chong Kun Dang Pharmaceutical Corp. I have received lecture and consultation fees from Chong Kun Dang. Pros & Cons of PPAR-γ agonist Pros Cons • Good glucose lowering • Adverse effects • Durability (ADOPT) (edema, weight gain, • Insulin sensitizing CHF, fracture or rare effects (especially in MS, macular edema etc) NAFLD, PCOS etc) • Possible safety issues • Prevention of new- (risk of MI? – Rosi or onset diabetes (DREAM, bladder cancer? - Pio) ACT-NOW) • LessSo, hypoglycemiathere is a need to develop PPAR-γ • Few GI troubles agonist• Outcome with data balanced efficacy and safety (PROactive) Insulin Sensitizers : Several Issues Rosi, Peak sale ($3.3 billion) DREAM Dr. Nissen Dr. Nissen ADOPT META analysis BARI-2D (5,8) Rosi, lipid profiles RECORD 1994 1997 1999 2000 2002 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Tro out d/t FDA, All diabetes hepatotoxicity drug CV safety Rosi (5) FDA, Black box Rosi, Rosi , CV safety warning - REMS in USA = no evidence - Europe out Pio (7) PIO, bladder cancer CKD 501 Lobeglitazone 2000.6-2004.6 2004.11-2007.1 2007.3-2008.10 2009.11-2011.04 Discovery& Preclinical study Phase I Phase II Phase III Developmental Strategy Efficacy • PPAR activity Discovery & Preclinical study • In vitro & vivo efficacy • Potent efficacy 2000.06 - 2004.06 Phase I 2004.11 - 2007.01 • In vitro screening • Repeated dose toxicity • Metabolites • Geno toxicity • Phase II CYP 450 • Reproductive toxicity 2007.03 - 2008.10 • DDI • Carcinogenic toxicity ADME Phase III Safety 2009.11 - 2011.04 CV Safety / (Bladder) Cancer / Liver Toxicity / Bone loss Lobeglitazone (Duvie) 1.
    [Show full text]
  • Synthesis of a Coumarin-Based PPAR Fluorescence Probe for Competitive Binding Assay
    International Journal of Molecular Sciences Article Synthesis of a Coumarin-Based PPARγ Fluorescence Probe for Competitive Binding Assay Chisato Yoshikawa, Hiroaki Ishida , Nami Ohashi and Toshimasa Itoh * Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan; [email protected] (C.Y.); [email protected] (H.I.); [email protected] (N.O.) * Correspondence: [email protected] Abstract: Peroxisome proliferator-activated receptor γ (PPARγ) is a molecular target of metabolic syndrome and inflammatory disease. PPARγ is an important nuclear receptor and numerous PPARγ ligands were developed to date; thus, efficient assay methods are important. Here, we investigated the incorporation of 7-diethylamino coumarin into the PPARγ agonist rosiglitazone and used the com- pound in a binding assay for PPARγ. PPARγ-ligand-incorporated 7-methoxycoumarin, 1, showed weak fluorescence intensity in a previous report. We synthesized PPARγ-ligand-incorporating coumarin, 2, in this report, and it enhanced the fluorescence intensity. The PPARγ ligand 2 main- tained the rosiglitazone activity. The obtained partial agonist 6 appeared to act through a novel mechanism. The fluorescence intensity of 2 and 6 increased by binding to the ligand binding domain (LBD) of PPARγ and the affinity of reported PPARγ ligands were evaluated using the probe. Keywords: PPARγ ligand; coumarin; fluorescent ligand; screening; crystal structure Citation: Yoshikawa, C.; Ishida, H.; Ohashi, N.; Itoh, T. Synthesis of a Coumarin-Based PPARγ 1. Introduction Fluorescence Probe for Competitive Binding Assay. Int. J. Mol. Sci. 2021, Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor su- 22, 4034.
    [Show full text]
  • Comparison of Clinical Outcomes and Adverse Events Associated with Glucose-Lowering Drugs in Patients with Type 2 Diabetes: a Meta-Analysis
    Online Supplementary Content Palmer SC, Mavridis D, Nicolucci A, et al. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes: a meta-analysis. JAMA. doi:10.1001/jama.2016.9400. eMethods. Summary of Statistical Analysis eTable 1. Search Strategies eTable 2. Description of Included Clinical Trials Evaluating Drug Classes Given as Monotherapy eTable 3. Description of Included Clinical Trials Evaluating Drug Classes Given as Dual Therapy Added to Metformin eTable 4. Description of Included Clinical Trials Evaluating Drug Classes Given as Triple Therapy When Added to Metformin Plus Sulfonylurea eTable 5. Risks of Bias in Clinical Trials Evaluating Drug Classes Given as Monotherapy eTable 6. Risks of Bias in Clinical Trials Evaluating Drug Classes Given as Dual Therapy Added to Metformin eTable 7. Risks of Bias in Clinical Trials Evaluating Drug Classes Given as Triple Therapy When Added to Metformin plus Sulfonylurea eTable 8. Estimated Global Inconsistency in Networks of Outcomes eTable 9. Estimated Heterogeneity in Networks eTable 10. Definitions of Treatment Failure Outcome eTable 11. Contributions of Direct Evidence to the Networks of Treatments eTable 12. Network Meta-analysis Estimates of Comparative Treatment Associations for Drug Classes Given as Monotherapy eTable 13. Network Meta-analysis Estimates of Comparative Treatment Associations for Drug Classes When Used in Dual Therapy (in Addition to Metformin) eTable 14. Network Meta-analysis Estimates of Comparative Treatment Effects for Drug Classes Given as Triple Therapy eTable 15. Meta-regression Analyses for Drug Classes Given as Monotherapy (Compared With Metformin) eTable 16. Subgroup Analyses of Individual Sulfonylurea Drugs (as Monotherapy) on Hypoglycemia eTable 17.
    [Show full text]
  • NPY1R-Targeted Peptide-Mediated Delivery of a Dual PPAR&Alpha
    Original Article NPY1R-targeted peptide-mediated delivery of a dual PPARa/g agonist to adipocytes enhances adipogenesis and prevents diabetes progression Stefanie Wittrisch 1, Nora Klöting 2,**, Karin Mörl 1, Rima Chakaroun 2,3, Matthias Blüher 2,3,***, Annette G. Beck-Sickinger 1,* ABSTRACT Objective: PPARa/g dual agonists have been in clinical development for the treatment of metabolic diseases including type 2 diabetes and dyslipidemia. However, severe adverse side effects led to complications in clinical trials. As most of the beneficial effects rely on the compound activity in adipocytes, the selective targeting of this cell type is a cutting-edge strategy to develop safe anti-diabetic drugs. The goal of this study was to strengthen the adipocyte-specific uptake of the PPARa/g agonist tesaglitazar via NPY1R-mediated internalization. 7 34 Methods: NPY1R-preferring peptide tesaglitazar-[F ,P ]-NPY (tesa-NPY) was synthesized by a combination of automated SPPS and manual couplings. Following molecular and functional analyses for proof of concept, cell culture experiments were conducted to monitor the effects on adipogenesis. Mice treated with peptide drug conjugates or vehicle either by gavage or intraperitoneal injection were characterized phenotypically and metabolically. Histological analysis and transcriptional profiling of the adipose tissue were performed. 7 34 Results: In vitro studies revealed that the tesaglitazar-[F ,P ]-NPY conjugate selectively activates PPARg in NPY1R-expressing cells and enhances adipocyte differentiation and adiponectin expression in adipocyte precursor cells. In vivo studies using db/db mice demonstrated that the anti-diabetic activity of the peptide conjugate is as efficient as that of systemically administered tesaglitazar.
    [Show full text]
  • The Opportunities and Challenges of Peroxisome Proliferator-Activated Receptors Ligands in Clinical Drug Discovery and Development
    International Journal of Molecular Sciences Review The Opportunities and Challenges of Peroxisome Proliferator-Activated Receptors Ligands in Clinical Drug Discovery and Development Fan Hong 1,2, Pengfei Xu 1,*,† and Yonggong Zhai 1,2,* 1 Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; [email protected] 2 Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China * Correspondence: [email protected] (P.X.); [email protected] (Y.Z.); Tel.: +86-156-005-60991 (P.X.); +86-10-5880-6656 (Y.Z.) † Current address: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA. Received: 22 June 2018; Accepted: 24 July 2018; Published: 27 July 2018 Abstract: Peroxisome proliferator-activated receptors (PPARs) are a well-known pharmacological target for the treatment of multiple diseases, including diabetes mellitus, dyslipidemia, cardiovascular diseases and even primary biliary cholangitis, gout, cancer, Alzheimer’s disease and ulcerative colitis. The three PPAR isoforms (α, β/δ and γ) have emerged as integrators of glucose and lipid metabolic signaling networks. Typically, PPARα is activated by fibrates, which are commonly used therapeutic agents in the treatment of dyslipidemia. The pharmacological activators of PPARγ include thiazolidinediones (TZDs), which are insulin sensitizers used in the treatment of type 2 diabetes mellitus (T2DM), despite some drawbacks. In this review, we summarize 84 types of PPAR synthetic ligands introduced to date for the treatment of metabolic and other diseases and provide a comprehensive analysis of the current applications and problems of these ligands in clinical drug discovery and development.
    [Show full text]
  • Regulation of Enac-Mediated Sodium Reabsorption by Peroxisome Proliferator-Activated Receptors
    Hindawi Publishing Corporation PPAR Research Volume 2010, Article ID 703735, 9 pages doi:10.1155/2010/703735 Review Article Regulation of ENaC-Mediated Sodium Reabsorption by Peroxisome Proliferator-Activated Receptors Tengis S. Pavlov,1 John D. Imig,2, 3 and Alexander Staruschenko1, 4 1 Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA 2 Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA 3 Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA 4 Kidney Disease Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA Correspondence should be addressed to Alexander Staruschenko, [email protected] Received 6 January 2010; Revised 16 March 2010; Accepted 14 April 2010 Academic Editor: Tianxin Yang Copyright © 2010 Tengis S. Pavlov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Peroxisome proliferator-activated receptors (PPARs) are members of a steroid hormone receptor superfamily that responds to changes in lipid and glucose homeostasis. Peroxisomal proliferator-activated receptor subtype γ (PPARγ)hasreceivedmuch attention as the target for antidiabetic drugs, as well as its role in responding to endogenous compounds such as prostaglandin J2. However, thiazolidinediones (TZDs), the synthetic agonists of the PPARγ are tightly associated with fluid retention and edema, as potentially serious side effects. The epithelial sodium channel (ENaC) represents the rate limiting step for sodium absorption in the renal collecting duct. Consequently, ENaC is a central effector impacting systemic blood volume and pressure. The role of PPARγ agonists on ENaC activity remains controversial.
    [Show full text]
  • Modulation of Cardiometabolic Syndrome Through Peroxisome Proliferator Activator Receptors (Ppars)
    Current Molecular Pharmacology, 2012, 5, 241-247 241 This review is part of a Special Issue on PPAR Ligands and Cardiovascular Disorders: Friend or Foe. This Special Issue carries the following articles: Editorial: PPAR Ligands and Cardiovascular Disorders: Friend or Foe • The involvement of PPARs in the causes, consequences and mechanisms for correction of cardiac lipotoxicity and oxidative stress. • Healing the diabetic heart: modulation of cardiometabolic syndrome through peroxisome proliferator activator receptors (PPARs). • Effects of PPARγ agonists against vascular and renal dysfunction. • Use of clinically available PPAR agonists for heart failure; do the risks outweigh the potential benefits? • Assessment of cardiac safety for PPARγ agonists in rodent models of heart failure: A translational medicine perspective. • Peroxisome proliferator-activated receptorγ (PPARγ) agonists on glycemic control, lipid profile and cardiovascular risk. • Effects of PPARγ ligands on vascular tone. • PPARγ agonists in polycystic kidney disease with frequent development of cardiovascular disorders. Pitchai Balakumar and Gowraganahalli Jagadeesh Guest Editors Healing the Diabetic Heart: Modulation of Cardiometabolic Syndrome through Peroxisome Proliferator Activated Receptors (PPARs) Tom Hsun-Wei Huang* and Basil D. Roufogalis Faculty of Pharmacy, University of Sydney, NSW 2006, Australia Abstract: Cardiometabolic syndrome is a mixture of interrelated risk factors predisposing individuals to elevated risk of atherosclerotic cardiovascular disease and type 2 diabetes mellitus. Nuclear receptors, specifically peroxisome proliferator-activated receptors (PPARs), were identified to play a pivotal role in the regulation of metabolic homeostasis. However, with rosiglitazone currently under intense scrutiny great concerns have arisen regarding the safety of the thiazolidinedione PPAR-γ agonist family as a whole. This review discusses the current concern with PPAR-γ agonists by exploring if PPARs can still be considered worth pursuing as a viable target for cardiovascular diseases.
    [Show full text]
  • REVIEW Thyroid Hormone Receptors Regulate Adipogenesis and Carcinogenesis Via Crosstalk Signaling with Peroxisome Proliferator-A
    143 REVIEW Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors Changxue Lu and Sheue-Yann Cheng Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5128, Bethesda, Maryland 20892-4264, USA (Correspondence should be addressed to S-Y Cheng; Email: [email protected]) Abstract Peroxisome proliferator-activated receptors (PPARs) and thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily. They are ligand-dependent transcription factors that interact with their cognate hormone response elements in the promoters to regulate respective target gene expression to modulate cellular functions. While the transcription activity of each is regulated by their respective ligands, recent studies indicate that via multiple mechanisms PPARs and TRs crosstalk to affect diverse biological functions. Here, we review recent advances in the understanding of the molecular mechanisms and biological impact of crosstalk between these two important nuclear receptors, focusing on their roles in adipogenesis and carcinogenesis. Journal of Molecular Endocrinology (2010) 44, 143–154 Introduction (NR1C3; Fig. 1), are encoded by three different genes (PPARA, PPARD, and PPARG) located at chromosomes Peroxisome proliferator-activated receptors (PPARs) 22, 6, and 3 respectively. Upon ligand binding, PPARs and thyroid hormone receptors (TRs) are ligand- are recruited to peroxisome proliferator response dependent transcription receptors of the subfamily 1 elements (PPREs) in the regulatory region of target (NR1) in the nuclear receptor superfamily. The NR1 genes as heterodimers with the auxiliary factor RXR. group also includes retinoic acid receptors (RARs), With the PPAR/RXR heterodimers, either partner can Rev-erb, RAR-related orphan receptors (RORs), bind cognate ligands and elicit ligand-dependent oxysterol receptors (LXRs), vitamin D3 receptors transactivation (Kliewer et al.
    [Show full text]